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This paper presents a sequential loop closure approach to designing a velocity and altitude tracking au-
topilot for a hypersonic vehicle. The control architecture consists of two decoupled control subsystems, one
for velocity, the other for altitude. The velocity control subsystem consists of an adaptive augmented baseline
controller. The altitude control subsystem consists of an adaptive inner-loop designed to accommodate uncer-
tainties in the stability and control derivatives of the aircraft, and track pitch-rate commands. The outer-loop
is designed independent of the inner loop, and guarantees stability of the closed-loop system. The outer-loop
uses components of a closed-loop reference model, and generates the appropriate pitch-rate commands for the
inner loop such that the hypersonic vehicle tracks the desired altitude. A numerical example based on a scram-
jet powered, blended wing-body generic hypersonic vehicle model is presented, demonstrating the efficacy of
the proposed control design.

I. Introduction
Automatic control as been used to improve the flying qualities of aircraft and reduce pilot workload for more than

one hundred years, with the first autopilot having been invented by the Sperry Corporation in 1912. Since then this
field has grown into the broad discipline we now call guidance, navigation, and control, or GNC. In order to provide
some context for the control architecture proposed in this paper as compared to existing approaches, we first provide an
overview of the accepted definitions for each of these terms. Guidance refers to the process of determining a desired
path for a vehicle to follow and generating the appropriate maneuvers for realizing these paths;1 navigation is the
process of determining a vehicle’s location, attitude, and velocity; and control is the interface between the guidance
system and the vehicle, providing the necessary actuator inputs to stabilize and change the motion of the vehicle.

There are many different systems onboard a modern aircraft, and these systems can be delineated based on whether
they provide the function of guidance, navigation, or control. Stability derivative augmenter systems, or stability aug-
mentation systems (SAS) refer to systems which alter an aircraft’s stability derivatives by means of feedback control
thus providing artificial stability for aircraft with undesirable flying characteristics, without the pilots perception.2–4

Also, control or command augmentation systems (CAS) allow a pilot or guidance system to specify desired values of
certain aircraft motions, such as a desired vertical acceleration, angle-of-attack, or roll angle. These types of systems
typically fall under the category of inner-loop control, as they are typically represented in a block diagram as the inner
loop, with an outer-loop providing the function of autopilots, pilot relief, guidance, and navigation.5 In making this
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distinction between guidance, navigation, and control systems, we reserve the usage of the term autopilot to mean
a guidance component which is capable of tracking of variables which more meaningfully describe the path of an
aircraft, such as flight path angle, altitude, or heading angle.

Historically, the design of flight control systems has used sequential loop closure to synthesize feedback control
laws. These control laws are typically designed separately for the longitudinal and lateral-directional dynamics, as
these dynamics are decoupled under most flight conditions.6 When closing each successive loop, practical experience,
root locus techniques, and frequency domain techniques are used to determine how to feed back each specific measured
signal, such as pitch rate or angle of attack, to a particular control surface. In doing this, the aircraft could be given
desirable closed-loop performance and stability margins. Conventional flight control techniques such as classical
sequential loop closure require precise and accurate knowledge of the aerodynamic characteristics of the aircraft, and
the resulting controllers are designed with sufficient margins to accommodate any uncertainties encountered during
flight. However, when designing flight controllers for modern aircraft such as hypersonic vehicles, obtaining accurate
values of the aerodynamic characteristics is much more challenging, thus making the process of designing a stabilizing
controller more challenging as well. This has led to an increased use of adaptive techniques to solve flight control
problems, with great success.7

Many of these adaptive controllers have focused only on the problem of inner-loop control.8–14 This inner-loop
design procedure enabled the design of a lower order controller to provide stability in the presence of uncertainties, but
have not provided the ability to track meaningful flight trajectories; guidance loops were typically not designed. The
design of the guidance laws for vehicles with adaptive inner loop controllers is typically accomplished using ad-hoc
methods, with stability and performance of the closed-loop system only verified through simulation.

An alternative to this approach is to use a higher order model to represent the vehicle dynamics, and design
guidance and control laws simultaneously. The result is a more complex controller with a greater number of integrators
and adaptive parameters. In Reference [15] an adaptive controller was designed for a linear system which represents
the longitudinal dynamics of a hypersonic vehicle. The controller used feedback from all five state variables and two
additional integral error states to each of the three control inputs, with additional feed forward terms, resulting in 27
adaptive parameters, plus additional adaptive parameters to accommodate actuator saturation.

Other approaches have used sequential loop closure on higher order nonlinear models. In Reference [16] the non-
minimum phase dynamics typically associated with the transfer function from an aircraft’s elevator input to the altitude
were overcome by the addition of a canard, which would be practically impossible to implement on a hypersonic
vehicle. In Reference [17] a canard is no longer used, and the resulting unstable zero dynamics associated with
regulating flight path angle using the elevator input are overcome using a non-adaptive dynamic inversion controller
with a low gain outer loop and saturation functions. Reference [18] uses an adaptive dynamic inversion inner-loop
control law, with a parameter identification algorithm which requires the state derivative be measurable. The outer-loop
is closed using sequential loop closure, but no stability proof is provided to ensure stability of the overall closed-loop
system.

The goal of this work is to use a sequential loop closure based design to synthesize a guidance and control law
for a vehicle which has uncertain parameters. This approach simplifies the process of designing guidance and control
laws from that of designing a single higher-order controller to instead designing several lower-order controllers. A
robust adaptive inner-loop controller along the lines of References [7, 9, 10, 12] is used to maintain vehicle stability
in the presence of uncertainties, and the outer guidance loop generates appropriate inner loop reference commands so
that the vehicle follows a desired trajectory. The outer-loop uses components of a closed-loop reference model, and
the resulting closed-loop system is shown to be globally stable.

In Section II, we introduce the aircraft dynamics, show how uncertainties in the vehicle stability and control deriva-
tives manifested themselves in the dynamics, and propose the use of an integrator to facilitate command tracking. In
Section IV, we design a baseline controller for the vehicle using a sequential loop closure procedure, when no uncer-
tainties are present. Section V describes the design of an adaptive inner-loop controller to accommodate uncertainties.
Section VI describes how the existing baseline design is used in the sequential loop closure design around the adaptive
inner loop. Finally, in Section VI, the proposed control architecture is applied a Generic Hypersonic Vehicle (GHV)
to illustrate the efficacy of this method.
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II. Control Problem Formulation
Consider the following model which describes the linearized longitudinal flight dynamics of a GHV, where v is

the velocity, α is the angle-of-attack, q the pitch rate, θ the pitch angle, h the altitude, uth the throttle equivalence
ratio, and ue the elevator deflection angle.19 This model is obtained by linearizing the dynamics of the GHV about a
trim condition. The control goal is to design a controller which will ensure command tracking of altitude and velocity
commands.
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In order to achieve the goal of designing a controller which will provide tracking of velocity and altitude com-
mands, many approaches are available. For instance, the system in (1) could be used as the design model, and a
state-feedback MIMO controller could be designed for this model, resulting in a controller with many gains to de-
termine. Alternatively, the system in (1) could be further simplified, facilitating the design of several lower order
controllers and fewer gains to select; this is the approach taken in this work.

For the GHV, and many other flight vehicles, performing a modal analysis on the system represented in (1) for most
flight conditions shows strong decoupling between the velocity dynamics and the remaining longitudinal dynamics, as
described in Reference [12]. This allows the velocity dynamics to be considered independently from the longitudinal
dynamics, and the corresponding velocity controller to be designed separately from the longitudinal controller. Fur-
thermore, the −(g sin γeq)/(veq − Zα̇) and Mθ − (Mα̇g sin(γeq))/(veq − Zα̇) terms in (1) are negligible. Lastly, the
trim condition for the sequential loop closure adaptive autopilot design in this work is taken as steady level flight at
cruise. The resulting simplified decoupled velocity dynamics are described by

v̇ = Xvv +Xth cos(αeq)uth (2)

and the resulting simplified decoupled longitudinal dynamics are given by
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The lower block triangular structure of (3) allows the further partitioning of the longitudinal dynamics into the short
period and phugoid, or guidance dynamics. The short-period dynamics are given by[
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and the guidance dynamics are given by[
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Together, the short-period dynamics in (4) and the guidance dynamics in (5) equivalently describe the longitudinal
dynamics in (3).

A. Representation of Uncertainties

When the stability and control derivatives in (1) are unknown, this uncertainty is reflected in the decoupled systems
of (2) and (4), which can both be represented by an equation of the following form

ẋp = Apxp +Bp(Λu+ Ψ>p xp)

z = Cpzxp +Dpz(Λu+ Ψ>p xp)
(6)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cpz ∈ Rne×np , and Dpz ∈ Rne×m are constant known matrices, and where
z represents the regulated output and the number of regulated outputs cannot exceed the number of inputs, that is
ne ≤ m. The uncertainties represented by Λ ∈ Rm×m and Ψp ∈ Rnp×m are unknown matrices.

The design of a state-feedback controller for an unknown system in the form of (6) is relatively straightforward.
Adaptive control can be used to accommodate the uncertainties Λ and Ψp, and integral action used to facilitate com-
mand tracking of the regulated output z. In order to accomplish the control goal of designing a command tracking
controller for velocity and altitude, we note that the longitudinal dynamics in (3) can also be represented in the form of
(6). This would allow us to select z in (6) to correspond to altitude, and design a controller to track altitude. However,
it is often practical to design an adaptive controller for a lower order system, with only those adjustable parameters
necessary to accommodate the uncertainty. To do so, the reduced order short-period dynamics of (4) are represented
as in (6), and an adaptive controller is designed for this system.

However, in designing a controller for the short-period dynamics in (4) the altitude is not available as a regulated
output, and so we must instead select the regulated output to correspond to a variable such as pitch-rate or vertical
acceleration. This makes the goal of altitude command tracking more difficult. Given the short-period system in (4)
represented as in (6) with stabilizing adaptive controller, the control goal is reformulated as selecting the appropriate
inner-loop command such that the altitude, as obtained by incorporating (5), tracks the altitude command. This is the
sequential loop closure procedure, wherein the adaptive inner-loop controller for the short-period dynamics in (4) is
designed first, after which the guidance dynamics in (5) are then included and additional loops are closed. Before we
proceed, we make the following assumptions about the form of the system represented in (6).

Assumption 1
A) (Ap, Bp) is controllable.

B) Bp is full rank.

C) Λ is nonsingular and diagonal with entries of known sign

D) The rank of the following matrix is full

rank

([
Ap Bp
Cpz Dpz

])
= np + ne

In order to facilitate command tracking of the command zcmd by z, we introduce integral action with an additional
state xe defined as

ẋe = zcmd − z (7)

In order to accomplish the control goal of velocity command tracking, the integral error state in (7) corresponding
to (2) will be selected as velocity. For (4) the integral error state will be used to accomplish command tracking of
pitch-rate, vertical acceleration, or a similar command. This integral error state is appended to the plant in (6) leading
to the following augmented open-loop dynamics[

ẋp

ẋe

]
=

[
Ap 0

−Cpz 0

][
xp

xe

]
+

[
Bp

−Dpz

]
(Λu+ Ψ>p xp) +

[
0

I

]
zcmd (8)
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The system in (8) can be written more compactly as follows

ẋ = Ax+B(Λu+ Ψ>x) +Bcmdzcmd

z = Czx+Dz(Λu+ Ψ>x)
(9)

The augmented state vector x is given by

x =
[
x>p x>e

]>
The matrices A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , Cz ∈ Rne×n, and Dz ∈ Rne×m are known, and given by

A =

[
Ap 0np×ne
−Cpz 0ne×ne

]
B =

[
Bp

−Dpz

]
Bcmd =

[
0np×m

Ine×ne

]
Cz =

[
Cpz 0ne×ne

]
Dz = Dpz

and the matrix Ψ = [ Ψ>p 0m×ne ]> is unknown. It can be shown that Assumption 1 regarding the plant in (6) is
equivalent to Assumption 1′ regarding the system in (9), which is stated below.

Assumption 1′

A) (A,B) is controllable.

B) B is full rank.

C) Λ is nonsingular and diagonal with entries of known sign

The underlying problem here is to design a control input u for (9) so that the closed-loop system has bounded
solutions and z tends to zcmd with bounded errors in the presence of the uncertainties Λ and Ψ. In the following
section, we describe the baseline control design for the nominal case when there are no uncertainties present, that is
when Λ = I and Ψ = 0 as follows.

ẋ = Ax+Bu+Bcmdzcmd

z = Czx+Dzu
(10)

III. Baseline Control Design
In this section we use a sequential loop closure approach to designing a stabilizing inner-loop controller and outer-

loop autopilot which will allow altitude commands to be tracked when the vehicle parameters are completely known,
as well as the velocity controller. The inner-loop designed around the short-period dynamics in (4) first, after which
the guidance dynamics in (5) are then included and additional loops are closed. The resulting design will ultimately
serve as the reference model for the adaptive controller in Sections IV and V. In order to work through the control
design in this section, we insert some numerical values into (2) and (3) from the GHV, trimmed at a steady level flight
condition of Mach 6 and an altitude of 80,000 feet. The elevator input is in degrees, velocity in feet per second, angle
of attack and pitch angle in radians, pitch rate in radians per second, and altitude in feet. The numerical values can be
found in the Appendix.

A. Closing the Velocity Loop

Closing the velocity loop around (2) is relatively simple, as this subsystem is stable. Classical techniques, such
as those using the root locus, can be used to design the feedback compensator for the velocity subsystem, as well as
modern control techniques. Using integral action described in (7), where the regulated output z is taken as the velocity,
results in a nominal system with the form of (10). The velocity control law is selected as follows

uth = K>xth
x (11)

For this inner loop design, we use LQR to select the gain Kxth , with weighting matrices Qlqr and Rlqr given by

Qlqr = diag
(
[ 10 1 ]

)
Rlqr = 10
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These weighting matrices provided an infinite gain margin, and a phase margin of 89 degrees at the control input uth,
as shown in the following Bode plot.
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Figure 1. Velocity Bode plot at control input

B. Closing the Inner Short-Period Loop

To design the inner-loop short-period controller for (4) we again use integral action described in (7) where the
regulated output z is taken to be pitch rate, results in a nominal system as in (10). The inner-loop control law is
selected as follows

ue = K>xex (12)

For this inner loop design, we use LQR to select the gain Kxe , with weighting matrices Qlqr and Rlqr given by

Qlqr = diag
(
[ 0 0 10 ]

)
Rlqr = 0.01

These weighting matrices provided a gain margin of -8.6 dB, and a phase margin of 62 degrees at the control input ue,
as shown in the following Bode plot.
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Figure 2. Inner-loop Bode plot at control input
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This controller is represented by the block diagram in Figure 3, where the gain Kx is given by

Kx =
[
Kα Kq Ke

]>

Figure 3. Inner-loop block diagram

C. Closing the Pitch Angle Loop

Feedback on angle of attack and pitch rate with gains Kα, and Kq , and integral error state with gain Ke was used
to stabilize the open-loop system and accomplish reference tracking. With this closed inner loop, the transfer function
from the new input qcmd to the pitch angle θ and altitude h as shown in Figure 3 are shown below. With this inner loop
closed, we now need to look at the transfer function from qcmd to θ and h, and close another loop to allow altitude
tracking. These transfer functions are given by

θ

qcmd
(s) =

5.869(s+ 0.243)

s(s+ 0.1928)(s2 + 4.896s+ 7.397)

h

qcmd
(s) =

−24.624(s+ 18.49)(s− 18.37)

s2(s+ 0.1928)(s2 + 4.896s+ 7.397)

From these transfer functions it is obvious that closing the altitude loop next is challenging due to the presence of
the double integrator and unstable zero. For these reasons, we choose to close the pitch angle loop first, and start by
looking at the root locus for this transfer function.

Figure 4. Root locus plot for transfer function θ(s)/qcmd(s)
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We use the root locus plot of θ(s)/qcmd(s) in Figure 4, to design the feedback controller Gθm(s) from θ to qcmd.
We pick the controller to have the following form

Gθm(s) = Kθm
s+ zθm
s+ pθm

(13)

where 0 < zθm < pθm. Choosing
zθm = 1 pθm = 4

fixing Kθm = 1 for now, the root locus becomes

Figure 5. Root locus plot for transfer functionGθm(s) · θ(s)/qcmd(s).

Using this root locus we pick Kθm = 5 giving the following compensator which completes the design of the pitch
angle loop closure.

Gθm(s) = 5
s+ 1

s+ 4

The block diagram with the pitch angle loop closed is given by

Figure 6. Pitch angle loop block diagram

The controller selected as described above provided infinite gain margin, and a phase margin of 72 degrees at the
control input ue, as shown in the following Bode plot.
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Figure 7. Closed pitch-angle loop Bode plot at control input

D. Closing the Altitude Loop

With the pitch angle loop closed, we can achieve good time response performance when looking at the step input
from θcmd to θ. Now all that is left is to close the final altitude loop to generate the appropriate pitch angle command
signal θcmd so that the altitude h will track hcmd. The transfer function from θcmd to h is given by

h

θcmd
(s) =

−123.12(s− 18.37)(s+ 18.49)(s+ 1)

s(s+ 5.854)(s+ 0.6163)(s+ 0.2626)(s2 + 2.356s+ 7.529)

The corresponding root locus is

Figure 8. Root locus plot for transfer function h(s)/θcmd(s). The figure on the right shows a zoomed view.

However, looking at the root locus for this system, the problem of gain feedback driving the closed-poles into the
right half plane has been solved, but only for very small gains. This will not allow sufficient bandwidth tracking of
altitude commands. Because of this we need to do something to bend the root locus branches farther into the left half
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plane. We use a compensator of the following form

Ghm(s) = Khm
s+ zhm
s+ phm

(14)

where 0 < zhm < phm. Choosing

zhm = 0.3

phm = 5

the root locus becomes

Figure 9. Root locus plot for transfer functionGhm(s) · h(s)/θcmd(s). The figure on the right shows a zoomed view.

Using this root locus we pick Khm = 0.0002 giving the following compensator which completes the design of the
pitch angle loop closure.

Ghm(s) = 0.0002
s+ 0.3

s+ 5

The block diagram is given by

Figure 10. Altitude loop block diagram
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The controller selected as described above provided -30 dB gain margin, and a phase margin of 72 degrees at the
control input, as shown in the following Bode plot.
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Figure 11. Closed pitch-angle loop Bode plot at control input

E. Closed-Loop System

With the altitude loop closed, the closed-loop system is complete, with the result being a stable system, which is
capable of tracking constant reference altitudes hcmd. The closed-loop transfer function is given by

h

hcmd
(s) =

−0.02462(s− 18.37)(s+ 18.49)(s+ 1)(s+ 0.3)

(s+ 5.9)(s+ 4.924)(s+ 0.5811)(s+ 0.2401)(s+ 0.0836)(s2 + 2.36s+ 7.407)

The step response of this system is shown in Figure 12 below.
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Figure 12. Reference altitude step response.

We note that although this classical approach was taken to close the pitch angle and altitude feedback loops, other
techniques can be used as well.

IV. Adaptive Control Design
Section III described the process of designing the baseline controllers for velocity and altitude when the stability

and control derivatives were all known. The velocity dynamics in (2) were augmented with integral action resulting in
the augmented open-loop dynamics in the form of (10). The baseline controller was designed for this system to achieve
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the desired stability margins. The longitudinal dynamics in (3) were partitioned into the short period dynamics in (4)
and again using integral action, resulting in the augmented open-loop plant dynamics in the form of (10). Similarly, a
baseline controller was designed for this system. The guidance dynamics in (5) were then included, and the remaining
loops were closed around the closed inner-loop controller to achieve an altitude tracking controller.

In this section, we design an adaptive inner-loop controller for (2) and (4) to achieve stability and command
tracking when the stability and control derivatives are unknown. By again using integral action as in (7) the open-loop
augmented dynamics for the velocity and short period subsystems are represented by a system of the form in (9). To
accommodate uncertainty in (9), we augment the baseline control laws as in (11) and (12) with an adaptive term as
follows

u = (Kx + Θ(t))>x (15)

We select the following closed-loop reference model (CRM), which has been show to provide improved transient
properties over the classical model-reference adaptive controller.20–23

ẋm = Amxm +Bcmdzcmd + L(xm − x)

zm = (Cz +DzKx)xm + L2(xm − x)
(16)

where Am = A+BK>x and Kx is selected such that Am is Hurwitz. L is then selected such that Am +L is Hurwitz,
with

L =

[
L1

L2

]
The selection ofAm as described ensures the existence of a nominal parameter Θ∗ that satisfies the following matching
condition

A+BΛK>x +BΛΘ∗> +BΨ> = Am

where Θ∗ is given by
Θ∗> = Λ−1

(
(I − Λ)K>x −Ψ>

)
The tracking error and parameter error, respectively, can be defined as

ex = x− xm
Θ̃ = Θ−Θ∗

The error dynamics are described by subtracting (9) and (16) as

ėx = (Am + L)ex +BΛΘ̃>x (17)

We choose the following update law
˙̃
Θ = −Γxe>x PxBsign(Λ) (18)

where Px is the solution to Lyapunov equation

(Am + L)>Px + Px(Am + L) = −Qx (19)

and where Qx > 0 is a free design parameter. The stability of this inner-loop control system is well established, as
given by Theorem 1.
Theorem 1 Given the uncertain linear system in (9) which satisfies Assumption 1′, with the control law in (15),
reference model in (16), and the update law in (18) results in global stability for all bounded reference inputs zcmd,
with limt→∞ ex(t) = 0.

PROOF With a radially unbounded Lyapunov function candidate

V (ex, Θ̃) = e>x Pxex + tr
(
|Λ|Θ̃>Γ−1Θ̃

)
(20)
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we obtain a time-derivative V̇ as

V̇ = ė>x Pxex + e>x Pxėx + tr
(
|Λ| ˙̃Θ

>
Γ−1Θ̃

)
+ tr

(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

Substituting in the error dynamics equation from above we obtain

V̇ = ((Am + L)ex +BΛΘ̃>x)>Pxex + e>x Px((Am + L)ex +BΛΘ̃>x) + 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

= e>x (Am + L)>Pxex + e>x Px(Am + L)ex + 2e>x PxBΛΘ̃>x+ 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

= e>x ((Am + L)>Px + Px(Am + L))ex + 2e>x PxBΛΘ̃>x+ 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

= −e>xQxex + 2e>x PxBΛΘ̃>x+ 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

Where Qx = Q>x > 0 and Px is the solution to the Lyapunov equation (19). Substituting the update law in (18), V̇
becomes

V̇ = −e>xQxex + 2e>x PxBΛΘ̃>x+ 2tr
(
|Λ|Θ̃>Γ−1

(
− Γxe>x PxBsgn(Λ)

))
= −e>xQxex + 2e>x PxBΛsΘ̃>x− 2tr

(
|Λ|Θ̃>xe>x PxBsgn(Λ)

)
= −e>xQxex + 2e>x PxBΛΘ̃>x− 2tr(e>x PxBΛΘ̃>x)

= −e>xQxex

Which implies that V is a Lyapunov function. Since V > 0 and V̇ ≤ 0, we have V (t) ≤ V (0) < ∞. Thus
V (t) ∈ L∞ which implies ex, Θ̃ ∈ L∞. Since zcmd, ex ∈ L∞ and Am in (16) is Hurwitz, xm ∈ L∞, which
implies that x ∈ L∞. Furthermore,

∫ t
0
V̇ (τ)dτ = V (t) − V (0) and since V is non increasing and positive definite,

V (0) − V (t) ≤ V (0). This gives −
∫ t
0
V̇ (τ)dτ ≤ V (0). Substituting in our expression for V̇ = −e>xQxex gives∫ t

0
ex(τ)>Qxex(τ)dτ ≤ V (0) and in turn that ex ∈ L2. Finally, looking at (17) with ex, Θ̃, , xm ∈ L∞ we have

that ėx ∈ L∞. With this, we conclude using Barbalat’s Lemma24 that limt→∞ ex(t) = 0. Since Eq. (20) is radially
unbounded stability is global.
Remark 1 The update law in (18) can be changed to include robust modifications such as σ-modification, e-modification,
or projection, without any change to the proposed control architecture.

This inner-loop control architecture can be visualized with the following block diagram, where for all bounded
commands zcmd, the plant state x tracks the reference model state xm asymptotically, and thus the regulated output z
tracks zm asymptotically, where zm is essentially a filtered version of zcmd generated by the reference model in (16).

Figure 13. Completed inner-loop adaptive design block diagram

This inner loop controller provides stability in the presence of uncertainty in stability and control derivatives, and
provides command tracking of an inner-loop variable. The problem now is as follows: given the short period dynamics
in (4) with uncertainty and integral action resulting in a system of the form in (9), control law in (15), reference model
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in (16), and the update law in (18), how do we introduce the guidance dynamics in (5) and design zcmd such that h
follows hm where hm is a suitably generated signal. The solution to this problem will complete the outer-loop control
design, and is described in the following section.

V. Outer Loop Control Design
Combining the integral augmented, uncertain short-period dynamics in the form of (9) with the outer-loop guidance

dynamics as given by (5) we have the following system

ẋ = Ax+B(Λu+ Ψ>x) +Bcmdzcmd

ẋg = Agxg +Bgx
(21)

where

Ag =

[
0 0

veq cos(γeq) 0

]
Bg =

[
0 1 0

−veq cos(γeq) 0 0

]
We introduce an additional outer-loop reference model in addition to the inner-loop reference model in (16) to obtain
the entire reference model as

ẋm = Amxm +Bcmdzcmd + L(xm − x)

ẋgm = Agxgm +Bgxm + Lx(xm − x) + Lg(xgm − xg)
(22)

where Lx ∈ Rng×n, Lg ∈ Rng×ng , and xgm ∈ Rng is given by

xgm =
[
θm hm

]>
The outer-loop error is given by

eg = xg − xgm
and the goal is to design an outer-loop controller such that limt→∞ eg(t) = 0, which will thus enforce altitude tracking
as desired. The proposed control architecture is represented in following block diagram

Figure 14. Complete integrated inner and outer-loop design block diagram
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A. Forward Loop Control Design

The baseline controller that was design in Section II for the nominal aircraft dynamics can now be used as the
forward-loop component of the reference model which generates zcmd as shown in Figure 14. We select zcmd using the
baseline pitch controller in (13) as

zcmd = Gθm(s)(θcmd − θm) (23)

where the pitch angle command θcmd is generated using the baseline altitude controller in (14) as

θcmd = Ghm(s)(hcmd − hm) (24)

Each of these two forward-loop controllers can be designed using sequential loop closure or other technique. The
reference pitch angle feedback controller in (23) can be represented in state-space as follows

ẋθm = Aθmxθm +Bθm(θcmd − θm)

zcmd = Cθmxθm +Dθm(θcmd − θm)
(25)

And the forward loop reference altitude feedback controller in (24) can be represented in state-space as

ẋhm = Ahmxhm +Bhm(hcmd − hm)

θcmd = Chmxhm +Dhm(hcmd − hm)
(26)

Combining these two controllers in (25) and (26) we get[
ẋθm

ẋhm

]
=

[
Aθm BθmChm

0 Ahm

][
xθm

xhm

]
+

[
BθmDhm

Bhm

]
hcmd +

[
−Bθm(DhmCh + Cθ)

−BhmCh

]
xgm

zcmd =
[
Cθm DθmChm

] [xθm
xhm

]
+
[
−Dθm(DhmCh + Cθ)

]
xgm +

[
DθmDhm

]
hcmd

where this total forward loop controller can be represented more compactly as

ẋfm = Afxfm +Bf1hcmd +Bf2xgm

zcmd = Cfxfm +Df1hcmd +Df2xgm
(27)

This forward-loop controller, designed using for the nominal baseline system as described in Section III makes up a
part of the reference model as shown in Figure 14.

B. Feedback Control Design

The inner-loop error dynamics were given in (17) and a Lyapunov function provided which showed stability of the
closed loop system with update law in (18). In order to ensure stability when the additional guidance loops are closed,
we consider the outer-loop error dynamics as well, given by subtracting (21) from (22) as follows

ėg = (Ag + Lg)eg + (Bg + Lx)ex (28)

From (28) we can see that Lg must be selected to ensureAg+Lg is Hurwitz to enforce stability of the outer-loop error
dynamics. The matrix Lx is selected as

Lx = −Bg (29)

It is this choice of Lx which modifies the outer-loop guidance portion of the reference model in response to errors
within the inner loop. It is this feature which enables stability of the combined inner and outer loops, and provides
command tracking of altitude at the outer loop. The stability of the complete system using the adaptive inner-loop and
sequential loop closure procedure to close the outer loop is given in Theorem 2.
Theorem 2 The uncertain system in (21) with inner-loop control input in (15), update law in (18), the refer-
ence model in (22), and Lx given by (29), and forward-loop controller in (27) results in global stability, with
limt→∞ ex(t) = 0 and limt→∞ eg(t) = 0.
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PROOF With a radially unbounded Lyapunov function candidate

V (ex, eg, Θ̃) = e>x Pxex + e>g Pgeg + |Λ|Θ̃>Γ−1Θ̃ (30)

where Px is the solution to the Lyapunov equation in (19) and where Pg is the solution to the following Lyapunov
equation

(Ag + Lg)
>Pg + Pg(Ag + Lg) = −Qg (31)

where Qg > 0. We obtain a time-derivative V̇ as

V̇ = ė>x Pxex + e>x Pxėx + ėg
>Pgeg + e>g Pg ėg + 2|Λ|Θ̃>Γ−1

˙̃
Θ

= −e>xQxex + 2e>x PxBΛΘ̃>x+ e>g ((Ag + Lg)
>Pg + Pg(Ag + Lg))eg + 2e>x (Bg + Lx)>Pgeg + 2|Λ|Θ̃>Γ−1

˙̃
Θ

= −e>xQxex − e>g Qgeg + 2e>x (Bg + Lx)>Pgeg

= −e>xQxex − e>g Qgeg + 2e>x (Bg + Lx)>Pgeg

The choice of Lx in (29) simplifies the Lyapunov derivative to

V̇ = −e>xQxex − e>g Qgeg

which implies that V is a Lyapunov function. Since V > 0 and V̇ ≤ 0, we have V (t) ≤ V (0) <∞. Thus V (t) ∈ L∞
which implies ex, eg, Θ̃ ∈ L∞. The combination of the forward-loop controller as given in (27) and reference model
in (22) is given by: ẋmẋgm

ẋfm

 =

Am BcmdDf2 BcmdCf

Bg Ag 0

0 Bf2 Af


 xmxgm
xfm

+

BcmdDf1

0

Bf1

hcmd +

 −L 0

−Lx −Lg
0 0

[ex
eg

]
(32)

With hcmd, ex, eg ∈ L∞ and (32) stable, xm, xgm, xfm ∈ L∞, which implies that x, xg ∈ L∞. The inner-loop
error dynamics in (17) and outer-loop error dynamics in (28) can be combined as follows[

ėx

ėg

]
=

[
Am + L 0

Bg + Lx Ag + Lg

][
ex

eg

]
+

[
B

0

]
ΛΘ̃>x (33)

And with the input to the error dynamics in (33) bounded, this implies that ėx, ėg ∈ L∞. Finally,
∫ t
0
V̇ (τ)dτ =

V (t) − V (0) and since V is non increasing and positive definite, V (0) − V (t) ≤ V (0). This gives −
∫ t
0
V̇ (τ)dτ ≤

V (0). Substituting in our expression for V̇ = −e>xQxex− e>g Qgeg gives
∫ t
0
ex(τ)>Qxex(τ) + eg(τ)>Qgeg(τ)dτ ≤

V (0) and in turn that ex, eg ∈ L2. With this, we conclude using Barbalat’s Lemma24 that limt→∞ ex(t) = 0 and
limt→∞ eg(t) = 0.

C. Summary of Design Procedure

1. Design an inner-loop controller as outlined in Section II, with gain Kx selected as described in Section III.

2. Augment the baseline inner-loop control law with adaptive element as in (15).

3. Use the reference model in (16) where L is selected such that Am + L is Hurwitz.

4. Select Qx > 0 and solve the Lyapunov equation in (19) to obtain Px
5. Use the update law in (18)

6. Select Lg such that Ag + Lg is Hurwitz, and select Lx as in (29)

7. Use the additional outer-loop reference model in (22).

8. Finally, generate the inner-loop command zcmd from the altitude command hcmd by designing the nominal
forward-loop controller in (27)
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VI. Simulation Results
Figure 15 shows the time response of the GHV when given an attitude profile to track at constant velocity, under

a trim condition of Mach 6, at a trim altitude of 80,000 ft. The first portion of the time response plot shows the
performance of the nominal vehicle with no uncertainty when using the baseline controller. At t = 360 seconds
uncertainty is introduced in the stability and control derivatives of the GHV of up to several hundred percent while
still using the baseline controller. Significant oscillations can be observed, resulting in severe g-loading and large
oscillations in the control effort. At t = 690 seconds the adaptive controller is switched on, rapidly recovering the
nominal performance without using excessive control inputs.

VII. Conclusion
This paper has proposed a new sequential loop closure design for an adaptive autopilot, and is applied to the

longitudinal dynamics of a hypersonic vehicle. The control design involves partitioning the aircraft dynamics into its
short-period and guidance dynamics, designing a reduced order adaptive controller for the short-period subsystem,
and then closing an outer guidance loop around this inner loop. The short-period dynamics have uncertain stability
derivatives, and uncertain control derivatives. The guidance dynamics contain only kinematics, and thus contain no
uncertainty. Therefore, an adaptive controller only needs to be designed for the inner-loop. The outer-loop design uses
components of a closed-loop reference model to feed the inner-loop error into the outer-loop portion of the reference
model, which shapes the inner-loop reference command so the outer-loop command is tracked. The resulting controller
provides global stability in the presence of uncertainty in the stability and control derivatives, and uses fewer adaptive
parameters than an adaptive controller designed without this sequential loop closure technique.
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Figure 15. GHV time response
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Appendix
The nominal longitudinal plant matrices for a flight condition of Mach 6 at an altitude of 80,000 feet are:

Ap =


−0.0037 −0.7169 0 −31.818 0

0 −0.2398 1 0 0

0 4.5689 −0.1189 0 0

0 0 1 0 0

0 −5866 0 5866 0

 Bp =


27.262 0.06525

0 −0.0001

0 −0.18561

0 0

0 0


Velocity Controller

The LQR weighting matrices and uncertainty for the velocity control loop are as follows

Qlqr = diag
(
[ 10 1 ]

)
Rlqr = 10

Γ = diag
(
[ 1 1 ]

)
Ψp = 0.1 Λ = 0.8

Longitudinal Controller

The LQR weighting matrices and uncertainty for the longitudinal control loop are as follows

Qlqr = diag
(
[ 0.1 0.1 10 ]

)
Rlqr = 0.01

Γ = diag
(
[ 1 105 1 ]

)
Ψp = [ −10 −10 ]> Λ = 0.8
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