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Abstract: Non-square MIMO systems are becoming increasingly common, as the addition of
multiple sensors is becoming prevalent. However, square systems are needed sometimes as an
leverage when it comes to design and analysis, as they possess desirable properties such as
invertibility and strict positive realness. This paper presents a method to square-up a class
of MIMO systems with stable transmission zeros while keeping the squared system minimum
phase. The proposed method is used to carry out adaptive control of this class of systems and
shown to lead to satisfactory performance in a numerical study of a 747 aircraft.
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1. INTRODUCTION

Square systems play a key role in control theory develop-
ment because of some unique properties they may possess
such as left/right invertibility in Chen et al. [2004]. Addi-
tionally, in order for a system to be strictly positive real
(SPR) it must necessarily be square (Weiss et al. [1994]).
The SPR property is essential for prescribing the direction
of parameter adaptation and guarantees stability through
KYP lemma (Narendra and Annaswamy [2004]). There-
fore, in adaptation design of multivariable parametric un-
certainties (Narendra and Annaswamy [2004], Tao [2003]),
square minimum-phase systems are commonly assumed.
To extend these results to non-square systems, a squaring-
up (or down) method is usually needed, which effectively
produces a minimum-phase square system through addi-
tion (or deletion) of suitable inputs or outputs.

The squaring-down method is first attempted in 1970s by
Kouvaritakis and MacFarlane [1976] and Sebakhy et al.
[1985] and its zero placement was observed to be equivalent
to pole-placement using output feedback in a transformed
space. Since pole-placement using output feedback can be
achieved only under some specific conditions, the squaring-
down method can be restrictive. Literature on squaring-
up methods were rather sparse until the work by Misra
[1992, 1993]. It has been shown the zero-placement in the
square-up method is equivalent to pole-placement using
state feedback in a transformed coordinate and therefore
is much more feasible. On the other hand, squaring-up
methods involve the addition of pseudo inputs or outputs
and therefore can only be used as a preliminary step in
the overall control design.

Recently, the squaring-up method has gained increasing
interest in adaptive control design (Lavretsky and Wise
[2013], Qu et al. [2013]). One key finding is that the
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pseudo-inputs (or outputs) can be used for feedback gain
design which yields good properties that usually only ex-
ists in a square system. The first procedure in these papers
is to perform squaring-up, then design a feedback compen-
sator so that an underlying sub-system becomes SPR. The
design has been proved plausible (Huang et al. [1999]) but
only in the “lifted” design space, which then is fulfilled
by squaring-up. For the design to be implementable on
the real control/measurement, the compensator has to be
“projected” back into the original design space through
suitable partition. Properties such as SPRness are pre-
served, which enables the design of adaptive output feed-
back control for general non-square MIMO systems (Qu
et al. [2013]).

Squaring-up is therefore a critical component of multivari-
able adaptive control. In this paper, we present a modifica-
tion to the square-up procedure proposed in Misra [1992].
This modification allows square-up to be possible even
when the non-square plant has transmission zeros. With
some preliminaries in Section 2, we describe in Section 3
the difficulty with the method in Misra [1992] and our
proposed modification. Adaptive control of a nonsquare
plant is shown to be feasible using the proposed method,
in section 4. Due to the importance of this method in
multivariable adaptive control, this simple extension to the
square-up method is expected to be highly useful.

2. PRELIMINARIES

Given a system realization Σp = {A,B,C}, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, the system Σp is square if m = p,
tall if m < p, and wide if m > p. Squaring-up is the process
by which a non-square system is made square through
the addition of more inputs or outputs until m = p.
Squaring-down is a similar process where a square system
is reached through the removal of inputs or outputs.
Squaring methods usually introduce zeros into the squared
system as demonstrated by Kouvaritakis and MacFarlane



[1976]. To facilitate control designs, one underlying task of
squaring-up is to place these zeros in the finite left half of
complex plane, i.e. C−. In this context, definition of zeros
are relevant and will be presented below. First, we need to
define the normal rank of a matrix function.

Definition 1. The normal rank of a matrix function
X(s) is defined as the rank of X(s) for almost all the
values of s ∈ C, or max

s∈C
(rank[X(s)]).

In this paper, our focus is on the few s such that the rank
of X(s) becomes smaller than its normal rank, i.e. “looses”
its normal rank. With Definition 1, we define transmission
zeros as follows.

Definition 2. (MacFarlane [1975]). For a system Σp and
its transfer function G(s) = C(sI −A)−1B, the transmis-
sion zeros are defined as the values of s ∈ C such that G(s)
loses normal rank.

One pathological case of Definition 2 is that the trans-
mission zeros coincide with the poles. To avoid the ambi-
guity, an advanced definition of transmission zero should
be introduced (MacFarlane and Karcanias [1976]), which
nevertheless, does not alter the result in this paper and
therefore will not be considered. In the definition, the
normal rank is used to take into account of the case of
degenerate systems, which is defined below.

Definition 3. If for a system Σp, the rank of G(s) is
strictly less than min(m, p) for any s ∈ C, then the system
is degenerate.

Controllable and observable systems can be degenerate.
The system is degenerate when there are repeated states,
or outputs. While G(s) possesses transmission zeros, sim-
ilarly, a system’s realization Σp also has zeros, which are
called “invariant zeros” and has a geometric definition as
following.

Definition 4. (Rosenbrock [1970]). For a system Σp =
{A,B,C}, the invariant zeros are the values of s ∈ C such
that its Rosenbrock matrix R(s) loses normal rank, where
R(s) is defined as

R(s) =

[
sI −A −B
C 0

]
. (1)

It is noted that for ease of exploration, we used a negative
version of Rosenbrock matrix. The name “invariant” comes
from the following well-known proposition in MacFarlane
and Karcanias [1976].

Proposition 1. Invariant zeros (and transmission zeros)
are invariant for coordinate transformation, state feed-
back, observer feedback, output feedback, and invertible
pre- or post-compensation.

It is also shown in MacFarlane and Karcanias [1976] that
the set of invariant zeros contains “decoupling zeros”,
which are defined below.

Definition 5. (MacFarlane and Karcanias [1976]). For a
system Σp, the input decoupling zeros correspond to the
set of all sd ∈ C such that the following n×(n+m) matrix
loses normal rank:

RI(sd) = [ sdI −A −B ] (2)

and the output decoupling zeros correspond to the set of
all sd ∈ C such that the following (n+ p)× n matrix loses

normal rank:

RO(sd) =

[
sdI −A

C

]
. (3)

The decoupling zeros are a subset of system poles. They
are actually the uncontrollable modes or the unobservable
modes of the system. The following proposition relates
invariant zeros, transmission zeros and decoupling zeros
as shown by MacFarlane and Karcanias [1976].

Proposition 2. For a general non-square system, the set
of {Invariant zeros} = the set of {transmission zeros +
some of decoupling zeros}.

When calculating transmission zeros or performing zero
placement, one should be very careful about the types
of zeros in the results. Rather than using Definition 2,
the squaring-up method proposed in this paper will use
the system’s Rosenbrock matrix to calculate and relocate
transmission zeros. We guarantee the method only manip-
ulates transmission zeros, through the proposition below.

Proposition 3. For a non-degenerate system realization
Σp = {A,B,C} that is controllable and observable, the
transmission zeros are the values of s ∈ C such that
rank[R(s)] < min(n+m,n+ p).

It is a direct result of Definitions 3, 4 and 5, and Proposi-
tion 2. The reader is referred to (MacFarlane and Karca-
nias [1976]) for the detail proof. Finally, we introduce the
general definition of minimum phase systems.

Definition 6. The system is minimum phase if all its
transmission zeros lie in C−.

3. SQUARING-UP METHOD

3.1 Problem Definition

Without loss of generality, we assume the given system is
wide. A tall system can be squared-up using its duality.
Given a wide system Σp = {A,B,C}, with A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n and n > m > p, the goal is to find
an augmentation Ca ∈ R(m−p)×n such that the system
Σa = {A,B, C̄} is square and minimum phase, where
C̄T = [CT , CT

a ]. We assume that Σp satisfies following
assumptions:

Assumption 1. (A,B) is controllable, and (A,C) is ob-
servable;

Assumption 2. rank(B) = m;

Assumption 3. rank(CB) = p.

It is noted that the observability of (A,C) is not necessary
for the existing squaring procedure to work (Misra [1992]).
It is assumed here for the ease of exposition in the sense
that no output-decoupling zeros will be involved in our
exploration. Assumptions 1 through 3 guarantee that
Σp is controllable, observable and non-degenerate. From
Proposition 3, the only subset of s ∈ C that makes R(s)
lose normal rank is the set of transmission zeros.

Before proceeding to the squaring-up method, we examine
closely system’s Rosenbrock matrix and interpret the goal
geometrically (Misra [1992]). The Rosenbrock matrix R(s)
of the given system Σp can be written in an orthogonal

state coordinate, R̃(s) as in



R(s)
T→ R̃(s) =

 sIm −A11 −A12 −B1

−A21 sIn−m −A22 0
C11 C12 0

 (4)

where T is an invertible coordinate transformation matrix
defined as

T = [BT , (null(BT ))T ]. (5)

It is easy to show that rank[R̃(s)] = rank[R(s)] for all
s ∈ C and as a result, the transmission zeros of R(s)

coincide with the transmission zeros of R̃(s). The goal then
is to design C21 ∈ R(m−p)×m and C22 ∈ R(m−p)×(n−m)

such that the squared-up system R̃a(s) as

Ra(s)
T→ R̃a(s) =

 sIm −A11 −A12 −B1

−A21 sIn−m −A22 0
C11 C12 0
C21 C22 0

 (6)

has all minimum phase transmission zeros. In other words,
the goal is to design Ca = [C21, C22] such that R̃a(s) only
loses rank at the set of pre-specified s ∈ C−.

3.2 The Squaring-Up Method of Misra [1992]

For the given system Σp, a squaring-up method has
been proposed in Misra [1992] to find Ca that places
the transmission zeros of the squared-up system using
state-feedback pole-placement in the control canonical
coordinate, whose steps are briefly summarized below.

Step 1. First choose C21 such that C1 is an invertible

matrix, where C1 =

[
C11

C21

]
. Without loss of generality, we

can choose

C21 = null(CT
11) (7)

where null forms a basis for the null space.

Step 2. Find C22 such that the eigenvalues of (Ã22 −
Bps2C22) are at desired locations vs0. For example the
following MATLAB command is used to find C22:

C22 = place(Ã22, Bps2, vs0) (8)

where Ã22 , A22 − A21C
−1
1 C̃2, C̃2 ,

[
C12

O(m−p)×(n−m)

]
,

and Bps2 ∈ R(n−m)×(m−p) is defined as:

Bps = [Bps1, Bps2] , A21C
−1
1 . (9)

It has been proved that the placed pole vs0 is exactly the
transmission zeros of the squared-up system Σa (Misra

[1992]). The proof uses the fact that R̃(s) loses rank only if

(sIn−m−A22+A21C
−1
1 C2) loses rank, where C2 =

[
C12

C22

]
.

As a result, one can make the squared-up system minimum
phase using a vs0 with all elements in C−.

3.3 Restrictions in the Existing Method

The existing squaring-up method works provided (Ã22, Bps2)
is controllable. However, there is no guarantee that
(Ã22, Bps2) is controllable for every given Σp satisfying
assumptions 1 to 3. In what follows we precisely delineate
cases where (Ã22, Bps2) can be uncontrollable.

(Ã22, Bps2) is not controllable if and only if there exists a
scalar s0 and a non-zero vector w0 such that

wT
0 [s0I − Ã22, Bps2] = 0. (10)

That is s0 is an uncontrollable eigenvalue of (Ã22, Bps2)
with w0 being the uncontrollable mode. Then

wT
0 s0 − wT

0 Ã22 = 0 (11)

wT
0 Bps2 = 0. (12)

Substituting the definition of Ã22 transforms Eq.(11) into

wT
0 s0 − wT

0 A22 + wT
0 A21C

−1
1 C̃2 = 0. (13)

Also, it is noted that

wT
0 A21C

−1
1 = wT

0 [Bps1, Bps2] = wT
0 [Bps1, 0] (14)

which follows from Eq.(9) and Eq.(12). Without loss of
generality, C−11 can be written as

C−11 = [C†11, C
T
21] (15)

where C†11 stands for the right pseudo-inverse of C11. It is
noted the representation Eq.(15) is not unique. One can
easily verify Eq.(15) using the facts that

C11C
T
21 = Op×(m−p)

C11C
†
11 = Ip

C21C
†
11 = O(m−p)×p

C21C
T
21 = Im−p

C†11C11 + CT
21C21 = Im

(16)

Using Eq.(15), Bps1 and Bps2 can be rewritten as

Bps1 = A21C
†
11 and Bps2 = A21C

T
21 (17)

Eq. (14) and Eq. (17) can be used to transform Eq. (13)
into

wT
0 s0 − wT

0 A22 + wT
0 A21C

†
11C12 = 0. (18)

Now we will examine the implication of Eq. (18) on the

original system (4). For this purpose, we return to R̃(s),
and note that

rank[R̃(s)] = rank

(
R̃(s)

[
Im −C

†
11

C12 0

0 In−m 0

0 0 Im

])
= rank

[
sIm − A11 −sC

†
11

C12 − A12 + A11C
†
11

C12 −B1

−A21 sIn−m − A22 + A21C
†
11

C12 0

C11 0 0

]
(19)

Eq.(19) shows that the rank of R̃(s) fully depends on C11,

B1 and sIn−m −A22 +A21C
†
11C12 and is given by

rank[R̃(s)] = rank(C11) + rank(B1)

+ rank(sIn−m −A22 +A21C
†
11C12). (20)

Eq.(18) says there exists a s0 such that s0In−m − A22 +

A21C
†
11C12 loses rank. Eq.(20) implies that such s0 will

cause the system R̃(s) to loose rank. From Proposition 3,

it is clear that s0 is a transmission zero of R̃(s). From
Proposition 1, it follows that R(s) has a transmission zero
at s0. From Eq.(10), we see that this s0 corresponds to

the uncontrollable mode of (Ã22, Bps2). In summary, the
square-up method of Misra [1992] fails when the original
system has a transmission zero.

This finding is not entirely surprising. Suppose that the
transfer function matrix representation G(s), of Σp,



G(s) =

G11(s) · · · G1m(s)
...

. . .
...

Gp1(s) · · · Gpm(s)

 (21)

has a normal rank r, and r ≤ p < m. If G(s) has a
transmission zero at so, then by Definition 1 it means
rank[G(so)] < r. We append (m− p) outputs leading to a
Ca that is independent of C. This in turn implies that we
append (m−p) rows to G(s) and produce a square matrix
Ga(s). It is easy to show that rank[Ga(s)] = (r + m − p)
and that rank[Ga(so)] < (r+m−p), which by Definition 1
means that there is a transmission zero so in the squared-
up system. This argument holds for any arbitrary Ca. It
therefore can be concluded that squaring-up, by appending
inputs/outputs, preserves pre-existing transmission zeros
in the given non-square system. This finding motivates
following modification.

3.4 A Modified Squaring-Up Method

We show in this section that by introducing an additional
assumption on the pre-existing transmission zeros, a mod-
ified method can be employed to square-up the system.

Assumption 4. The system Σp has only minimum-phase
transmission zeros.

Under assumption 4, it follows that all uncontrollable
modes s0 in (Ã22, Bps2), if there are any, lie in C−. This in

turn implies that the pair (Ã22, Bps2) is stabilizable. We
will show below that in this case, squaring-up is possible.

Since (Ã22, Bps2) is stabilizable, an LQR approach can
be used to determine the corresponding “gain” C22. For
example, the following Matlab command can be used to
calculate C22.

C22 = lqr(Ã22, Bps2, Q22, R22) (22)

where Q22 and R22 are LQR weights and are positive
definite. An additional advantage of Eq.(22) over Eq.(8)
is the numerical stability in the magnitude of C22. For
instance, we can choose a large R22 to penalize the use of
C22 leading to a small Ca.

We summarize the overall results in Theorem 1, which is
an important preliminary step in multivariable adaptive
control design.

Theorem 1. Given a system satisfying assumptions 1 to
4, there exists a E ∈ Rm×m and a Ca ∈ R(m−p)×n such
that 1) the system Σsu = {A, BE, C̄} is minimum phase;
2) C̄BE = (C̄BE)T > 0, where C̄ = [C, Ca].

Proof. The existence of Ca is proved by virtue of Eq.(22).
The existence of E is specified by the construction

E = (C̄B)T (23)

and Proposition 1.

We summarize our modified square-up procedure below:

M.Step 1. Check if Σp satisfies assumption 1 through 4;

M.Step 2. Transform Σp into the control canonical form
as in Eq.(4) using Eq.(5);

M.Step 3. Find C21 using Eq.(7);

M.Step 4. Calculate the stabilizable pair (Ã22, Bps2);

M.Step 5. Find C22 using Eq.(22);

M.Step 6. Augment C with Ca and transform the system
back to its original coordinate.

4. ADAPTIVE CONTROL APPLICATION

Consider the following tall linear plant model

ẋ = Ax+BΛuc +Brefzcmd

y = Cx

z = Czx

(24)

where z is the regulated output, and Λ > 0 is an unknown
uncertainty in control effectiveness. An adaptive controller
is proposed by augmenting a robust output feedback
baseline control law with an adaptive component, where
adaptation is driven by monitoring the response of the
plant and comparing it with that of the nominal plant
response as given by a reference model. The following
observer-like reference model was designed by using the
plant model in Eq. (24) with Λ = I, and adding output
error feedback through L as given by

ẋm = Axm +Bubl +Brefzcmd + L(y − ym)

ym = Cxm
zm = Czxm.

(25)

ubl denotes a baseline control component and is given by

ubl = −K>lqrxm (26)

where Klqr is selected such that

Am = A−BK>lqr (27)

is Hurwitz. The observer gain L, specially for adaptive
control, can be calculated as

L = B̄R−1S

R−1 = (C̄B̄)−1((C̄AB̄)T + C̄AB̄)(C̄B̄)−1 + εI > 0

B̄ = [B, Ba]

Ba = C>a

S =
[
S1,m×p, S2,m×(p−m)

]
= (CB)>

C̄ = SC

(28)

It has to be emphasized that in order to find the squaring-
up matrix Ba in this tall system case, we transposed the
system to its duality, used M.Step 1-6 to find a Ca, and
finally transposed the Ca to becomeBa. Roughly speaking,
we want a small L and therefore a small Ba is preferred.

The total control input is given by augmenting the baseline
control law given in Eq. (26) with an adaptive component
as

uc = −K>lqrxm −Θ>xm (29)

With the adaptive parameter Θ adjusted as

Θ̇ = Γxme
>
y S
>
1 sign(Λ) (30)

where Γ > 0 is a tuning parameter and ey = y− ym is the
measured output error. With the controller as in (25-30),
z follows zcmd satisfactorily as shown in Qu et al. [2013].

It should be noted that the critical components of the
above adaptive control design are the feedback gain L and
the mixing matrix S1. Both have to be selected such that
the transfer function matrix

C̄(sI −A+ LC)B (31)

is strictly positive real. This in turn is made possible
through the augmentation matrix Ca, a product of the
square-up method proposed in this paper.



It should also be noted that the class of MIMO plants
considered in this paper is the one that satisfies Assump-
tions 1 through 4. Of these, assumptions 1 and 2 are rather
standard. Assumption 3 is a multi-variable counterpart of
relative degree being unity. Assumption 4 is ubiquitous
in adaptive control. Theorem 1 guarantees the existence
of Ca for this entire class. The results of Qu et al. [2013]
uses Theorem 1 as a leverage to guarantee that an adaptive
controller as in (25-30) can be designed for all plants in this
class. While in this paper, we have restricted our attention
to uncertainties of the form Λ in the input matrix as in
(24), further extensions for uncertainties in A are possible
and are currently being investigated.

4.1 Numerical Example

We present a numerical example of the proposed squaring
up method as applied to the design of an adaptive output
feedback controller for the lateral-directional dynamics
of a Boeing 747 transport aircraft. This linear model is
represented as

ẋp = Apxp +Bpuc
yp = Cpxp
z = Cpzxp

(32)

where the state, control, output and regulated output are
given by

xp = [β p r φ]
>

uc = [δail δrud]
>

yp = [p r φ]
>

z = φ

(33)

where β represents the sideslip angle, p represents roll
rate, r represents yaw rate and φ represents roll angle.
The control inputs δail and δrud represent the aileron
and rudder deflection angles, respectively. All states are
measurable except β. Integral augmentation is used on the
regulated output z = φ to enforce reference tracking of
roll angle commands φcmd, where the integral error state
is defined by

ẋe = φcmd − φ (34)

With integral error augmentation, the state and output
vector become

x = [β p r φ xe]
>

y = [p r φ xe]
> (35)

The integral-error augmented 747 model with uncertainty
due to actuator faults or degradation can be represented
by the linear system in Eq. (24). The A,B and C matrices
were calculated using the aerodynamic and mass data from
Roskam [1995] for a steady, level trim flight condition at
an altitude of 40,000 ft with and airspeed of 516 knots.
These matrices were transposed to give a wide system with
Rosenbrock matrix R(s) as

R(s) =


s + 0.0605 0.0015 −0.0011 0 0 0 0 0 0

0 s + 0.4603 0.0208 −1 0 −1 0 0 0

871 −0.28 s + 0.141 0 0 0 −1 0 0

32.3 0 0 s 1 0 0 −1 0

0 0 0 0 s 0 0 0 −1

0 −0.1860 0.0061 0 0 0 0 0 0

4.0380 0.1 −0.4419 0 0 0 0 0 0

 (36)

The control problem is to design an adaptive controller
such that command tracking in roll is achieved in the

presence of any arbitrary positive definite uncertainty Λ.
An adaptive controller is designed for the 747 using Eqs.
(25-30). In order to choose L and S in Eqs. (28) and (30)
we need to carry out M.Step 1-6 in section 3.4.

M.Step 1 follows by inspection. We note that the system
in (36) has a transmission zero at −0.0511. M.Step 2 gives

R̃(s) =


s + 0.4603 0.0208 −1 0 0 −1 0 0 0

−0.28 s + 0.1410 0 0 871 0 −1 0 0

0 0 s 1 32.3 0 0 −1 0

0 0 0 s 0 0 0 0 −1

0.0015 −0.0011 0 0 s + 0.0605 0 0 0 0

−0.1860 0.0061 0 0 0 0 0 0 0

0.1 −0.4419 0 0 4.038 0 0 0 0

 . (37)

which yields

A22 = −0.0605 A21 = [−0.0015, 0.0011, 0, 0] (38)

and

C̃2 =

 0
4.038

0
0

 . (39)

M.Step 3 yields

C21 =

[
0 0 1 0
0 0 0 1

]
(40)

M.Step 4 clearly shows

Ã22 = −0.0511 and Bps2 = [0 0] (41)

It is obvious that the pair (Ã22, Bps2) is uncontrollable
and the uncontrollable mode s0 = −0.0511 is exactly the
transmission zero of the given system. Using M.Step 5 with
LQR weights Q22 = 1 and R22 = I yields

C22 =

[
0
0

]
(42)

and therefore

Ca =

[
0 0 0 1 0
0 0 0 0 1

]
(43)

Finally, M.Step 6 produces an augmented system in the
original coordinate

Ra(s) =


s + 0.0605 0.0015 −0.0011 0 0 0 0 0 0

0 s + 0.4603 0.0208 −1 0 −1 0 0 0

871 −0.28 s + 0.141 0 0 0 −1 0 0

32.3 0 0 s 1 0 0 −1 0

0 0 0 0 s 0 0 0 −1

0 −0.1860 0.0061 0 0 0 0 0 0

4.0380 0.1 −0.4419 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

 (44)

The last two rows are the designed pseudo-output matrix.
It can be easily verified that the augmented system Ra(s)
has only one transmission zero at −0.0511.

The following simulation results in Figure 1 and Figure 2
show the efficacy of this adaptive output feedback control
design based on the squaring up approach and selection of
S and L as in Eq. (28).

Figure 1 shows the response of the aircraft with the
robust baseline LQR-PI control law, with 30% control
effectiveness on the ailerons and rudders when tracking
a 30 degree roll angle doublet. Even with good stability
margins, significant overshoot and oscillations are present
due to the reduction in control effectiveness, and the
aircraft response is highly unsatisfactory. Figure 2 shows
the response of the aircraft with the same uncertainty
and with the addition of the adaptive control component.
Overshoot and settling time are significantly reduced, and
the response with the reduced control effectiveness and the



adaptive controller recovers that of the nominal baseline
controller with no uncertainty. The sideslip angle does not
exceed 1.1 degrees throughout the maneuver. It is noted
that the improvement in the performance is achieved by
using more control effort in the first fiew seconds after the
command is issued. A higher control rate is observered in
the adaptive system. The trade-off between performance
and control effort is currently under investigation.
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Fig. 1. Baseline control response, 30% control effectiveness
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Fig. 2. Adaptive control response, 30% control effective-
ness

5. CONCLUSIONS

This paper presents an extension to the square-up method
proposed in Misra (1992) when the underlying system
has finite and stable transmission zeros. The resulting
augmentation matrix Ca is applied to adaptive control of
a non-square plant to produce successful tracking under

parametric uncertainties. Both the squaring-up procedure
and the overall output-feedback based MIMO adaptive
controller are numerically validated using a linear model
of the lateral-directional dynamics of a Boeing 747 with
unknown actuator faults.
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