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Abstract—This paper presents a new, systematic method
of synthesizing an output feedback adaptive controller
for a class of uncertain, non-square multi-input/multi-
output systems. The control design process consists of first
designing an inner-loop controller for a reduced order plant
model to enforce command tracking of selected inner-loop
variables, with an adaptive element used to accommodate
parametric uncertainties in the plant. Once this inner-
loop control design is complete, an outer-loop is then
designed which prescribes the inner-loop commands to
enforce command tracking of selected outer-loop variables.

The main challenge that needs to be addressed when
designing the inner-loop controller is the determination of
a corresponding square and strictly positive real transfer
function. This is accomplished by appropriate selection
of two gain matrices that allow the realization of such
a transfer function, thereby allowing a globally stable
adaptive output feedback law to be generated. The outer-
loop controller is designed around the plant with existing
adaptive inner-loop controller such that global stability
of the closed-loop system is guaranteed. The design of
the outer-loop uses components of a closed-loop reference
model in a judicious manner which enables a modular
approach, without requiring any re-design of the inner-
loop controller. In addition, this architecture facilitates the
use of an additional state-limiter to enforce desired limits
on the state variables.

A numerical example based on a scramjet powered,
generic hypersonic vehicle model is presented, demonstrat-
ing the efficacy of the proposed control design.

Index Terms—Adaptive control.

I. INTRODUCTION

D IVIDING a control system into hierarchical struc-
ture with inner and outer-loops has many benefits,

both in aerospace and other control applications. Sig-
nificant knowledge exists around how to design many
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of the inner-loop controllers that provide stability and
robustness to the closed-loop system, and the limiting of
inner-loop commands is facilitated by this hierarchical
structure in which these commands are explicitly calcu-
lated by the outer-loop.

Obtaining accurate values of the system parameters
can be challenging, thus making the process of designing
a stabilizing controller more challenging as well. This
has led to an increased use of adaptive techniques to
solve control problems, with great success [1], [2]. How-
ever, many such adaptive controllers have previously
focused only on the problem of inner-loop control [3]–
[9], enabling the design of lower order controllers to
provide stability in the presence of uncertainties. In these
and many other cases outer-loops were typically not
designed. In aerospace applications, the design of the
guidance laws around vehicles with adaptive inner loops
is typically accomplished using ad-hoc methods, with
stability and performance of the closed-loop system only
verified through simulation.

An alternative to the multi-loop design approach
described above is to use a higher order model to
represent the vehicle dynamics, and design guidance
and control laws simultaneously. The result is a more
complex controller with a greater number of integrators
and adaptive parameters. In Ref. [10] an adaptive con-
troller was designed for a linear system which represents
the longitudinal dynamics of a hypersonic vehicle. The
controller used feedback from all five state variables to
each of the three inputs, with additional feed forward
terms, resulting in 24 adaptive parameters.

Other approaches have used sequential loop closure
on higher order nonlinear models. In Ref. [11] the non-
minimum phase dynamics typically associated with the
transfer function from an aircraft’s elevator input to the
altitude were overcome by the addition of a canard,
which would be practically impossible to implement on
a hypersonic vehicle due to the effects that aerodynamic
heating would have on such a forward control surface.
In Ref. [12] a canard is no longer used, and the resulting
unstable zero dynamics associated with regulating flight



path angle using the elevator input are overcome using
a non-adaptive dynamic inversion controller with a low
gain outer loop and saturation functions. Reference [13]
uses an adaptive dynamic inversion inner-loop control
law, with a parameter identification algorithm which
requires the state derivative be measurable. The outer-
loop is closed using sequential loop closure, but no
stability proof is provided to ensure stability of the
overall closed-loop system.

The main contribution of this paper is the design of an
outer-loop controller which prescribes commands to an
inner-loop adaptive controller such as those described in
Refs. [2], [4]–[7]. Specifically, this outer-loop controller
does not require the inner-loop controller be redesigned,
guarantees stability of the closed-loop system, and incor-
porates a state limiter, allowing the inner and outer-loop
command signals to be modified as necessary to limit
the evolution of the state trajectories to within a certain
prescribed region within the state space.

In the following section the control problem is formu-
lated with a general structure applicable to a wide class
of systems.

II. PRELIMINARIES

The following well-known lemma gives necessary
and sufficient conditions to ensure that the system
(A,B,C, 0) is strictly positive real (SPR).

Lemma 1 (Kalman-Yakubovic) Given the strictly
proper transfer matrix G(s) with stabilizable and de-
tectable realization (A,B,C, 0), where A ∈ Rn×n is
asymptotically stable, B ∈ Rn×m and C ∈ Rm×n, then
G(s) is SPR if and only if there exists a P = P> > 0
such that

A>P + PA < 0 (1)

PB = C> (2)

PROOF The proof can be found in Ref. [14].

Corollary 1 There exists a matrix P = P> > 0 that
satisfies (2) if and only if

CB = (CB)> > 0 (3)

Furthermore, when (3) holds, all solutions of (2) are
given by

P = C>(CB)−>C +B⊥XB⊥> (4)

where X = X> > 0 is arbitrary and B⊥ ∈ Rn×(n−m).

PROOF The proof can be found in Ref. [15].

Lemma 2 (Matrix Elimination) Given

G+ C>L>P + PLC < 0 (5)

where G ∈ Rn×n, C ∈ Rp×n, and P = P> ∈ Rn×n is
full rank, an L ∈ Rn×p exists which satisfies (5) if and
only if the following inequality holds

C>⊥>GC>⊥ < 0

where C>⊥ ∈ Rn×(n−p) satisfies CC>⊥ = 0.

PROOF The proof can be found in Ref. [16].

III. CONTROL PROBLEM FORMULATION

Consider the following uncertain linear time-invariant
system[
ẋp(t)
ẋg(t)

]
=

[
Ap +BpΨ>p Bgd

Bgp Ag

] [
xp(t)
xg(t)

]
+

[
BpΛ

0

]
u(t)[

yp(t)
yg(t)

]
=

[
Cp 0
0 Cg

] [
xp(t)
xg(t)

]
(6)[

zp(t)
zg(t)

]
=

[
Cpz +DpzΨ>p 0

0 Cgz

] [
xp(t)
xg(t)

]
+

[
DpzΛ

0

]
u(t)

where Ap ∈ Rnp×np , Ag ∈ Rng×ng , Bp ∈ Rnp×m,
Bgp ∈ Rng×np , Bgd ∈ Rnp×ng , Cp ∈ R`p×np ,
Cg ∈ R`g×ng , Cpz ∈ Rnep×np , Cgz ∈ Rneg×ng , and
Dpz ∈ Rnep×m are known matrices. The nonsingular
matrix Λ ∈ Rm×m, and Ψp ∈ Rnp×m, which repre-
sents constant matched uncertainty weights that enter
the system through the columns of Bp, are unknown.
The measured outputs are given by yp(t) and yg(t),
and the regulated outputs zp(t) and zg(t) correspond
to particular outputs for which tracking of command
signals zp,cmd(t) and z′g,cmd(t), respectively, is desired.
The number of regulated outputs cannot exceed the
number of inputs, that is nep ≤ m. Ultimately, the
control goal is to design u(t) in (6) so that zg(t) tracks
z′g,cmd(t).

IV. INNER LOOP CONTROL DESIGN

For systems represented by (6), xp represents the
inner-loop, and xg the outer-loop state variables. An
inner-loop controller is designed by neglecting the outer-
loop variables by assuming Bgd = 0 giving

ẋp(t) = Apxp(t) +Bp

(
Λu(t) + Ψ>p xp(t)

)
+Bgdxg(t)

yp(t) = Cpxp(t) (7)

zp(t) = Cpzxp(t) +Dpz

(
Λu(t) + Ψ>p xp(t)

)
To satisfy the control goal, the problem is restated as:

first design the input u(t) in (7) so that zp(t) tracks
zp,cmd(t) with bounded errors in the presence of the
uncertainties Λ and Ψp. Then re-introduce the outer-loop
dynamics and then design zp,cmd(t) so that zg(t) tracks
z′g,cmd(t). We make the following assumptions about the
form of the system represented in (7).

Assumption 1
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A) (Ap, Bp) is controllable.
B) (Ap, Cp) is observable.
C) Bp, Cp, and CpBp are full rank.
D) Any finite transmission zeros of (Ap, Bp, Cp, 0) are

strictly stable, and the rank of the following matrix
is full

rank
([

Ap Bp
Cpz Dpz

])
= np + nep

E)(a) Λ is nonsingular and diagonal with entries of
known sign

(b) ‖Ψp‖2 < Ψmax <∞, where Ψmax is known

In order to facilitate command tracking, integral action
is introduced, and for this purpose an additional state
xe(t) is defined as

ẋe(t) = zp,cmd(t)− zp(t) (8)

This error state is appended to the plant in (7) leading to
the following integral-augmented open-loop dynamics

ẋ(t) = Ax(t) +B
(
Λu(t) + Ψ>x(t)

)
+Bcmdzp,cmd(t)

y(t) = Cx(t) (9)

zp(t) = Czx(t) +Dpz

(
Λu(t) + Ψ>x(t)

)
where A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , and
C ∈ Rp×n are the known matrices given by

A =

[
Ap 0np×ne
−Cpz 0ne×ne

]
B =

[
Bp

−Dpz

]
Bcmd =

[
0np×m

Ine×ne

]
C =

[
Cp 0`×ne

0ne×np Ine×ne

]
Cz = [Cpz 0]

the state is given by x(t) =
[
x>p (t) x>e (t)

]>
, and the

unknown matrix Ψ is defined as

Ψ = [ Ψp
> 0m×ne ]>

Note that p = `+ ne. It can be shown that Assumption
1 regarding the plant in (7) is equivalent to Assumption
1′ regarding the plant in (9), which is stated below.

Assumption 1′

A) (A,B) is controllable.
B) (A,C) is observable.
C) B, C, and CB are full rank.
D) Any finite transmission zeros of (A,B,C, 0) are

strictly stable.
E)(a) Λ is nonsingular and diagonal with entries of

known sign
(b) ‖Ψ‖2 < Ψmax <∞, where Ψmax is known

F) (A,B,C, 0) is tall: p > m.

Remark 1 The system in (7) satisfying Assumption 1A-
D when augmented with the integral error state as shown
in (9) also satisfies Assumption 1′A-D. In other words,

under Assumption 1A-D, integral error augmentation
does not destroy controllability, observability, or the rank
conditions. Nor does it add any transmission zeros [17].
Remark 2 Assumptions 1′A and 1′B are standard.
Assumption 1′C implies that inputs and outputs are not
redundant, as well as a MIMO equivalent of relative
degree one. Assumption 1′D is a standard requirement
for output feedback adaptive control. Assumption 1′E
implies that there is no control reversal and that the
uncertainty is bounded. This bound need not be tight,
and in practice can be easily selected. Assumption 1′F
can be considered without loss of generality as the case
of wide systems p < m holds by duality. The case of
square systems has been given in Ref. [15].

A. Inner-Loop Controller
The underlying problem here is to design a control

input u(t) in (9) so that the closed-loop system has
bounded solutions and zp(t) tends to zp,cmd(t) with
bounded errors in the presence of the uncertainties Λ
and Ψ. As the ultimate goal is to develop an adaptive
controller which in turn requires a reference model, a
control design where the reference model has compo-
nents of an observer as well, is proposed. This inner-loop
controller includes a Luenberger observer together with
LQR feedback control gains. The resulting reference
model is referred to as a closed-loop reference model
(CRM) and is given by

ẋm(t) = Axm(t) +Bubl(t) +Bcmdr(t) + L
(
ym(t)− y(t)

)
ym(t) = Cxm(t) (10)
zpm(t) = Czxm(t) +Dpzubl(t)

Propose the following baseline control law, used to
construct the reference model in (10)

ubl(t) = K>x xm(t) (11)

where Kx is chosen such that Am = A + BK>x is
Hurwitz. The reference model in (10) becomes

ẋm(t) = Amxm(t) +Bcmdr(t) + L
(
ym(t)− y(t)

)
ym(t) = Cxm(t) (12)

zpm(t) = (Cz +DpzK
>
x )xm(t)

With the reference model constructed using the nom-
inal system, that is (9) with Λ = I and Ψ = 0, which
contains integral action, guarantees that zpm(t) will
track zp,cmd(t) with bounded errors. To accommodate
the uncertainty in (7), the nominal controller in (11) is
augmented with an adaptive element as

u(t) =
(
Kx + Θ(t)

)>
xm(t) (13)

where Θ(t) is to be determined by a suitable update
law. Given a system satisfying Assumption 1′ and the
proposed control architecture, the reference tracking
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control problem is reduced to selecting the CRM gain L
in (12) and update law for Θ(t) in (13).

B. Error Dynamics and Update Law
The state tracking error and parameter error, respec-

tively, are given by ex(t) = x(t) − xm(t) and Θ̃(t) =
Θ(t) − Θ∗, where Θ∗ = (Λ−1 − I)K>x − Ψ>. The
underlying error model can be described as

ėx(t) = (A+ LC +BΨ>)ex(t) +BΛΘ̃>xm(t)

+Bcmd
(
zp,cmd(t)− r(t)

)
ey(t) = Cex(t)

(14)

where ey(t) is the measured output error. Furthermore,
select the reference model input r(t) in (14) as

r(t) = zp,cmd(t) (15)

Determining a stable adaptive law for an error model
as in (14) relies on properties of an underlying transfer
function that is SPR [18]. However, the definition of
SPR is restricted to square transfer functions. As such,
for these properties to be applicable to the error model
in (14), a suitable static postcompensator S1 ∈ Rm×p
has to be chosen such that

S1C(sI −A− LC −BΨ>)−1B ∈ Rm×mp (s)

where Rp(s) denotes the ring of proper rational transfer
functions with coefficients in R. It is therefore necessary
to introduce a synthetic output error es(t) as

es(t) = S1Cex(t) (16)

Using the synthetic output error in (16) in place of
the output error, the underlying error model in (14) is
modified as

ėx(t) =
(
A+ LC +BΨ>

)
ex(t) +BΛΘ̃>(t)xm(t)

es(t) = S1Cex(t)
(17)

Thus, the design of an output feedback adaptive con-
troller is reduced to selecting matrices S1 ∈ Rm×p and
L ∈ Rn×p such that the error dynamics in (17) are SPR.

C. Selection of S1 and L
The process for selecting S1 and L in (17) is provided

in Refs. [6], [7]. S1 is solved analytically, and L is found
by solving an LMI, which is guaranteed to be feasible
by selection of a matrix Px. The conditions to ensure
(A+ LC +BΨ>, B, S1C) is SPR are given by

(A+ LC +BΨ>)>Px + Px(A+ LC +BΨ>) < 0 (18)

PxB = (S1C)> (19)

The matrix Px in (18) is given by

Px = (S1C)>(S1CB)−>S1C +N>XN (20)

where the annihilator matrix N satisfies NB = 0. Unlike
Refs. [6], [7] which selected X in (20) as block diagonal,
a more general structure of X is the following.

X =

[
X11 X12

X>12 X22

]
(21)

The same procedure is followed to determine L, with
X12 selected such that X>12N1Bcmd is full rank, where
N1 is given in [6], [7], and X11 selected such that X11 >
X12X

−1
22 X

>
12. With S1 and L selected according to [6],

[7], the error dynamics in (17) are made SPR, allowing
the following update law be used

˙̃
Θ(t) = −Γxm(t)

(
S1ey(t)

)>
sgn(Λ) (22)

Global stability is proved using the following Lyapunov
function.

V
(
ex(t), Θ̃(t)

)
= e>x (t)Pxex(t) + tr

(
|Λ|Θ̃>(t)Γ−1Θ̃(t)

)
(23)

The system given by the plant in (9), reference model
in (12), reference input in (15), control law in (13)
and update law in (22) tracks the inner-loop command
zp,cmd(t) with bounded errors.

V. OUTER LOOP CONTROL ARCHITECTURE

This section presents an outer-loop control design for
uncertain systems represented in (6) which already have
an adaptive inner-loop controller designed as described
in Section IV. The outer-loop controller presented in
this section is designed around the system with closed
adaptive inner loop, uses fixed-gains, and guarantees
stability of the closed-loop system. The outer-loop uses
components of a closed-loop reference model, and gen-
erates the appropriate commands for the inner loop
zp,cmd(t) such that the outer-loop regulated output zg(t)
tracks the desired outer-loop command z′g,cmd(t) with
bounded errors. While certain features are added to the
inner-loop controller, this outer-loop design does not
require any changes to any of the existing inner-loop
control gains. This architecture was first presented in
Ref. [19] for the case of state feedback. The outer-loop
dynamics from (6) are given by

ẋg(t) = Agxg(t) +Bgpxp(t)

yg(t) = Cgxg(t)

zg(t) = Cgzxg(t)

(24)

where Cg is partitioned as

Cg =

[
Cgy
Cgz

]
(25)
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A. Outer-Loop Control Architecture
In this section the outer-loop control architecture is

presented, and conditions on the selection of the feed-
back gains to guarantee global stability of the closed-
loop system is given. In designing the outer-loop con-
troller, the Assumption that Bgd in (7) is zero is relaxed.
The inner-loop dynamics in (9) become

ẋ(t) = Ax(t) +B
(
Λu(t) + Ψ>x(t)

)
+Bcmdzp,cmd(t) +Bdxg(t)

y(t) = Cx(t)

(26)

where Bd ∈ Rn×ng is given by

Bd =

[
Bgd

0nep×ng

]
To accommodate the Bd term in (26), the inner-loop
reference model in (12) is modified as
ẋm(t) = Amxm(t) +Bcmdr(t)− Ley(t) +Bdxgm(t)

ym(t) = Cxm(t)
(27)

This modifies the inner-loop error dynamics in (14) as

ėx(t) = (A+ LC +BΨ>)ex(t) +BΛΘ̃>(t)xm(t)

+Bcmd
(
zp,cmd(t)− r(t)

)
+Bdeg(t)

ey(t) = Cex(t)

(28)

The reference signals r(t) and zp,cmd(t) in (28) must be
generated so that zg(t) in (24) tracks zg,cmd(t). For this
additional reference model components are used.

B. Reference Model Design
1) Outer-Loop Reference Model: An additional outer-

loop reference model is introduced in addition to the
inner-loop reference model in (27) as

ẋgm(t) = Agxgm(t) +Bgxm(t)− Lyey(t)− Lgegy(t)

ygm(t) = Cgxgm(t) (29)
zgm(t) = Cgzxgm(t)

where Ly ∈ Rng×p, and Lg ∈ Rng×pg . The outer-loop
tracking error is given by eg(t) = xg(t)−xgm(t) and the
measured outer-loop error by egy(t) = yg(t) − ygm(t).
The goal is to design an outer-loop controller such that
limt→∞ eg(t) = 0, which will thus enforce the outer-
loop tracking as desired. The outer-loop error dynamics
are given by

ėg(t) =
(
Ag + LgCg

)
eg(t)+

(
Bg + LyC

)
ex(t)

egy(t) = Cgeg(t)
(30)

2) Forward-loop Reference Model: Combining the
inner-loop reference model in (27) and the outer-loop
reference model in (29), the combined reference model
is obtained as[

ẋm(t)
ẋgm(t)

]
=

[
Am Bd

Bg Ag

] [
xm(t)
xgm(t)

]
+

[
Bcmd

0

]
r(t)

+

[
L
Ly

](
ym(t)− y(t)

)
+

[
0
Lg

](
ygm(t)− yg(t)

)
zgm(t) =

[
0 Cgz

] [ xm(t)
xgm(t)

] (31)

The forward-loop reference model, which generates the
reference model input command r(t) from the outer-loop
command signal z′g,cmd(t) and stabilizes (31), is now
designed. Choose

ẋfm(t) = Afmxfm(t) +Bf1zg,cmd(t)

+Bf2xgm(t) +Bf3xm(t)

rcmd(t) = Cfmxfm(t) +Df1zg,cmd(t)

+Df2xgm(t) +Df3xm(t)

(32)

where the matrices Afm ∈ Rnf×nf , Bf1 ∈ Rnf×neg ,
Bf2 ∈ Rnf×ng , Bf3 ∈ Rnf×n, Cfm ∈ Rnep×nf ,
Df1 ∈ Rnep×neg , Df2 ∈ Rnep×ng , and Df3 ∈ Rnep×n
are selected so the closed loop system given by com-
bining (32) and (31) provides steady-state command
tracking of zg,cmd(t) by zgm(t) when the errors ey(t)
and egy(t) are zero. Furthermore, set the outer-loop
command zg,cmd(t) in (32) equal to the desired outer-
loop command z′g,cmd(t) as

zg,cmd(t) = z′g,cmd(t) (33)

Set r(t) in (31) using the output from the forward-loop
reference model component in (32) as

r(t) = rcmd(t) (34)

Substituting the forward-loop controller (32) into (31)
gives the following

˙̄xm(t) = Āx̄m(t) + B̄r(t)− L̄yey(t)− L̄gegy(t)

+ B̄mzg,cmd(t)

rcmd(t) = C̄mx̄m(t) +Df1zg,cmd(t)

(35)

where the entire reference model state x̄m(t) ∈
Rn+ng+nf is given by

x̄m(t) =
[
x>m(t) x>gm(t) x>fm(t)

]>
and where Ā ∈ Rn+ng+nf×n+ng+nf ,
B̄ ∈ Rn+ng+nf×nep , L̄y ∈ Rn+ng+nf×p,
L̄g ∈ Rn+ng+nf×pg , B̄m ∈ Rn+ng+nf×neg , and
C̄m ∈ Rnep×n+ng+nf are given by

Ā =

Am Bd 0
Bg Ag 0
Bf3 Bf2 Afm

 B̄ =

Bcmd
0
0

 L̄y =

 LLy
0


L̄g =

 0
Lg
0

 B̄m =

 0
0
Bf1

 C̄m =

D>f3

D>f2

C>fm

>

Setting the inner-loop reference model command r(t) as
in (34) and simplifying (35) gives

˙̄xm(t) = Āmx̄m(t) + B̄cmdzg,cmd(t)− L̄yey(t)− L̄gegy(t)

rcmd(t) = C̄mx̄m(t) +Df1zg,cmd(t) (36)
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where Ām ∈ Rn+ng+nf×n+ng+nf and B̄cmd ∈
Rn+ng+nf×neg are given by

Ām =

Am +BcmdDf3 Bd +BcmdDf2 BcmdCfm

Bg Ag 0
Bf3 Bf2 Afm


B̄cmd =

BcmdDf1

0
Bf1


with Ām = Ā + B̄C̄m. Appropriate selection of (32)
ensures that Ām in (36) is Hurwitz.

Remark 3 In addition to (32) selected such that Ām in
(36) is Hurwitz, it can also be selected such that with
with output zgm(t), (36) is a type-1 system with respect
to the command zg,cmd(t).

Combining the integral augmented, uncertain inner-
loop dynamics in (26) with the outer-loop guidance
dynamics (24) and reference model (36), the following
system is obtained

ẋ(t) = Ax(t) +B
(
Λu(t) + Ψ>x(t)

)
+Bcmdzp,cmd(t)

+Bdxg(t)

y(t) = Cx(t)

ẋg(t) = Agxg(t) +Bgx(t) (37)
yg(t) = Cgxg(t)

˙̄xm = Āmx̄m(t) + B̄cmdzg,cmd(t)− L̄yey(t)− L̄gegy(t)

rcmd = C̄mx̄m(t) +Df1zg,cmd(t)

where only the specification of zp,cmd(t) remains to
completely specify the control architecture.

C. Generating the Inner-Loop Command

The command zp,cmd(t) in (15) with the inner-loop
reference model input r(t) = rcmd(t) as in (34) is
modified with an outer-loop error feedback term as

zp,cmd(t) = r(t) + egs(t) (38)
egs(t) = Sgegy(t) (39)

where Sg ∈ Rnep×pg . Combining the inner-loop error
dynamics in (28) with zp,cmd(t) given by (38) and (39)
and the outer-loop error dynamics in (30) the following
inner and outer-loop error dynamics are obtained

ėx(t) =
(
A+ LC +BΨ>

)
ex(t) +BΛΘ̃>(t)xm(t)

+
(
BcmdSgCg +Bd

)
eg(t)

ey(t) = Cex(t)

ėg(t) =
(
Ag + LgCg

)
eg(t)+

(
Bg + LyC

)
ex(t)

(40)

The CRM feedback gains Ly , Lg , and Sg in (40) need
to be selected to guarantee global stability of the closed-
loop system. Looking at these error dynamics provides a
cue as to how stability may be achieved, with Lg being
used to stabilize the outer-loop error dynamics, and Sg

and Ly used to cancel the error cross-coupling terms.
This reduces the error dynamics to standard adaptive
error dynamics on the inner-loop, and stable outer-loop
error dynamics. The specific requirements for stability of
the error dynamics in (40) and the resulting conditions
leading to the solutions for Sg , Lg and Ly are provided
in the following subsection.

D. Conditions for Stability

The complete control architecture is specified by the
plant and reference model (37), inner-loop command
specified by (38) and (39), control input (13), and update
law in (22). This control architecture can be represented
by the following figure

Figure 1. Complete integrated inner and outer-loop design block
diagram.

All that remains to complete the control design is to
specify solutions to Ly , Lg , and Sg such that the closed-
loop system is stable and the control goal of command
tracking is satisfied. The problem is restated as: Find
the matrices Ly , Sg , Lg and Pg that together satisfy the
following conditions

C>L>y = −PxBcmdSgCgP
−1
g −B>g −BdP−1

g (41)

(Ag + LgCg)
>Pg + Pg(Ag + LgCg) < −Qg (42)

Rearranging (41) and using Lemma 2, the matrices Pg
and Sg must be found satisfying

−M>N>XNBcmdSgCgP
−1
g = M>(B>g +BdP

−1
g ) (43)

C>⊥>g (A>g Pg + PgAg)C>⊥g < 0 (44)

If Sg and Pg exist satisfying (43) and (44), then the
solution to the outer-loop control problem exists. Once
solutions Sg and Pg are found analytically, an Lg satis-
fying (42) is guaranteed to exist, which can be simply
found numerically, as was done to obtain L in the inner-
loop design [6], [7]. With the solutions Sg and Pg , the
solution Ly from (41) can then be calculated. So the
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problem that remains is to find Sg and Pg satisfying (43)
and (44). The existence of solutions to (43) is dependent
on the sizes of the matrices, as described in the following
cases.

1) Case I: n−p = nep: This case corresponds to the
number of inner-loop regulated outputs nep being equal
to the number of unmeasured inner-loop states, given by
n − p. For Sg to exist satisfying (43), Pg must exist
satisfying

M>B>g PgC
>⊥
g = −M>BdC>⊥g (45)

with M>B>g ∈ Rn−p×ng and C>⊥g ∈ Rng×ng−pg . Sg
is then calculated as

Sg = −(M>N>XNBcmd)
−1M>(B>g +BdP

−1
g )PgC

−1right
g

(46)
2) Case II: n − p < nep: This case corresponds to

the number of inner-loop regulated outputs nep, being
greater than the number of unmeasured inner-loop states,
given by n− p. For Sg to exist satisfying (43), Pg must
exist satisfying

M>B>g PgC
>⊥
g = −M>BdC>⊥g (47)

Once Pg satisfying (47) is found, Sg is determined by

Sg = −(M>N>XNBcmd)
−1rightM>(B>g +BdP

−1
g )PgC

−1right
g

(48)
3) Case III: n − p > nep: This case corresponds to

the number of inner-loop regulated outputs nep, being
less than the number of unmeasured inner-loop states,
given by n− p. In this case M>N>XNBcmd in (43) is
tall, so Sg doesn’t have the degrees of freedom to satisfy
(43).

The conditions for the existence of Sg and Pg exist
satisfying (43) and (44) is stated in the following theo-
rem.
Theorem 1 For the existence of Sg and Pg satisfying
(43) and (44) for a stable outer-loop controller, the plant
must satisfy n − p ≤ nep, n − p < ng , the following
inequality

C>⊥>g A>g (BgM)⊥
(
C>⊥>g (BgM)⊥

)−1right
< 0 (49)

and the rank of the following matrix be full[
M>B>g
C>⊥g

]
PROOF Finding Sg and Pg satisfying (43) involves first

finding the set of all Pg = P>g > 0 which satisfy
ΠAPgΠB = ΠC , where ΠA, ΠB , and ΠC are matrices
which depend on the state-space plant matrices as in
(45) and (47). Finding Pg involves using a generalized
singular value decomposition, and fixes certain elements
of Pg based on ΠA, ΠB , and ΠC . Then, from this set of

Pg , those which also satisfy (44) are found. This involves
substituting the form of Pg into (44) and manipulating
to obtain (49). These steps are outlined in detail in the
following sections.
Remark 4 The control solution is still possible when
the inequality in (49) is not strict, which results in (44)
not being strict. The implications this has on tracking are
discussed following the stability proof, but it is noted that
outer-loop command tracking is still achieved as desired.
Remark 5 For the existence of a stable outer loop as
described in Theorem 1 for the case when n− p ≥ ng ,
a solution is still possible, but requires additional con-
straints to be satisfied.

VI. SOLVING Pg : SYMMETRIC SOLUTIONS TO THE
MATRIX EQUATION ΠAPgΠB = ΠC

Equations (45) and (47) are in the form ΠAPgΠB =
ΠC . In these two cases, the matrices ΠA, ΠB , and ΠC

in (45) and (47) are given by

ΠA = M>B>g

ΠB = C>⊥g

ΠC = −M>BdC>⊥g

(50)

where ΠA ∈ Rn−p×ng , Pg ∈ Rng×ng , ΠB ∈
Rng×ng−pg and ΠC ∈ Rn−p×ng−pg . Using the defini-
tions in (50), the inequality (44) is rewritten and the
problem once again restated as: Find Pg = P>g > 0
satisfying

ΠAPgΠB = ΠC (51)

Π>B(A>g Pg + PgAg)ΠB < 0 (52)

A. A Generalized Singular Value Decomposition

Determining solutions Pg to Eq. (51) involves first
decomposing ΠA and ΠB using a generalized singular
value decomposition (GSVD) [20]–[23] as follows

ΠA = UΣAP

Π>B = V ΣBP
(53)

where U ∈ Rn−p×n−p and V ∈ Rng−pg×ng−pg , P ∈
Rng×ng , and ΣA ∈ Rn−p×ng and ΣB ∈ Rng−pg×ng .
The matrices describing the decomposition in Eq. (53)
are given by

ΣA =
[
In−p×n−p 0n−p×ng−pg 0n−p×p−n+pg

]
ΣB =

[
0ng−pg×n−p Ing−pg×ng−pg 0ng−pg×p−n+pg

]
(54)

and

P = PΛ

 ΠA

Π>B[
Π>A ΠB

]⊥>
 (55)
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where PΛ is an arbitrary block diagonal matrix, with full
rank, given by

PΛ =

PA 0 0
0 PB 0
0 0 PN

 (56)

where PA ∈ Rn−p×n−p, PB ∈ Rng−pg×ng−pg , and
PN ∈ Rp+pg−n×p+pg−n are each matrices of full rank.
Substituting (56) into (55) gives

P =

 PAΠA

PBΠ>B
PN
[
Π>A ΠB

]⊥>
 (57)

Selecting U and V in (53) as U = P−1
A and V = P−1

B

ensures that the decomposition (53) holds.

B. Satisfying ΠAPgΠB = ΠC with Pg = P>g > 0

Substituting ΠA and ΠB decomposed as in (53) into
(51) gives

UΣAPPgP
>Σ>BV

> = ΠC (58)

Propose the following solution Pg to (58)

Pg = P−1XDP
−> (59)

where XD = X>D > 0 ensures that Pg = P>g > 0.
Substituting Pg from (59) into (58) results in

UΣAPP
−1XDP

−>P>Σ>BV
> = ΠC

which can be simplified as

UΣAXDΣ>BV
> = ΠC (60)

The matrix XD = X>D > 0 is written as

XD =

XD11 XD12 XD13

X>D12 XD22 XD23

X>D13 X>D23 XD33

 (61)

where XD11 ∈ Rn−p×n−p, XD12 ∈ Rn−p×ng−pg ,
XD13 ∈ Rn−p×p−n+pg , XD22 ∈ Rng−pg×ng−pg ,
XD23 ∈ Rng−pg×p−n+pg , and XD33 ∈
Rp−n+pg×p−n+pg . Substituting the form of XD

from (61) and ΣA and ΣB from (54) into (60) gives

U
[
I 0 0

] XD11 XD12 XD13

X>D12 XD22 XD23

X>D13 X>D23 XD33

0
I
0

V > = ΠC

from which XD12 is given as

XD12 = PAΠCP
>
B (62)

The choice of XD12 in (62) ensures that Pg given by (59)
with XD given by (61) satisfies the equation ΠAPgΠB =
ΠC . However, the remaining degrees of freedom in XD

must be selected to ensure also that Pg > 0, and that Pg
also satisfies the inequality (52).

C. Satisfying Π>B(A>g Pg + PgAg)ΠB < 0

With Pg given by (59) dependent on XD given in (61)
with XD12 given in (62) and P given in (57), the goal
now is to find the remaining elements of XD so that
the resulting Pg satisfies the inequality (52) and ensures
Pg > 0. Substituting Pg from (59) into (52) gives

Π>BP
−1(PA>g P

−1XD+XDP
−>AgP

>)P−>ΠB < 0 (63)

Given P in (55) its inverse P−1 must satisfy PAΠA

PBΠ>B
PN
[
Π>A ΠB

]⊥>
P−1 =

I 0 0
0 I 0
0 0 I

 (64)

It can be seen from this that

Π>BP
−1 =

[
0 P−1

B 0
]

(65)

Using (65), the inequality (63) becomes

[
0 P−1

B 0
]

(PA>g P
−1XD+XDP

−>AgP
>)

 0
P−>B

0

 < 0

(66)
Defining P̄ as

P̄ = PA>g P
−1 (67)

the inequality (66) can be written as

[
0 P−1

B 0
]

(P̄XD +XDP̄
>)

 0

P−>B
0

 < 0 (68)

Examining (64) it can be seen that the columns of P−1

are given by

P−1 =
[
Π⊥B
(
PAΠAΠ⊥B

)−1right Π>⊥A

(
PBΠ>BΠ>⊥A

)−1right ×
]

(69)
where × indicates a column of P−1 which is to remain
unspecified. Expanding P and P−1, the requirement that
PP−1 = I requires the following conditions be satisfied

PAΠAΠ⊥B
(
PAΠAΠ⊥B

)−1right
= I

PBΠ>BΠ⊥B
(
PAΠAΠ⊥B

)−1right
= 0

PN
[
Π>A ΠB

]⊥>
Π⊥B
(
PAΠAΠ⊥B

)−1right
= 0

(70)

and

PAΠAΠ>⊥A
(
PBΠ>BΠ>⊥A

)−1right
= 0

PBΠ>BΠ>⊥A
(
PBΠ>BΠ>⊥A

)−1right
= I

PN
[
Π>A ΠB

]⊥>
Π>⊥A

(
PBΠ>BΠ>⊥A

)−1right
= 0

(71)

The first two conditions in (70) and (71) are obvious,
following from the definition of the right inverse, and
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properties of the annihilator matrices. With P−1 given
by (69), P̄ in (67) can be written as

P̄ =

 PAΠA

PBΠ>B
PN

[
Π>A ΠB

]⊥>
A>g

 (Π⊥B
(
PAΠAΠ⊥B

)−1right )>

(Π>⊥A

(
PBΠ>BΠ>⊥A

)−1right )>

×

>
(72)

where × in (72) again represents an element of P̄ which
remains unspecified. P̄ can also be partitioned into a
block matrix given by

P̄ =

P̄11 P̄12 P̄13

P̄21 P̄22 P̄23

P̄31 P̄32 P̄33

 (73)

where P11 ∈ Rn−p×n−p, P12 ∈ Rn−p×ng−pg ,
P13 ∈ Rn−p×p−n+pg , P21 ∈ Rng−pg×n−p, P22 ∈
Rng−pg×ng−pg , P23 ∈ Rng−pg×p−n+pg , P31 ∈
Rp−n+pg×n−p, P32 ∈ Rp−n+pg×ng−pg , and P33 ∈
Rp−n+pg×p−n+pg with P̄21 and P̄22 given by

P̄21 = PBΠ>BA
>
g Π⊥B

(
PAΠAΠ⊥B

)−1right

P̄22 = PBΠ>BA
>
g Π>⊥A

(
PBΠ>BΠ>⊥A

)−1right
(74)

The inequality in (68) with P̄ given by (73), where P̄21

and P̄22 are given by (74), and XD given by (61) must
be satisfied by the selection of the remaining elements of
XD. Plugging these expressions for P̄ in (73) and XD
in (61) into the inequality in (68) gives 0
P−>B

0

>P̄11 P̄12 P̄13

P̄21 P̄22 P̄23

P̄31 P̄32 P̄33

 XD11 XD12 XD13

X>D12 XD22 XD23

X>D13 X>D23 XD33


+

XD11 XD12 XD13

X>D12 XD22 XD23

X>D13 X>D23 XD33

 P̄>11 P̄>21 P̄>31
P̄>12 P̄>22 P̄>32
P̄>13 P̄>23 P̄>33

 0
P−>B

0

 < 0

which is equivalent to

P̄21XD12 + P̄22XD22 + P̄23X
>
D23

+X>D12P̄
>
21 +XD22P̄

>
22 +X>D23P̄

>
23 < 0

(75)

XD12 in (75) is given by (62) thus ensuring ΠAPgΠB =
ΠC . The remaining elements of XD must be selected so
that XD > 0 and so as to satisfy the inequality in Eq.
(75). Rearranging the terms in (75) gives

(P̄22XD22 +XD22P̄
>
22) + (P̄21XD12 +X>D12P̄

>
21)

< −(P̄23X
>
D23 +X>D23P̄

>
23)

(76)

The problem now is to select the remaining elements of
XD so as to satisfy (76), while also ensuring XD > 0.

D. Solving for XD

To satisfy (76) and ensure XD > 0 in (61), the
solution XD12 from (62) is used, and setting XD13 = 0,
XD23 = 0, and XD33 > 0 simplifies (76) to

(P̄22XD22 +XD22P̄
>
22) + (P̄21XD12 +X>D12P̄

>
21) < 0 (77)

and XD in (61) to

XD =

XD11 XD12 0
X>D12 XD22 0

0 0 XD33

 (78)

If P̄22 in (77) is stable, this Lyapunov equation (77)
can be solved to obtain XD22. Then with XD12, XD22,
and XD33 fixed, the Schur Complement is then used to
selected XD11 to ensure XD > 0 in (78). With P̄22 given
by (74), this provides an easy way to check if the outer-
loop control solution exists. However, if P̄22 in (77) is
not stable, this inequality may still be satisfied, based on
the properties of P̄21 and XD12. Thus, in this case, these
properties must be examined to determine whether the
outer-loop control solution exists. These two cases are
considered in the following subsections.

1) Case i: P̄22 is Stable: If P̄22 in (77) is stable, this
Lyapunov equation can be solved to obtain XD22. Then,
XD11 > 0 can be selected satisfying the following Schur
complement

XD11 > XD12X
−1
D22X

>
D12 (79)

which ensures that Pg satisfies ΠAPgΠB = ΠC with
Pg = P>g > 0, and also satisfies the inequality (52).
Thus, satisfaction of the inequality (52) and existence
of the outer-loop controller is dependent on P̄22 in (74)
being stable. Stability of P̄22 in (74) is equivalent to the
following

Π>BA
>
g Π>⊥A

(
Π>BΠ>⊥A

)−1right
< 0 (80)

Using the notation in (50), the requirement in (80) can
be written as (49). If (49) is satisfied, then XD =
X>D > 0 exists which defines Pg and ensures that
Pg = P>g > 0, ΠAPgΠB = ΠC as in (51), and
Π>B(A>g Pg + PgAg)ΠB < 0 as in (52).

2) Case ii: P̄22 is Not Stable: If P̄22 is not stable, the
inequality (77) can still be satisfied if

(P̄21XD12 +X>D12P̄
>
21) < 0 (81)

In this case, XD22 can be selected sufficiently small so
that the negative term (81) in (77) ensures the inequality
is satisfied. Using the expressions for P̄12 from (74) and
XD12 from (62) to evaluate the quantity P̄21XD12 in
(81) gives

P̄21XD12 = PBΠ>BA
>
g Π⊥B

(
PAΠAΠ⊥B

)−1rightPAΠCP
>
B

(82)
The matrix P̄21XD12 in (82) is square, with dimensions
ng − pg × ng − pg . Using the expression for P̄21XD12
in (82) allows the inequality in (81) to be expressed as

PBΠ>BA
>
g Π⊥B

(
PAΠAΠ⊥B

)−1rightPAΠCP
>
B

+
(
PBΠ>BA

>
g Π⊥B

(
PAΠAΠ⊥B

)−1rightPAΠCP
>
B

)>
< 0

(83)
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Satisfying the inequality in (83) is independent of the
selection of the matrices PA and PB . Thus, satisfying
the inequality in (83) is equivalent to satisfying

Π>BA
>
g Π⊥B

(
ΠAΠ⊥B

)−1right
ΠC

+
(
Π>BA

>
g Π⊥B

(
ΠAΠ⊥B

)−1right
ΠC

)>
< 0

(84)

Plugging in expressions for ΠA, ΠB and ΠC from (50)
in terms of the plant state-space matrices into (84) gives

− (C>⊥>g A>g C
>
g CgBgMM>BdC

>⊥
g )

− (C>⊥>g A>g C
>
g CgBgMM>BdC

>⊥
g )> < 0

(85)

Thus, when P̄22 in (77) is not stable, a solution still exists
if (85) is satisfied. In this case, XD22 can be selected
sufficiently small so that the negative term (81) in (77)
ensures the inequality is satisfied. Thus in this case even
if (49) in Theorem 1 does not hold, a control solution
still exists if (85) is satisfied.

E. Degrees of Freedom
The degrees of freedom available to the control de-

signer are the matrices PA, PB , and PN in PΛ and thus
P as in (57), that can be selected arbitrarily as long as
they are full rank. In addition XD > 0 contains several
degrees of freedom. The matrix XD33 = X>D33 > 0
is arbitrary, XD22 can be selected as desired satisfying
(77), and finally XD11 can be selected using the Schur
complement to ensure XD > 0.

VII. SOLVING FOR REMAINING OUTER-LOOP
CONTROLLER GAINS

With the solution Pg determined, Sg can now be deter-
mined from (46) or (48), depending on the dimensions.
With this Pg , an Lg satisfying the inequality in (43) is
guaranteed to exist and can be solved for numerically.
The CRM gain Ly can then be solved from (41) as

Ly = −
(
(PxBcmdSgCgP

−1
g )> +Bg + P−>g B>d

)
C−1right

(86)
The matrix Ly modifies the outer-loop guidance portion
of the reference model in response to errors within the
inner loop. It is this feature which enables stability of the
combined inner and outer loops, and provides command
tracking at the outer loop. The stability of the complete
system using the adaptive inner-loop and sequential loop
closure procedure to close the outer loop is given in
Theorem 2.
Remark 6 When the outer-loop kinematics do not affect
the inner-loop dynamics at all, that is when Bd = 0, then
Pg changes the solution to Sg as given by (46) and (48),
but has no effect on Ly . This can see this by plugging in
the solution Sg from (46) or (48) into (86), resulting in
Pg canceling out. This is important to note when tuning
the outer-loop controller.

VIII. STABILITY

The inner-loop error dynamics were given in (14) and
a Lyapunov function provided in (23), which showed
stability of the closed loop system with update law in
(22). When the outer-loop dynamics were considered,
the assumption that Bd = 0 when designing the inner-
loop controller was relaxed, giving the modified inner-
loop dynamics in (26). This change to the inner-loop
plant dynamics modified the inner-loop error dynamics
in (14) to those in (28). The inner and outer-loop error
dynamics in (40) can be written in matrix form as[
ėx(t)
ėg(t)

]
=

[
A+ LC +BΨ> BcmdSgCg +Bd

Bg + LyC Ag + LgCg

] [
ex(t)
eg(t)

]
+

[
B
0

]
ΛΘ̃>(t)xm(t)

(87)

The stability of the closed-loop system with the error
dynamics in (87) is proved in the following theorem.

Theorem 2 The uncertain system in (6) with inner-
loop controller specified by the control law in (13),
update law in (22), and the reference model in (27)
where S1 and L are chosen as described in Refs. [6],
[7], and the outer-loop controller specified by the outer-
loop reference model in (29), forward-loop reference
model component in (32), with inner-loop command
input prescribed by (34), (38) and (39), with Sg , Lg , and
Ly selected as described above results in global stability,
with limt→∞ ex(t) = 0 and limt→∞ eg(t) = 0.
PROOF With a radially unbounded Lyapunov function

candidate

V
(
ex(t), eg(t), Θ̃(t)

)
= e>x (t)Pxex(t) + e>g (t)Pgeg(t)

+ |Λ|Θ̃>(t)Γ−1Θ̃(t) (88)

where Px is given by (20) and where Pg is the solution
to the Lyapunov equation in (42), which is satisfied by
the selection of Lg and Pg as described above. The time-
derivative of (88) is given by

V̇
(
ex(t), eg(t), Θ̃(t)

)
= ė>x (t)Pxex(t) + e>x (t)Pxėx(t)

+ ėg
>(t)Pgeg(t) + e>g (t)Pg ėg(t) + 2|Λ|Θ̃>(t)Γ−1 ˙̃

Θ(t)
(89)

Substituting the inner and outer-loop error dynamics
from (28) and (30), the update law (22), with (42),
and with A>LPx + PxAL = −Qx < 0 where AL =
A+LC+BΨ> as assured by the selection of L in (18)
and with Ly in (86) simplifies (89) to

V̇
(
ex(t), eg(t), Θ̃(t)

)
= −e>x (t)Qxex(t)− e>g (t)Qgeg(t)

(90)
which implies that (88) is a Lyapunov function. It
can be concluded using Barbalat’s Lemma [18] that
limt→∞ ex(t) = 0 and limt→∞ eg(t) = 0. Since (88)
is radially unbounded stability is global.
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Corollary 2 The outer-loop regulated output zg(t)
tracks the reference regulated output zgm(t) asymptot-
ically. Furthermore, for piecewise constant outer-loop
commands, zg(t) tracks zg,cmd(t) asymptotically.

PROOF Using that limt→∞ eg = 0 from Theorem 2 it
follows that zg(t) → zgm(t) as t → ∞. Furthermore,
as stated in Remark 3 the reference model in (36)
with output zgm(t) is a type 1 system with respect to
the command zg,cmd(t). Thus, for piecewise constant
zg,cmd(t) it follows that zgm(t) → zg,cmd(t) as t → ∞,
from which it follows that zg(t)→ zg,cmd(t) as t→∞,
which proves the corollary.

Remark 7 When the inequality (49) is no longer strict,
the result is the inability to show eg(t) ∈ L2 and thus
it cannot be show that limt→∞ eg(t) = 0. However
limt→∞ egy(t) = 0, which gives yg(t) → ygm(t) as
t → ∞ and with Cg in (25) containing the regulated
output, gives zg(t) → zgm(t) as t → ∞, providing
outer-loop command tracking as desired.

IX. OUTER-LOOP CONTROLLER SUMMARY

This section provides a summary of the control design
procedure, assuming an adaptive inner-loop control as
described in Refs. [6], [7] has already been designed.

1. Design an inner-loop controller as outlined in Refs.
[6], [7].

2. Add the Bd term to the inner-loop reference model
in (12) resulting in (27)

3. Define the outer-loop reference model in (29), the
forward-loop reference model in (32), and the inner-
loop command input as in (38)

4. Calculate P̄22 from (74) where PB is an arbitrary
full rank matrix.

5. Calculate XD12 from (62) where PA is an arbitrary
full rank matrix.

6. Solve the Lyapunov equation (77) to obtain XD22.
7. Assemble XD in (78), where XD33 > 0 is arbitrary,
XD12 is given by (62), XD22 satisfies the inequality
(77), and XD11 satisfies (79)

8. Assemble (56) where PN is an arbitrary full rank
matrix and then calculate P as in (55).

9. Using P in (57) and XD in (78), calculate Pg from
(59).

10. With the solution Pg determined, Sg from (46) or
(48) is then solved for, depending on the dimen-
sions.

11. With this Pg , an Lg satisfying the inequality in
(43) is guaranteed to exist and can be solved for
numerically.

12. Solve for Ly as in (86).

Remark 8 In practice, the synthesis of the proposed
controller for both the inner and outer loops is compu-
tationally simple, with each case involving basic matrix
operations which result in a feasible LMI. The numerical
solution of this LMI is trivial with any modern numerical
solver.

X. STATE LIMITER

One of the benefits of the proposed architecture is
in the explicit calculation of the inner-loop command
rcmd(t), which is used as the input to the inner-loop
reference model and plant r(t) as given in (34). In this
section a limiter is introduced in the generation of rcmd(t)
so that state variables of interest are curtailed to stay
within a certain region. This approach is inspired by the
work in [2], [24], [25] and originally developed in [26].
The primary difference is that the limiter proposed here
is for the output feedback case, whereas the references
above as well as Refs. [27], [28] are for the case
of state feedback. However, unlike in [2] where the
state limiter is designed to accommodate an bounded,
unknown, time-varying disturbance, such disturbances
are not considered in this paper.

A. Overview

This approach will generate r(t) by scaling the inner-
loop command rcmd(t), as well as the generating the
outer-loop command zg,cmd(t) by scaling the desired
outer-loop command z′g,cmd(t) based on limits placed
on the reference model states. Should the system be
command to enter a region in the state-space which
would invoke the limiter, these modifications will then
affect the outer-loop tracking performance, which is
expected. Sacrificing tracking performance to limit the
inner-loop command or the system states is an expected
trade-off, and also a necessary one.

The reference model (35) with type-1 controller as
described in Remark 3 will have no outer-loop command
feedthrough, and with zg,cmd(t) not as in (33) gives

˙̄xm(t) = Āx̄m(t) + B̄r(t)− L̄yey(t)

− L̄gegy(t) + B̄mz
′
g,cmd(t)

rcmd(t) = C̄mx̄m(t)

(91)

However, to facilitate command and state limiting the
inner-loop command r(t) and the outer-loop command
zg,cmd(t) in (91) should be modified when certain ref-
erence model states become too large. Thus inner-loop
command r(t) is no longer set as in (34) but instead as

r(t) = rcmd(t)− rlim(t) (92)
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where the inner-loop reference model command limiter
rlim(t) is given by

rlim(t) = −krγ(x̄m(t))Klimx̄m(t) (93)

where kr ≥ 0 has dimensions kr ∈ Rnep×nep and Klim ∈
Rnep×n+ng+nf is given by

Klim = −Rlim(B̄m + B̄kr)
>P̄ (94)

where Rlim = R>lim ≥ 0 has dimensions Rlim ∈ Rnep×nep
and P̄ is the solution to the Lyapunov equation

Ā>mP̄ + P̄ Ām = −Q̄ (95)

where Q̄ = Q̄> > 0. The outer-loop command zg,cmd(t)
is no longer selected as in (33), but is instead generated
from the desired outer-loop command z′g,cmd(t) as

zg,cmd(t) = s
(
γ(x̄m(t))

)
z′g,cmd(t)− zg,lim(t) (96)

where
s
(
γ(x̄m(t))

)
= 1− γ(x̄m(t)) (97)

and zg,lim(t) is given by

zg,lim(t) = −γ(x̄m(t))Klimx̄m(t) (98)

The scalar quantity γ(x̄m(t)) is the modulation function,
which is a function of the entire reference model state
x̄m(t), and is selected such that γ(x̄m(t)) ∈ [0, 1]. For
x̄m(t) ∈ Ωδ the modulation function γ(x̄m(t)) = 0. This
corresponds to no state limiting, and when γ(x̄m(t)) = 1
this corresponds to the state limiter being fully active.
Thus, γ(x̄m(t)) is selected using several regions within
the reference model state space such that within an inner
region γ(x̄m(t)) = 0, an annulus region within which
γ(x̄m(t)) varies between 0 and 1, and an outer region for
which γ(x̄m(t)) = 1. See, for example the modulation
function in Ref. [2]. This modifies the block diagram in
Fig. 1 as shown in Fig. 2.

Figure 2. Expanded outer-loop block diagram with limiter.

Using the outer-loop command zg,cmd(t) as generated
by (96) into (91) gives

˙̄xm(t) =
(
Ām + B̄krγ(x̄m(t))Klim + B̄mγ(x̄m(t))Klim

)
x̄m(t)

+ B̄m

(
1− γ(x̄m(t))

)
z′g,cmd(t)

− L̄yey(t)− L̄gegy(t) (99)
rcmd(t) = C̄mx̄m(t)

B. Stability

Because r(t) and zg,cmd(t) do not appear in the error
dynamics (40), the state-limiter modification does not
require any change to the Lyapunov function in (88)
to prove boundedness of the errors ex(t) and eg(t).
However, in the stability proof without the state lim-
iter, the boundedness of zg,cmd(t), ey(t), and egy(t)
and stability of Ām in (36) imply boundedness of the
reference model states xm(t), xgm(t), and xfm(t), from
which boundedness of the plant states x(t) and xg(t)
is concluded. However, showing boundedness of the
reference model states is less obvious when using the
state limiter, which modifies the entire reference model
dynamics in (36) to obtain the limited reference model
dynamics in (99). Thus it is necessary to ensure that
with the limiting modifications the reference model state
x̄m(t) is still bounded, and global stability is still proved,
as stated in the following theorem.

Theorem 3 The uncertain system in (6) with inner-
loop controller specified by the control law in (13),
update law in (22), and the reference model in (27)
where S1 and L are chosen as described in Section
IV, and the outer-loop controller specified by the outer-
loop reference model in (29), forward-loop reference
model component in (32), with inner-loop command
input zp,cmd(t) is prescribed by (38) and (39), where r(t)
is given by (99), (92), and (93), and outer-loop command
generated by (96), (97), and (98), with Sg , Lg , and Ly
selected as described above, results in global stability,
with limt→∞ ex(t) = 0 and limt→∞ eg(t) = 0.

PROOF This proof follows from the proof of Theorem
2 by proposing the same candidate Lyapunov function as
in (88) and differentiating to obtain (90) from which it
can be concluded that ex(t), eg(t), Θ̃(t) ∈ L∞. Bounds
on ex(t) and eg(t) can be found as follows

‖ex(t)‖ ≤

√
V (0)

λmin(Px)

‖eg(t)‖ ≤

√
V (0)

λmin(Pg)

(100)
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giving the following bounds on their respective measured
output errors ey(t) and egy(t) as

‖ey(t)‖ ≤ ey,max = ‖C‖

√
V (0)

λmin(Px)

‖egy(t)‖ ≤ egy,max = ‖Cg‖

√
V (0)

λmin(Pg)

(101)

Propose the following additional candidate Lyapunov
function to prove boundedness of the reference model
state

V̄
(
x̄m(t)

)
= x̄>m(t)P̄ x̄m(t) (102)

Differentiating (102) gives

˙̄V
(
x̄m(t)

)
= ˙̄x>m(t)P̄ x̄m(t) + x̄>m(t)P̄ ˙̄xm(t) (103)

Using Q̄ from (95) and defining the following

Q̄lim(γ) = 2P̄ (B̄m + B̄kr)R
>
limγ(k>r B̄

> + B̄>m)P̄ ≥ 0
(104)

allowing (103) to be rewritten as

˙̄V
(
x̄m(t)

)
= −x̄>m(Q̄+ Q̄lim(γ))x̄m(t)

+ 2x̄>m(t)P̄
(
B̄m(1− γ)z′g,cmd(t)

− L̄yey(t)− L̄gegy(t)
) (105)

Note that the bounds on ey(t) and egy(t) in (101) are
independent of x̄m(t). Eq. (105) contains a negative
quadratic term in x̄m(t), and a sign indefinite term which
is linear in x̄m(t). Thus, for sufficiently large x̄m(t), the
derivative ˙̄V

(
xm(t)

)
in (105) becomes strictly negative.

This is quantified precisely by the following statement:
˙̄V
(
x̄m(t)

)
< 0 outside the compact set

Eδ =

{
x̄m(t) ∈ Rn : ‖x̄m(t)‖ ≤

2λmax(P̄ )
(
‖B̄m‖(1− γ)z′g,cmd,max + ‖L̄y‖ey,max + ‖L̄g‖egy,max

)
λmin(Q̄+ Q̄lim(γ))

}
(106)

for all γ(x̄m(t)) ∈ [0, 1]. Thus the entire reference
model state x̄m(t) is bounded [18] which, with the
boundedness of the errors ex(t) and eg(t), implies that
x(t), xg(t) ∈ L∞. With this, it can be concluded
using Barbalat’s Lemma [18] that limt→∞ ex(t) = 0
and limt→∞ eg(t) = 0.

In the absence of the state limiter, satisfaction of
the control goal of outer-loop command tracking was
discussed in Corollary 2. When using the state limiter,
Theorem 2, like Theorem 3, provided zg(t) → zgm(t)
as t → ∞. However, without the limiter, the reference
model in (36) produced zgm(t) that was a filtered version
of z′g,cmd(t). When using the limiter this is no longer
true; zgm(t) is the output of (99). Thus asymptotic
tracking of z′g,cmd(t) by zg(t) doesn’t hold in general.
However, if a desired outer-loop command z′g,cmd(t) is
given such that the limiter is inactive and γ

(
x̄m(t)

)
= 0,

the same conclusion as in Corollary 2 can be made, with
zg,cmd(t) = z′g,cmd(t). This statement is formalized in the
following corollary to Theorem 3.
Corollary 3 For all piecewise constant outer-loop
command inputs z′g,cmd(t) which satisfy ‖z′g,cmd(t)‖∞ ≤
z′g,cmd,max, the outer-loop regulated output zg(t) tracks
z′g,cmd(t) asymptotically, where z′g,cmd,max is given by

z′g,cmd,max =
x̄m,max

‖hm‖1
(107)

where hm is the impulse response of the nominal refer-

ence model, given by (99) with γ(x̄m(t)) = 0, L̄y = 0
and L̄g = 0, and x̄m,max = maxx̄m(t)∈Ωδ‖x̄m(t)‖.
PROOF For all x̄m(t) ∈ Ωδ the state limiter is in-

active, and the evolution of the reference model state
x̄m(t) is governed by (99) with γ(x̄m(t)) = 0, while
ey(t) and egy(t) tend to zero asymptotically. Thus, the
reference model state x̄m(t) ultimately depends only
on the command input z′g,cmd(t). The following bound
on the reference model state holds, where hm is the
impulse response of the nominal reference model, (99)
with γ(x̄m(t)) = 0.

‖x̄m(t)‖∞ = x̄m,max ≤ ‖hm‖1‖z′g,cmd(t)‖∞
From this, the bound z′g,cmd,max that ensures the reference
model state x̄m(t) ∈ Ωδ , thus not invoking the state
limiter, and providing the tracking properties given in
Corollary 2.
Remark 9 Corollary 3 states that if the desired outer-
loop command z′g,cmd(t) is such that the system is not
driven to enter the limiting region, that the limiter will
not impact tracking performance of the system. This is
due to the fact that the convergence of the tracking errors
ey(t) and egy(t) to zero is obtained regardless of whether
the limiter is invoked or not. In other words, as these
errors tend to zero, only the desired outer-loop command
z′g,cmd(t) can drive the reference model state x̄m(t) out of
Ωδ , as governed by (36). Thus, if the desired outer-loop
command is such that it does not force x̄m(t) outside
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of Ωδ , the limiter will become inactive. Corollary 3 then
finds the maximum value of z′g,cmd(t) such that x̄m(t) ∈
Ωδ using the impulse response of the reference model.

Remark 10 The benefits of the state limiter are ap-
parent from the compact set in (106) outside of which
˙̄V (x̄m(t)) < 0. The size of Eδ monotonically decreases

in size as γ(x̄m(t)) increases, hence shrinking the bound
on x̄m(t) when the limiter is invoked, versus without the
limiter.

1) Degrees of Freedom: The limiter described above
has several degrees of freedom which can be chosen by
the designer to achieve the desired performance. These
degrees of freedom are the gains kr, Rlim, Q̄, and the
modulation function γ(x̄m(t)) and the corresponding
sets Ω and Ωδ . The limiter components rlim(t) and
zg,lim(t) enter through the input matrices B̄ and B̄m,
respectively, of the reference model in (91). The matrix
Rlim scales Klim in (94), which is the gain used in both of
the limiting components rlim(t) and zg,lim(t), whereas kr
scales only rlim(t). Thus, by adjusting Rlim and kr, the
relative influence of the limiter through B̄ and B̄m can
be changed. This alters the the effective reference model
matrix in (99) when the limiter becomes active, and thus
Q̄lim(γ(x̄m(t))) in (104). This, along with the matrix
Q̄, alters the region outside of which ˙̄V < 0, and thus
affects the time response of the system when the state
limiter is active. With kr = 0 and Rlim = 0 the limiter
would still be stable, however the only adjustment would
come through the reduction of the outer-loop command
z′g,cmd(t) in (105). The modulation function γ(x̄m(t))
simply defines based on x̄m when the limiter becomes
active, and can be selected so as to depend on the various
elements of x̄m(t) as desired.

C. Complete Controller Summary with Limiter

The uncertain plant (26), outer-loop dynamics (24),
inner-loop reference model (27), outer-loop reference
model (29), forward-loop reference model component
(32), inner-loop command (38), (39), (92) and (93),
outer-loop command (96), (97), and (98), control law
(13), and update law (22) are summarized as follows.

Plant: ẋ(t) = Ax(t) +B
(
Λu(t) + Ψ>x(t)

)
+Bcmdzp,cmd(t) +Bdxg(t)

ẋg(t) = Agxg(t) +Bgx(t)

Reference model: ẋm(t) = Amxm(t) +Bcmdr(t)

− Ley(t) +Bdxgm(t)

ẋgm(t) = Bgxm(t) +Agxgm(t)

− Lyey(t)− Lgegy(t)

ẋfm(t) = Bf3xm(t) +Bf2xgm(t)

+Afmxfm(t) +Bf1zg,cmd(t)

Command: rcmd(t) = Cfmxfm(t) +Df1zg,cmd(t)

+Df2xgm(t) +Df3xm(t)

r(t) = rcmd(t)− rlim(t)

rlim(t) = −krγ
(
x̄m(t)

)
Klimx̄m(t)

zg,cmd(t) = s(γ)z′g,cmd(t)− zg,lim(t)

zp,cmd(t) = r(t) + Sgegy(t)

Errors: ey(t) = C
(
x(t)− xm(t)

)
egy(t) = Cg

(
xg(t)− xgm(t)

)
Control: u(t) =

(
Kx + Θ(t)

)>
xm(t)

Θ̇(t) = −Γxm(t)
(
S1ey(t)

)>sgn(Λ)

XI. SIMULATION RESULTS

This section contains simulations comparing the per-
formance of the baseline and adaptive controller, as well
as the state limiter, on the nonlinear 6-DOF Generic
Hypersonic Vehicle model [5]–[7], [29]. The equations
of motion were linearized about a Mach 5 flight con-
dition at an altitude of 80,000 feet. Modal analysis was
then used to decouple the linearized equations of motion
into three reduced order subsystems consisting of the
first-order velocity, fourth-order longitudinal, and fifth-
order lateral-directional dynamics. This allowed three
decoupled controllers to be designed: a velocity con-
troller with single loop, and controllers for the longitu-
dinal and lateral-directional subsystems with both inner
and outer loops, as described above. The longitudinal
subsystem inner-loop state variables are angle-of-attack
and pitch rate, with the outer-loop state variables pitch
angle and altitude. The lateral-directional inner-loop state
variables are sideslip angle, roll rate, and yaw rate, with
outer-loop state variables roll angle and heading angle.
Uncertainty consisting of control effectiveness on all
surfaces reduced to 20% of the nominal value, center-of-
gravity shifted 0.7 feet rearward, and the rolling moment
coefficient Cl reduced to 10% of the nominal value is
considered. The performance of the nominal baseline
controller is compared to that of the adaptive controller
both with and without the state limiter, for a heading
change of 5 degrees, on the nonlinear, uncertain GHV
model. For each subsystem Ψmax in Assumption 1E-b
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was selected by acknowledging physical constraints of
the plant. For example, the center-of-gravity must lie
within the physical extents of the vehicle, and values of
aerodynamic coefficients are bounded based on the flight
envelop as determined by the propulsive and structural
limitations of the vehicle.

Figure 3 shows that the baseline controller is not
able to maintain stability when applied to the uncertain
vehicle model. In this figure, both the reference and
plant state can seen be seen to be diverging, showing
the instability caused by the introduction of the uncer-
tainty, and demonstrating a case in which an adaptive
controller can be used to stabilize the uncertain system.
Figure 4 shows the response of the uncertain plant with
the adaptive controller summarized in Sec. IX. In this
case, the adaptive controller is able to accommodate the
uncertainty and maintain stability, but with large oscil-
lations and sideslip angle occuring, both of which are
undesirable. Figure 5 shows the response of the uncertain
plant with adaptive controller and limiter as described in
Sec. X used to suppress the large oscillations in sideslip.
Here, the modulation function γ(x̄(t)) as described in
Ref. [2] in (98) (93) is chosen only as a function of
sideslip angle, and the constraints on sideslip as given by
Ω set at 0.2 degrees. In this case the adaptive controller
not only maintains stability, but the use of the limiter
confines the oscillations in sideslip angle to a maximum
magnitude of less than 0.2 degrees as desired.
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Figure 3. Plant states for baseline controller applied to uncertain plant
in response to a 5 degree heading turn.
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Figure 4. Plant states for adaptive controller applied to uncertain plant
in response to a 5 degree heading turn.
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Figure 5. Plant states for adaptive controller applied to uncertain plant
in response to a 5 degree heading turn with sideslip angle Limiter.
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