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Chapter 1

Introduction and Preliminaries

These notes were made while in MIT’s Fluid Mechanics class, 2.25 taught by Professor Gareth McKin-
ley in the Fall semester of 2013.

1.1 Gibb’s and Index Notation

There are two ways to denote math used in vector and tensor calculus. One is symbolic or Gibb’s
notation, the other is index or Cartesian notation. Gibb’s notation handles scalars, vectors, and tensors as
different types of things, and so we need to be careful when conducting operations between these different
things, and keep in mind what operations are allowed, and which aren’t. Index notation always operates
on the scalar entries within the vectors and tensors, so the problem of what operations are legal or not is
simplified.

A free index occurs once and only once in each and every term in an equation, where term means product
of multiple quantities. The free index means the equation can be written three times, where the free index is
substituted for 1, 2, and 3. The free index can be changed to any letter, as long as it is changed everywhere
it appears, and not to a letter which is already being used in an index. The dummy or summation index are
those which are not a free index. That is, the dummy indexes are those which occur more than once in every
term. Like the the free index, the dummy index can be changed to a different letter, as long as it is changed
everywhere, and not to a letter that is already used as an index.

Example 1 Free Index
ap = bicik + dijrei;

In this equation the free index is k. So this equation can be written out as

a1 = bici + dijies;
az = bicia + dijoeij

a3 = biciz + dijzei;
The free index can also be changed fro k to n and the equation is the same.

an = bicin + dijneij

17



1.2 Review

A vector g and b can be written
1@1 + a2é2 + a3é3

a=a
b= b1&y + baéy + b3és

1.2.1 Dot Product

Operation between two vectors which produces a scalar. The dot product of a unit vector with itself is
one. The dot product of any perpendicular vectors is zero. When evaluating the dot product of two vectors
a and b, write out the two vectors in their component form, and then distribute

a-b= (CL1§1 + CLZQQ + a3§3) : (b1é1 + b2é2 + b3é3)
=a1b1(é) - €;) +aiba(éy - &) + ...
= a1b1 + asby + asbs

1.2.2 Cross Product

Operation between two vectors that produces a vector perpendicular to the first two.

a x b= (a18; + a2éy + azés) x (b1€; + baéy + b3és)

=a1bi(é; X &;) + arba(é; X é9) + ...

1.3 Index Notation

a = a1é; + azéy + azéy
3
= Z aiéi
=1

in index notation the summation is dropped, and the vector a is expressed

a = aiéi

1.3.1 Dot Product

i=1 J=1
3 3
:ZZ(aiez) (b]é])
i=1 j=1
3 3
= > abi(é- &)
i=1 j=1



And then we have the quantity in parentheses is zero for 7 # j and one if 7 = j. This gets a special quantity
called d;;. But since J;; = 1 only when ¢ = j we can simplify the above expression to

1.3.2 Cross Product

a x b= a;bje;rey

€;jk 18 a scalar, with value &1 or 0. ;1 is determined by the values of the first two indices, and the third
one is the result of right hand rule cross product on right handed coordinate system. If i = j, then ;5 = 0.
Also notice that

€ijk = Ejki = €kij

Ekji = Ejik = Eikj

Note that when writing out the combined summations for the operations on the vectors that the order of
the summations does not matter. Show vector triple products

a - (bxc)=(axb)-c=(cxa)b
Evaluate the first quantity using index notation
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3 3
a-(bxc) = aig; | -3 [ Db | x [ D enen
i=1 j=1 k=1
3 3 3
= g g E aibjeré; - (&5 X &)
i=1 j=1 k=1
3 3 3
= E g E a;bjcrejrie; - €
i=1 j=1 k=1
3 3 3
= g g E aibjckrgjkléil
i=1 j=1 k=1
= aibjcreiji

The second quantity

NE

(@xb)-c=

|

3
az’@) x [ D bie | ¢ (Z Ckék)
j=1 k=1

s
Il
—

Il
Mw A~
Moo

a;bjcy, (& x éj) "€k

s
Il
i
<
Il
=
b
w
—

I
[M]
NE

a;bjcreiji€ - €,

Il
.
w |
]«
—

@
i
I
<
i
I
)
I

—_
<
I

—_

=
w

a;bjcreijiom,

= aibjcreiji

The third quantity

3 3 3
(exa) be {(z) . (z)} S e,
k=1

i—1 j=1
3 3 3

= E g g aibjcr(E X &;) - &;
=1 j=1 k=1
3 3 3

= g E g a;bjcreri; - €;
=1 j=1 k=1
3 3 3

= E g E aibjckekigélj
i=1 j=1 k=1

= aibjcreijk
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1.3.3 Del Operator

In Cartesian coordinate systems, the del operator is

0
Z—a—xl

e+ 2o+ 2
=1 8$272 8:6373

~ ~

In cylindrical coordinate systems the del operator is

V = QA + }QA + EA
ST o T rae T 925
In spherical
G 0, 1o, 1 0.
= o " ra0? " rsin0de ?
[Del Operator]
Cartesian: V= aaxéx + ;yéy + (‘?zéz
0 10 0
lindrical: = —& + 778+ &
Cylindrica v ol T r5p T 5%
0 10 1 0
herical: = G, — oy - ———C
Spherica v 5.8 T g8+ rsinﬁ@qﬁ%

In index notation

1.3.4 Gradient

The gradient is basically a derivative with respect to position.

0P
Vb =_—¢,
A% 0z, &;
In cylindrical coordinates
0P 109 0P
Vb=—¢é +—-———é)+ —¢
- 87’9—’_7“80%—}_82&
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1.3.5 Divergence

81;1»
. /l} o
- o0x;
In cylindrical coordinates
10 10vy  Ov,
V.ov=-— it
~e rar(””“) * r ¢ * 0z
1.3.6 Curl
Curl is the operation of the del operator acting on a vector with the cross product.
0v; R
Vxv= aTé&ijk

The curl of the velocity field is known as the vorticity, w. In Gibbs notation, the curl, in cylindrical
coordinates is given by

Uxpo (1 v, (v Ova). (1O Ly 1Ou),
SR T a2 ) T Vo T o )T G o\ T v e ) &

In cartesian coordinates it is
Ov,  Ovy ) . ov, 0vy )\ . Ovy  Ovg )\
va-(ay 8z>ex+<8z 8x>ey+<6x 8y>ez

1.4 Tensors

Dot product of vector with tensor produces a vector.

L = Tij(é¢;)
1.4.1 Symmetric Tensors
Tij =Ty
1.4.2 Antisymmetric Tensors
Tij = —Tj

1.4.3 Tensor Products
note the following IS THIS TRUE?



1.4.4 Dyadic Product

Pretty much just outer product.

vy vy Qv

ox z ox
Vy

<1

S
I
o))
<
&
Q
5

vy % vy
0z 0z 0z

1.4.5 Unit Vector Derivatives
Cartesian Coordinates

1 0 0
e, = |0 e, =1 e, = |0
0 0 1

From these, we can see that any derivative of a unit vector in a cartesian coordinate system is zero.

oe, |
o |"
0
Cylindrical Coordinates
cos 6 —sinf 0
é, = |sinf ég = | cosf e, =10
0 0 1

Taking the derivatives of these unit vectors with respect to the different directions we have

Q5 _ 0~ _ 05 _
arr = 0 aro = 0 orfs = 0
—sinf —cos
95 _ 9 4 o _ .
58 = | cosO | =¢ 56C0 = sinf | = —é, 556, =0
0 0
Q5 _ 0 2 0~ _
D¢ =0 989 =0 pz€: =0
Components:
rr 1l Tz
Vo= |0r 00 0z
zr 20 zz
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Chapter 2

Basic Conservation Laws

2.1 Continuity: Conservation of Mass

Conservation of mass is also called the continuity equation to emphasize that the continuum assumptions
are prerequisites. [1]] The continuity equation states that the time rate of change of the mass of a material
region is zero. The continuity equation can typically be found in integral and derivative form, and can be
derived in several different ways. The integral form of conservation of mass is

ot

Rate of change of mass Net inflow of mass

0
Compressible mass conservation (integral): — / pdV = — f pv - ndS
1% S

2.1.1 Deriving the Differential Form of Continuity

Using Gauss’ theorem the right hand side of the integral form of conservation of mass equation can be

written
]{pv-ndSz/V-(pv)dV
S 14

using this definition the integral form of mass conservation can be written

a/pd‘/z—/v-(pv)dv

Leibnitz’s theorem allows the integral to be moved inside giving

[ (% +3- ) av o

Then, since the choice of the material region that we chose was arbitrary, the only way this equation can be
true is if the integrand is zero, which is the differential form of conservation of mass.

0
Compressible mass conservation (differential): a—f +V . (pv)=0
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2.1.2 Conservation of Mass for an Incompressible Fluid

This section provides a first-principles, control volume derivation of conservation of mass for an incom-
pressible fluid. This is an alternative derivation of the differential form of continuity, and is a little bit easier
and more intuitive to derive using an infinitesimal control volume, as opposed to starting with the integral
form and using Gauss’ theorem.

v.(z 4 02)
‘ vy (y + 0y)
i 0z
vz () 7 / vy (T + 0)
vy(y) 4 &BA oy
v2(2)

Figure 2.1: Infinitesimal control volume

The box is a fixed volume. Continuity represents the rate of accumulation of mass within the box, minus
the net flow out of the box. Conservation of mass is written as

ap
ot
= (p+ 0p2)val + 02)0y5% + (p + Opy oy (y + 69)0wdz + (p+ 0p2 v (2 + 62)0wdy

dz0ydz + pug(x)dydz + pvy(y)dxdz + pv,(2)dxdy

Note now that p is a constant and thus all derivatives of p are zero, giving

U2 (2)0y0z + vy (y)dxdz + v.(2)0xdy
= vz(x + 62)dydz + vy(y + 0y)dxdz + v. (2 + 02)dxdy

Multiplying each velocity term by unity gives

dydzdx dxdzdy dxdydz
Ux(x) (5.’,1:' +,Uy(y)T+UZ(Z) (52
- 5$)(5@/(52’5£K oy + 5y)5x;5;5y b + 52)536;53:52

Dividing both sides by dxdydz gives

0al@) | vy) | va() _valotda) | vy +oy) | vz +02)

ox oy 0z ox oy 0z

Combining terms
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vn(@) = va(w +02) v, (y) = v,y +8y) | v.(2) = va(=+62)
- - =0
ox oy 0z

Taking the limit as the fluid element gets small

Ovg % ov,

9r "oy "oz 0

In vector form

£ % 2] e w vl=0

And of course this can be written using the del operator as

Incompressible mass conservation (differential): V-v=0

2.1.3 Conservation of Mass for a Compressible Fluid

This section provides a control volume derivation of conservation of mass for a compressible fluid. It
follows the same derivation as the one above for incompressible fluids, except that the density is not constant
and thus has, in general, nonzero derivatives. Furthermore, the result above can be obtained from the one
below when density is constant.

v.(z 4 02)
‘ vy (y + y)
i 0z
vz () 7 q vy (z + )
vy(y) 4 &BA dy
v:(2)

Figure 2.2: Infinitesimal control volume

Conservation of mass

@
ot
= (p+ 0p2)val + 02)0y8% + (p + Opy oy (y + 69)0wdz + (p+ 0p2 v (2 + 62)0wdy

dx0ydz + pug(z)dydz + pvy(y)dxdz + pv,(2)dzdy

Looking at the terms on the right hand side with
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dp op
Ox oy

and using a first order Taylor series approximation on the following

0py = —0x Opy = =0y 0p, = =0z

vy
ox

_ vy
vy (y + 0y) = vy(y) + @5@/

vg(z +0z) = vy () + ox

ov,

5, 0z

v(z+02) =v.(2) +

we get

pUz(2)0ydz + pvy(y)oxdz + pv,(2)dzdy = <p + gxéx> < «(x) + aavxéz> 0ydz
dp Ovy
+ (p + ayéy) <vy(y) + 8y5y> 0xdz

dp v,
+ <p+ 82/5'2) (vz(z) + 9, ) dxdy

Multiplying out the left hand side and neglecting second order terms

pva()5ybz = <pvx< 4020+ () L ) e

ov dp
puy(y)dxdz = (va(y) +p 9 ydy + vy(y)ayd ) dxdz

B v, op
po(2)5ay = (o) + 95505 + 02520 ) daty
simplifying
_( Ovg 8,0
vy op
0—( Dy oy + vy(y )ayé)éa:éz

0 0
0= < 8”2& + (2 )8§5Z> 58y
Recognizing these quantities as from product rule, and combining the components back onto a single equa-
tion

0= ox oy 0z

z
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Olpv) | Opvy) | Olpv:)

0= ox dy 0z

In vector form

op 9 o8 0
EJr[% oy &}'[va py pus] =0

And again this can be written as follows using the del operator.

0
Compressible mass conservation (differential): 6—5 +V - (pv)=0

And we can see that if p is a constant, this expression reduces to conservation of mass for an incompressible
fluid.

2.2 Conservation of Momentum
2.2.1 Cauchy Momentum Equation

This is the most basic form, where the surface and pressure forces are very general. Fluid doesn’t have
to be Newtonian, or compressible, etc.

2.2.2 Conservation of Momentum with Euler’s Equation

This section is about conservation of momentum for an incompressible fluid with pressure and gravity,
deriving Euler’s Equation.

Conservation of momentum when only surface force is pressure and only body force is gravity. Consider
a differential element of fluid, and consider only pressure and gravity forces acting upon it. We also assume
the density is constant. To derive Euler’s equation, by assuming that these are the only forces acting on the
fluid, this version of Euler’s equation is only valid for inviscid, incompressible flows.

p(z+9dz)

Figure 2.3: Fluid element with pressure and gravity acting on it

Summing the forces in the z, ¢, and z directions we have
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poydz — (p + gi) 0ydz = pdxdydzay
op
péxdz — [ p+ @ dxdz = pdxdydzay

péxdy — (p + gp) 0xdy — pg.0xdydz = pdxdydza,
z

simplifying
o _
8.%' - p T
oy Py
82 pgz p z
we obtain

Substituting the following

_Dy
2= Dt
ov
5 T (Y
into above to obtain
. ov
Euler’s Equation: p Y +(@-Y)v ) =-Vp+pg 2.1

The assumptions of Euler’s equation are: inviscid flow (neglects stress tensor 7). For inviscid flow, if it
is irrotational at any instant in time, it remains irrotational for all subsequent time.

2.2.3 Conservation of Momentum including Viscous Forces

The above derivation can be repeated including surface forces (but still assuming density is constant),
resulting in the following.
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Chapter 3

Material Derivative

Local change plus convective change, where f can be a vector or scalar quantity. The left hand side of
the equation is the Lagrangian side: it is following a particular material element through the flow, and the
right hand side is the Eulerian side.

. o Df of
Material Derivative: —= = = + f-Vf
Dt ot -

local rate of change ~ convective change

3.1 Hydrostatics

Note that in hydrostatic problems the fluid is at rest, and so viscosity can be ignored, we set ¢ = 0 in
Euler’s equation to obtain the following

Hydrostatic Equation: Vp = pg

In a lot of cases, pressure variations occur only in the vertical direction due to gravity. In these cases we
have

Vp = pg
0 0 0
2 2 2=rle o 9]

If we have a coordinate system where the z axis points upwards and gravity points downwards, the z com-

ponent of gravity is g, = —g where g is gravitational acceleration constant, e.g. 9.81 m/s?> on Earth. This
gives

Ip

% = —pPg

Separating and integrating back

/%z—/w&

p2 —p1 = —pg(z2 — 21)
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3.1.1 Force and Moment
To find force and moment about a point on say, a door or floodgate holding back hydrostatic fluid

F= /A p(2)dA

T= /A rp(z)dA

where 7 is the distance from the point about which we are taking moments along the door or floodgate.

3.2 Motion of a Fluid Element Along a Streamline
3.2.1 Streamline Coordinates

The osnl coordinate is orthogonal but not always Cartesian. For example for the rigid body problem
streamlines are circles and the osnl coordinate system becomes similar to cylindrical (e, is ey and e, is e,
and ¢; is e,) whereas in other arbitrary flows it may be something else. What people call these is a subset of
“curvilinear coordiante systems” See Wikipedia.

Assume constant density? Think about looking at Euler’s equation along a streamline in order to simplify
it. This will allow the velocity components to be simplified, since by definition the velocity vector along a
streamline is always tangent to the streamline. Recall Euler’s equation in (2.1)

Start generally though with with the velocity vector given by the following components

Vs
V=05 +Un &t U €= |Un
Uy
Evaluating Euler’s equation starting with the term v - V
0
v-V = st % 84—1} a—l—va
LrET Ul an | T Vs T gy T e
Now evaluating (v - V)
(v-V)v= <vsaas +Unaa +vz§l)
6 -~ U +Un8ny+vlay
0
= 8 —(vséy + vp &, + V1 &)
+v 0 —(vs€y + vy, &, + V1 &)
an stg n =n 1 &
o, . . .
+ g (Vs + vn &+ 01 &)
o, . 0
US%(USes)—i_UN%( )—i—vlal( é)
+ vsas(vnen) + vn;n(vné )+ 81( é,)
+ vsgs(vlel) + vp aan (vi1€)) + vlaal(vlél)



Now using the following simplification since we are considering flow along a streamline we have v,, =
v; = 0. Using this, we simplify the above to

0 .
(v-V)v= Us%(vsgs)

0 . 0 .
= Vg (as(vs)es + Usas(es)>

Since &, has unit magnitude, it can change only in direction. This change must be perpendicular to é, itself.
Therefore ¢,, is defined by

R ¢,
bn=—H Os
giving
e, _ 1,
0s RS
ovs . v?2 .
(v-V)v= Usgs &~ Rén

3.2.2 Motion Tangent to the Streamline

We can see in this expression that there is a component of acceleration tangential to the streamline, as
well as the centripetal component of acceleration. If we neglect the centripetal acceleration, we have

v,

(v-V)u= Vs &

The next term we are looking at is % at a fixed point in space, and we are considering steady flow here, so

Looking at the terms on the right hand side we have

_Op.  Op. | Op,
Vp = %Qs‘i‘ %Qn+ EQJ

And if we consider only pressure variations along the streamline, this expression is simplified to

p .
Vp = %@s

With g a vector pointing down, and considering only the component of gravity along the streamline gs we
have

pPg = pYsts

And sothe total simplified Euler equation along a streamline as

Ov, . _8pA

PUs oG = 5 s F PYsEs
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Dropping the unit vector showing its along the streamline

v, Op n
v =——
PUs 5 5s | PYs
but we can express gs as
B dz
9s = =94

giving
,Ovs _ Op  dz
PUsos = "as Pds

moving stuff over

vavs+@+ %*0
ps@s 0s pgds_

pUsOvs + Op + pgdz =0

3.2.3 Bernoulli’'s Equation

integrating, but only in the s-direction

52
/ (pvsOvs + Op + pgdz) =0

S1

52

L o02(s) + p(s) + po=(s)

=0
2 s
L s L
5P (52) +p(s2) + pga(s2) | — { Gpvs(st) +p(s1) +pga(s1) ) =0
finally
3] . 1 2 1 2
Bernoulli’s along streamline: B PUso + D2 + pgz2 = 3 pUg1 + 1+ pgz

Bernoulli’s equation is for steady incompressible flow of a fluid in the absence of viscous effects along
a streamline.
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3.2.4 Motion Normal to the Streamline

<

2
s

(!'Y)BZE

En

The next term we are looking at is % at a fixed point in space, and we are considering steady flow here, so

Looking at the terms on the right hand side we have

_Op.  Op. | Op,
Vp = %Qs‘i‘ %§n+ a@l

And if we consider only pressure variations normal to the streamline, this expression is simplified to

_ 9p,
N 8n§"

With g a vector pointing down, and considering only the component of gravity along the streamline g; we
have

Pg = PYnt,

And sothe total simplified Euler equation along a streamline as

vi op .
_pﬁgn = _%gn + PInty
2 0
Bernoulli’s equation normal to streamline: = p%f = _6£ + pgn
n

From this expression we can see that the change in pressure with respect to the normal direction is
always positive with respect to R, so pressure increases in the n direction.

3.3 Solid Body Rotation

Rotating bucket of water. The velocity is dependent only on the radial direction r. This cylindrical
coordinate system is inertially fixed. Bucket spinning with angular velocity (2.
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Figure 3.1: Solid body rotation

Thus, the total velocity in cylindrical coordinates is

Uy 0
V=08, +v9eg + vz, = |vg| = |10
U, 0

Apply Euler’s equation

3.3.1 Cylindrical Coordinates
The partial derivative with respect to time, also known as the local rate of change, is zero, because at a
fixed point in the fluid, the velocity is not changing with time.

ov
= = 0
ot
Looking at the next term
v 0 . n 10 . . 0 .
= _—&,+——-6p+ ¢
R P

Now evaluating (v - V)v

J, . . .
E(U’@’" +vg eyt use,)

1 . . .
+ ;UO%(Urﬁr +vg eyt use,)

g, . . .
+ Uzi(vrgr + vg €9 + V2 Qz)

0z
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Now substitute in that v, = v, = 0 and get

since

00
And note that we have
2
Dv v,
Dt r

So we can see this as centripetal acceleration. The surface force term

Q:

_Op, 10p, op.

v _ = _=
P g e T e T 9.t
body force term
Pg = —pgz€,
Forming the whole equation we have
vg . op. 10p, dp .

_p7§7" = _Eﬁr - ;%ﬁﬁ - %ﬁz - pgzéz

Equating the components we have

_ % _ _op __Lop o= _9p _
T or r d0 0z P9z
This gives
dp 2 dp dp
_— = Q _— = _— = — >
ar " a6 " 9. "

separating and integrating these back

/0p=/prQ28r % =0 /8]9:—/,09202

The second equation shows that the pressure is not a function of 8. Integrating back the first and third
equations we have the following
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1
p= ipTQQQ + f(2)+c

p=—pg.z+g(r)+c

and we have

f(z) = —pg.2

1
g(r) = 5pr*Q”

and so the pressure in the rotating cylinder is given by

1
p(r,2) = 5pr* Q" = pg.z + ¢

And we can find the constant ¢ by setting » = 0 and looking at the interface height at the center of the
cylinder, at the vertex of the parabaloid shape, and call this height z;. At this point, the pressure is equal to
atmospheric pressure.

p("” =0, ZO) = —Pg:>z0 + C = Patm

giving the following value of the constant

C = pg=20 + Patm

substituting this into the pressure equation we obtain the following

1
Pressure for solid body rotation: p(r,z) = 5 o2 Q% + p9:(20 — 2) + Patm

To determine the shape that the air-water interface makes, we apply the boundary condition at this interface.
That is

p (T’ Z) ‘interface = Patm

And then we have

1

0= 5 p?“?merfaceQQ — P9z Zinterface + P92 20

Zinterface — 2 Tinterface T 20
2
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Isobars

Can also find out the shape of the fluid by solving for isobars by evaluating dp and setting it equal to
zero. Since p = p(r, z) chain rule gives us the following for dp.

([ Op Op
dp = (&> dr + (Eﬁ’z) dz

dp = prQZdr —pg.dz =10
g-dz = rQ2dr
Integrating back and solving for the constant of integration when » = 0 we have
2

Q 2
r“+h
29 0

z =

Vorticity

The vorticity of a fluid element in our bucket is given by the curl of the velocity vector. That is,

v
D100

And from this expression we can see that the vorticity everywhere in the fluid is the same.

3.3.2 Cartesian Coordinates

Velocity is given in cylindrical coordinates, so we convert it to cartesian coordinates, using an inertially
fixed coordinate system
Uy 0
vg| = |rw
Vy 0

I
I

T =rcosf

y=rsinf

vy = —vsinf

vy = v cos f
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v=|vy| = | wr
Vy 0
v
—_— — 0
ot
Looking at the next term
(v-V)v=
o, . dp . .
P05 (Voe) = =~ &: — pgze.

9 Qg Ovy
vou [F] 6 wl-|E B

dy 9y

and now

3.4 Ideal, Irrotational, or Free Vortex

An ideal, or free vortex is one in which the flow is irrotational.

3.4.1 Derivation

Deriving the shape of an ideal vortex. We will use this assumption to first derive the velocity distribution
of the ideal vortex, and then show the shape that the free surface makes with the air is a hyperboloid.

Figure 3.2: Ideal vortex
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Derivation of Velocity Profile

The irrotational vortex has zero vorticity w, so all of the components of w = V X v must be zero. From
the definition for curl in cylindrical coordinates, these components are the following

lavz % =0
r 00 0z
ov, B ov,
0z or
10 1 0w,
- _ - =0
ror (vor) r 06
The vortex is azimuthally symmetric, so all the ¢ derivatives are zero, that is 5; = 0, allowing the
equations above to simplify to

Ovg
92 0
ov, B ov,
0z or
0
E(UHT) =0

From the fact that the vortex is azimuthally symmetric, no properties are functions of §. Furthermore
from the first equation we can see that vg is not a function of z. That is

vg = vg(r)
From the third equation, applying product rule we have

0
T’ﬂ—F’U@—O

/ or 81}9

—1In(r) = ln(vg) +
In(vg) = In(c) — In(r)

In(vg) = In (;)

C
Vg = —
r

Derivation of Pressure Distribution

Now write down Euler’s equation in each direction. The partial derivative with respect to time, also

known as the local rate of change, is zero, because at a fixed point in the fluid, the velocity is not changing
with time.



Looking at the next term

S| =
gl
|

<1

Il

[

>

+
N

%@
I
+

Now evaluating (v - V)v

0 1 0 0
(v-V)v:< "oy +Tveae+vza)v

1 0
=g + 7V apY + Vgl
0 1 0 0 R R N
= vrar(vre +uvgegtu.e,)+ vgae(vre +uvgegtu.e,)+ vzaz(vrg,, +vg g+, e,)
Now substitute in that v, = v, = 0 and get
1 0 .
(v-V)v= V950 (voep)
]. B'UQ A 1 2 aée
A AT
1 ,0é
—0 20y
* T’U@ 00
vg
=&
The surface force term
op . 10p. op.
Vp = e + - 80694- 5,8
body force term
pg = —pg-€.
Forming the whole equation we have
v0 op. 10p, p 5
— —e =——¢.— ——¢éy— —
p orlr T 7 a6% T 5y T P9t
Equating the components we have
2
UF dp 10p 8p
0 Y 0=—-2£ 0=
P r or r 00 9z ~ Y
This gives
op  pc? op Op
or r 00 0z

separating and integrating these back

2
_ [ op _
/8p—/T38r 80_0 /8p— /png)z
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The second equation shows that the pressure is not a function of 6. Integrating back the first and third
equations we have the following

2
pc
pz—ﬁ—i-f(z)—i-k

p=—pg.z+g(r)+k

and we have

f(Z) = —pPgzz
2
g(r) =25

and so the pressure in the rotating cylinder is given by

pe

62
p(T, Z) = _2T2 — PYzz + k

From this equation for the pressure in the vortex, we can see that when pressure is a constant, i.e. on an
isobar, that z ~ —r%. We can solve for the constant of integration c by saying when » = R, the radius of
the tank, pam is achieved at a height hg. Plugging this in

2
C
Patm = _Qpﬁ - szho +k

pc?

k= pam + 555 + Pg2h0
The final equation is
Pressure in ideal vortex: (r,z) = gt L 1 A + pg.(h )
8 p\r,z) = 2 R2 - Patm T pgz\No — =

To determine the shape that the air-water interface makes, we apply the boundary condition at this interface.
That is

p(r, 2) ‘interface = Patm

And then we have

2
c 1 1
0 = L <R2 — 2) + pgz(ho - Zinterface)

2 Tinterface
c? < 1 1 ‘B
Zinterface = 2 o 0
29 z R Tinterface
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Isobars

Can also find out the shape of the fluid by solving for isobars by evaluating dp and setting it equal to
zero. Since p = p(r, z) chain rule gives us the following for dp.

) B
dp = <a};> dr + <a§) dz

2
dp = p—?dr —pg.dz =10
r

2
)

gzr?
Integrating back and solving for the constant of integration when » = 0 we have

L G (1 1
2 1= 29, T% T%
2
cs (1 1
= — — - — h
“ 292<r2 R2)+0

2
c5 1 1
e _—— — h
& 2gZ<R2 r2>+0

Pretty sure this c is just supposed to be c.

dz = dr

Problem 10.11

Has thin inlet in the outer edge of tank to supply water for vortex. From original equation where we
solve for vy

c=VR
z= (VR 11 +h
T 2¢g. R2  r2 0

3.5 Hydrostatics

Hydrostatics comes from simplifying Euler’s equation by making the acceleration of the fluid element
zero, that is a = 0, giving the following equation

-Vp+pg=0

44



Chapter 4

Gauss’ and Stokes’ Theorem

4.1 Gauss’ Theorem

Gauss’ Theorem: / (V-v)dV = 7{ v-dA
\% S

4.2 Stokes’ Theorem

Stokes’ Theorem: / (V xv)-dA = j{ v-dl
AN—— @}
vorticity
circulation

And I' is called the circulation. Stokes’ theorem relates the area integral of vorticity to circulation.

F—%%dl
C
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Chapter 5

Control Surfaces, Volumes, and Masses

5.1 More on Conservation Equations: Forms A and B

| Mass Conservation |
Form A: 4 pdV + / p(v—7.) -ndA=0
dt Jov CS(t)
dp
Form B: —dV + pupdA =0
cv(y Ot CS(t)

Upn = (T—T¢) -0

v is the velocity across the control surface.

{ Momentum Conservation %

Form A: 4 pvdV + / po(v —v.) - ndA = Feoy(t)
dt Jov CS(t)

9(pv)

Form B:
cviy Ot

dV + / povndA = Feoy(t)
CS(t)

47



48



Chapter 6

Viscous Flow

The Newtonian stress tensor £ contains contributions of normal stress from pressure, as well as shear
stresses in the form of the viscous stress tensor g. Thus, the Newtonian stress tensor can be written as
the following, where for an inviscid fluid g = 0. The viscous stress tensor is a tensor used in continuum

mechanics to model the part of the stress at a point within some material that can be attributed to the strain
rate, the rate at which it is deforming around that point.

Inviscid = —pl

Viscous z=-pl+ga

Definition 1 Newton’s viscosity law (Viscosity)

shear stress

viscosity = — - -
rate of shear deformation or strain

T
h=Ta
dt
This is what it is to be a Newtonian fluid, one where the shear stress is proportional to the shear strain

rate, where the constant of proportionality is called the fluid’s viscosity.

Definition 2 Reynolds number The Reynolds number is the ratio between the inertial viscous forces in
a fluid.
_ pUIl

W

Airplanes flying at high altitude (rarefied gas) the density is very low, which means the Reynolds number
is very small. This is the same effect as highly viscous flow. Basically V v is the divergence of the velocity
field. Thinking about this in terms of a square fluid element in some velocity field, V v describes how
this fluid element will move with time. This movement can cause the fluid element to translate, rotate, and
deform. We would like to split these three parts up.

Re
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Strain rate tensor: e= % (Z u+ (V y)T>
Rotation rate tensor: Q= % (Z u— (V¥ Q)T>
Can derive from pictures
g =2pue
For incompressible flows with constant viscosity
V-v=0

The strain rate tensor represents shearing/stretching of the fluid element.

Figure 6.1: a. Translation, b. rotation, c. shearing, d. Pure compression

6.1 Derivation of Incompressible Navier-Stokes’ Equations

The Navier Stokes’ Equation describes conservation of linear momentum for isothermal flow of an
incompressible newtonian fluid.

p(z 4+ 6z)

Figure 6.2: Fluid element with pressure and gravity acting on it

Summing the forces in the z, y, and z directions we have
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poYydz — <p + gi) dydz = pdxdydza,
dp

pdxdz — [ p+ Ew dxdz = pdxdydzay,
Yy

péxdy — (p + gp> 0xdy — pg.dxdydz = pdxdydza,
z

simplifying
. . v 2
Incompressible Navier-Stokes p % +v-Vu | =-Vp+uVu+pg
= _Vp+V.g+
P Dt NpTN-ZTpPg
Dv 9
P = —Vp+uViv+pg

Fully developed flow implies that the velocity profile does not change in the fluid flow direction hence
the momentum also does not change in the flow direction. In such a case, the pressure in the flow direction
will balance the shear stress near the wall.

The assumptions of the equation are that the fluid is incompressible and newtonian; the flow is laminar
through a pipe of constant circular cross-section that is substantially longer than its diameter; and there is no
acceleration of fluid in the pipe. For velocities and pipe diameters above a threshold, actual fluid flow is not
laminar but turbulent, leading to larger pressure drops than calculated by the Hagen—Poiseuille equation.

6.2 Exact Solutions to the Navier-Stokes Equations

Some cases where an exact analytic solution to the Navier-Stokes equations exist are for the steady case
Poisseiulle flow (viscous flow through a circular pipe, or between two long parallel plates) and Coutte flow
(laminar flow between two parallel plates where one is moving). In other time dependent cases we have
Stokes’ first and second problems.

6.2.1 Poiseuille Flow in Circular Pipe

In this section we derive of Poiseuille flow in a circular pipe from Navier-Stokes equation. The laminar
flow through a pipe of uniform (circular) cross-section is one of two cases known as Hagen—Poiseuille flow.
In this case, we make the following assumptions:
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4‘ Circular Pipe Poiseuille Flow }7

0

Steady: — =0
eady T

No radial or swirl velocity: v =09 =0
0

Radially symmetric: 20— 0

0

Fully developed: Y _
0z

Gravity is neglible: g=0

In a large pipe we can have hydrostatic pressure variations, but usually these are very small and can be
neglected. Use the Navier-Stokes’ equation sheet to obtain the expanded equations in cylindrical coordi-
nates. Simplifying the Navier-Stokes equations using the above assumptions we have

_ op
0="%
_ op
0="50

oo, [L0(,00N] o
—# ror T@r 0z

The first two equations show that the pressure in the tube is only a function of z. Because of this, the
partial derivative in the third equation can be made a full derivative, and then we can integrate this equation
back to find the an expression for the velocity along the pipe, v,.

Lo (on] dv
—H ror T(‘)r dz

dp _p 0 ( 0v
dz ror or

[ o
i%rz +ecslnr +cqg = pv,
Vy = Lllujiﬂ +cilnr + e
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1d
pr2 +ecilnr + e

v = dp dz

Applying Boundary Conditions

Here we need to use the boundary conditions to find the constants c¢; and ca.

Regular Pipe

Figure 6.3: Parabolic velocity profile for Poiseuille flow through a circular pipe

vz(r = 0) = finite

Finite velocity along center of pipe:
v:(R) =0

No slip at pipe wall:

From the first boundary condition, when r = 0, v, must be finite. Looking at ¢; In r when r = 0 we see
that this term goes to infinity when r goes to zero. To prevent the velocity from going to infinity c¢; must be

zero. Now look at the second boundary condition

_ L ap o
0_4,udzR +c
1 dp 5
g =———
dpdz

so we have
1d 1
v, = e A —@RQ
dp dz 4 dz

Velocity for Poiseuille flow in regular pipe:
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Now we can integrate the velocity across the pipe to get the average velocity and flow rate. Furthermore,
we can see that the velocity decreases away from the center of the pipe, where the velocity is maximum.
The maximum velocity is

R? dp

Maximum velocity for Poiseuille flow in regular pipe: Uz,max = ~1nd
wdz

Integrating to find the average velocity and flow rate, which are related by () = v, maxA we have the
following, where dA = 27rdr.

1 dp 9

m dp f 2 2
=2 —)rd
Q 2z )y (R* — r*)rdr

R
Qz—ﬂdp{ Rr2—1r4]

dp dz 4 1,
A . o T dp 4
Volume flow rate for Poiseuille flow in regular pipe: Q= % d—R
wdz
The average velocity is then given by
_Q
Vz,avg = A
. N . . 1dp 5
Average velocity for Poiseuille flow in regular pipe: Vzavg = ~3ud —R
wdz

Conservation of mass, and the fully developed assumption gave the condition that the velocity distri-
bution along the pipe is constant. Once the Navier Stokes’ equations are solved, the equation for velocity
distribution is expressed in terms of the pressure gradient down the pipe. Since we know for any given value
of r that the velocity is constant along the z direction, we can see that the pressure gradient is constant. This
allows us to replace the pressure gradient in all of the above equations with the pressure drop along a length
of pipe

dp Ap
dz L

In particular, we can use this expression with the flow rate equation, and solve for the pressure drop as
a function of pipe length, flow rate, and diameter, among others. From this we can see that to minimize
pressure drop we want a pipe with a large diameter.
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| Pipe Poiseuille Flow |

i LAp 5 o
l t = —— fe—
Velocity v, 4,uL(R r?)
RZA
Maximum velocity Ui = Tfp
n
1 A
Average velocity Wiy = 877]3 R?
o
A
Flow rate _ T 2P
S8u L
128uL
Pressure drop Ap = #4@
s

Annulus Pipe

This problem is from 6.04 of Shapiro and Sonin problems.

No slip at pipe wall: vy(R1) =
No slip at pipe wall: v.(Rg) =

1 dp
0= @@R%+011DR1 + c2
1 dp

R%—{—cllnRz—l-cz

OZAR%—FCllan—i—CQ
OZAR%+CllnR2+CQ
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AR% +c1IlnRy = AR% +c1Iln Ry
A(R? — R%) = c;(In Ry — In Ry)
AR} — 1Y)

CcCl =
R
(1)
d,
4 2 (B — R3)
cl = —7
1n<%>
1 dp
02:_@£R§ c11n Ry
d,
e Llpp w0
2 dpdz 2 2

R
In (R—i)
Ldp [ o (R?—R3)InRy

_ X 2+
4,udz In <%)

1d
v, = EIZTQ +cilnr +c

1 d 2 2
o Ldp o Nz —Ra) ) 1 dp (s (R R3)In Ry
* T 4pdz ln(%) dpdz 2 ln<%>
1 1

6.2.2 Derivation of Plane Poiseuille Flow from Navier-Stokes

Consider the following parallel plates

)

x

Figure 6.4: Parabolic velocity profile for plane Poisseiulle flow
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Steady:

No vertical velocity:

2-D flow:

0z
Uz
Fully developed: 00
Ox
B 0%v, _ @
oy  Ox
op
0=—-——+pg
oy Py
dp
0= 7& + Pg=
Basically need to solve
0= 9%, B @
oy?  Ox
Op vy
Loy = uo—=
0z Y =19
Op vy
et 4 Cy =
[390 y] TRy

0
[py + 01} Oy = pdvy
ox

dp

— 2 —
5927 + Cry + Co = pu,

And using the boundary conditions, we have that v, (0) = 0 and v, (h) = 0 so

Cy=0
190p
Cy = —-2£
! 20x
: i~ h* 9py
Velocity for plane Poisseiulle flow: vp(y) = ——=—= ( 1-—
21 0x h
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Finding volume flow rate
6.2.3 Plane Coutte Flow

Y

x

Figure 6.5: Linear velocity profile for plane Couette flow

Couette flow is flow driven by moving one plate relative to another.

0

Steady: — =0
eady 5

Laminar: vy =v, =0
0

Symmetric: — =0
0z

0

Fully developed: Y _

ox

Use the Navier-Stokes’ equation sheet to obtain the expanded equations in cartesian coordinates. Sim-
plifying the Navier-Stokes equations using the above assumptions we have

B 0%v, @
—H oy?:  Ox
op
0=—+
Ip
0=—+
8z + pgz
Assume the plates are really long, so
dp
L _y
Ox

so pretty much need to solve the following, where v, on depends on the y position, so the partial
derivative can be made a full derivative

d?v,
du2
8

Y
dv
0dy = / d—=
/ dy
5

0=



_du,

Ci = dy
/Cldy: /dvz
Ciy+ Co =,

Using boundary conditions v, (y = h) = U and vz(y = 0) = 0 we get Co = 0 and C; = % So the
final solution is

U
Velocity for plane Couette flow: v (y) = WY
6.2.4 Rotational Couette Flow
0
Steady: —_ =
cacy at
Laminar: v =v, =0
Azimuthally symmetric: % =0
0
Fully developed: Yz _ 0
ox
Y
x

6.2.5 Rayleigh Problem: Stoke’s First Problem

Abrupt movement of a flat plate in fluid at rest. Assuming parallel flow with no instabilities.
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>

e
- > U

0

Steady: — =0
eady 5

Laminar or parallel flow: vy =v, =0
0

2-D flow: — =0
ow 5

0

Infinite plate: Y _

ox

Reducing the Navier-Stokes’ equations as presented in component form on the handout by applying the
simplifying assumptions listed above gives

Ovy 9%v,
Pt = F a2
dp

0= —87}4‘993;
Jp
0="%.

These equations can be rearranged to give

Qvs _ p v
ot p 0y?
dp
0=-2L
ay"‘ﬂﬂy
0=0

The quantity % = v is the dynamic viscosity, and we can simplify the first equation with this. The
second equation is just hydrostatic pressure in the y-direction. So we want to solve the first equation.

vy 0%v,

at Vo2

This is also known as the “Heat Equation”. So basically we have a PDE, but we want to make it an ODE
somehow, so I guess we try to non-dimensionalize?
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Solution of Stokes’ First Problem: Method 1

Vg
t,—)=0
f(y7 y7 Y U)
LQ
v —
T
y: L
t: T
Vg
—:1
U
and we have
n—
k=2
j=n—k=2
Pick y and ¢ to be the primary variables
I = vy’

a=-2,b=1

However, we can make new Pi groups from any of the “original” Pi groups by operating on them by a
function. So, in this case it is convention (and simplifies the solution of the problem) if we pick the first Pi
group instead to be

However, while this simplifies the solution, we will show first the case using our original Pi group. The
second Pi group is

Iy = 2yt
1074 =1
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and so we have

or
vt
-oe(3)
Yy
letting
vt
17 fry
Y2
we have
Vg = U¢(77)

Now we want to use this non-dimensionalized expression to help us solve the PDE, and reduce it to an
ODE.

Ovy 9%,

W_V(?gﬂ

So we need to evaluate using the function ¢ the following

Ov, 0000
ot Onot
e _ ;00 0n
dy on dy

O [0 (00\ 0 900 (o
oy2 |0y \on) oy Ondy \Oy

s _ [a% (an>2+ 9o (9217]

ay? —  |op \ay) " anoy

And now we need to evaluate

o _ v
ot 2
O _ vt
Jy y3
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This gives

o _ 9%p (on\? L 09 %

bt AU & o e A B bt}
on ot on? \ Oy on 0y?

canceling out the U and substituting in the known derivatives we get

opv 0%¢ [ V2t ¢ vt
e = Lo ()~ 5

09 (v o vt\ _ 0% [ v
on \y? yt) o2 U P

0¢ (y* —6ut 0%¢ [ V22
- — 2 T4
on y? on? \ y*

Now we separate and integrate twice




/a¢ /exp (-177—6111( )+01) n

n 1 6
QS—CQ/ exp(—— ——1In(n) | On+ Cs
) 4y 4

n

Evaluate this integral to get

¢:CQ[ zferf< f)]n+03

a1t (1)) v

Now apply boundary conditions to determine C3 and Cs. Looking at 7 in terms of y we have

Vg (y — 00)
U

vz (y = 0)

y—o00=n—0and 0

=0=¢(n=0)

y=0=n=00and =1l=¢(n=00)=1

Continuing to apply these boundary conditions, with the following
erf(0) =0
erf(c0) =1
First boundary condition n = 0
0 = 2y/7Cs [1 — erf(o0)] + Cs

C3=0

Next boundary condition 17 — oo

1 =2ymCy[1 —erf(0)] + C3

1 =2y7Cq
1
C2 2./



- (ct)

Now relate this function with the non-dimensional variables, or Pi groups, back to the physical variables

vl’(y7t) — 1 _ el‘f 1
U 2 /l%f
Yy
Velocity for Stokes’ first problem: v (y,?) = [1 —erf ( Y )]
U 2v/vt

Now, if at the beginning we had picked a different non dimensional variable, or Pi group, 1 the result
would have been the same, but the solution would have been easier, in particular in the evaluation of the
integral that resulted in the error function. Some extra stuff. Look at the dimensional analysis sheet and see
that the time scale for the diffusion of viscous effects into the fluid are like

L2

te ~ —

and we need to pick a characteristic length scale, which is usually the boundary layer thickness ¢. This gives

52

te ~ —

Solving for § we have

§ ~Vut

And we can approximate the shear stress as a linear velocity profile over the boundary layer

Wm0
bVt

Tw

Solution of Stokes’ First Problem: Method 2
Using different n

6.2.6 Stokes’ Second Problem

Stokes apparently had many problems. In this problem, at first I thought we could just reuse most of the
solution from Stokes’ first problem, but change the boundary condition and somehow take into account the
oscillating boundary condition because the constants of integration that we found last time are not actually
constants, but functions of not eta. Should clear up the notation on how to express arbitrary constants
that are “not a function” of some variable. This didn’t work though, and I think it is something like we
fundamentally ignored the variable omega (plate oscillation frequency) when we non-dimensionalized, so
our solution won’t work. This basically means the whole non-dimensionalizing part to turn the governing
PDE into an ODE needs to be redone.
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xT

<«—> U coswt

Example 2 Viscometer A motor with a cylinder attached is submerged in a viscous fluid.
The motor is set to rotate at a known rpm, and a device is used to measure the torque
required to rotate the cylinder. From this, we can figure out the viscosity of the fluid.

6.3 Nondimensionalizing the Navier-Stokes’ Equation

By nondimensionalizing the Navier-Stokes’ Equations, we can understand better what contributions like
viscosity are “large” or “small”. To express in dimensionless variables, we have to scale all the variables in
the problem using characteristic scales for the problem of interest.

solving
i
v

Where the time is called the convective time scale. And the del operator V takes a different form when
nondimensionalized as well.

z ="l v=0"V p=p*pV? ¢

= [a(;?*l) 8(;9*[) 8(§*l)}

o) o el
ox*  OJy*  0z*

The Navier-Stokes’ Equation is



at* oVl V2
1 1
Re Fr2

The Froude number plays an analogous role to the Mach number in a compressible flow. From this non-
dimensionalized version of Navier-Stokes’ Equation, we can see if Re = pTVZ is very large, the viscous terms
in the equation of motion become very small and negligible compared to the inertial terms in the equation.
The flow is inviscid, not the fluid.

ay* * * ok * %k 1 *2 ok gl ~
50 L Vvt =-V'p +EV v+ et
DQ* * 1 *2 ok gl N
Dt =-V p*'i‘gv v +W§Z
Dv* 1 1
= :_v* * 7V*2 * 4
D~ LP TReY Y T et

To solve such problems, use the following procedure. Nondimensionalize the problem we are interested
in: the skinny gap considered for lubrication theory problems. Do this just like all the other dimensional
analysis problems before. Take those non dimensional quantities or Pi groups and make new ones just so
they look like one we are familiar with. Write a few inequalities based on the prescribed geometry. That is:
h << L and % << 1 which says gap is small and doesn’t expand too quickly. Solve for the dimensional
variables in terms of the nondomensional ones. Plug these dimensional variables into NSE and obtain a non
dimensionalized version of the equation. From this equation and using our assumptions of flow geometry,
we can simplify terms within the non dimensional NSE.

* why in lubrication theory can we show that inertia effects are small?

* How do we say that two non dimensional derivatives are of the same order of magnitude? To allow
us to compare terms like mckinley did in notes comparing 5/6...

* integration of multivariable functions required for the solution to Stokes’ first problem f(notz)

* Stokes flow from original nondimensionalization (see sphere moving in fluid example below) and in
general how to ignore inertial effects? p = 0?
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Chapter 7

Dimensional Analysis

To solve a dimensional analysis problem, use the following steps.

1.

Pick the fundamental variables which describe the problem, and note the number n of these funda-
mental variables

* In picking the fundamental variables, we typically want to pick one quantity which describe the
fluid, the flow, and the geometry.

Write the fundamental dimensions for each fundamental variable, and note the number & of indepen-
dent fundamental dimensions.

. Subtracting j = n — k we need j Pi groups. We need to pick k primary variables to use in making

these Pi groups.

Make the j Pi groups

. Identify as many of the Pi groups as known dimensionless quantities, such as Reynolds number, Weber

number, etc.
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Example 3 Sphere falling in a viscous fluid

Fundamental variables Fp, U, p, u, D. n = 5. Fundamental dimensions are

FD: L

%‘i

U :

p:

ER R

I
D: L

~
N~

From this we see that the number of independent dimensions is k = 3. Son — k = 2 and
we need 2 Pi groups. Choose p, U, and D as the primary variables.

I, = Fpp*U’D* I, = pptUue D’

MLY (M\® (L\® . 0 om0

(%) () (7) @r=arer
M\ [ M\ /L\®

f_ 07070

(2) (z:) (7) w7 =

727 =1° 77 =10
MM = M° MM?* = MO
LL—SaLch — LO L—lL—BdLeLf — LO
b=—2 f=-1
a=-—1 d= -1
LIPL?L¢=1L° Ltp3rert =10
c=—2 e=—1
I, = Fpp lU2D2 Iy = pp U D™
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Fp I 1
= D22 =0 = ke
pD-U pDU  Re
II; is essentially the drag coefficient. Since we know the Pi groups can always be off by a
constant factor, the drag coefficient usually looks like

11

F,
Cp— L

where A is the projected area. And we can see that

I} = ¢ (Il2)

crme(2)

And when the Reynolds number is very large, inertia dominates and viscous forces are
negligible. In this case, we can redo the dimensional analysis, but this time without y. This
gives n = 4, but with £ = 3 still, and so there is only one Pi group. In this case we know
that that one Pi group, which is shown below, must be a constant.
Fp
High Re: ——-— = constant
5 pU2D?

What about when Reynolds number is very very small? Essentially this means inertia is
negligible, so that means p is small?

Low Re: o = constant
TYz
Basically the drag coefficient is given as a dimensionless drag force. So take the drag force
and divide it by something that has units of force. To get a force we do pressure times
area, so depending on whether viscous or inertial pressure dominates, pick the correct one,
multiply it by an area, and we have a force.

Fp

High Re: Cp = t——rs
igh Re D = cons JU2D?

Low Re: Cp = const iU 2

R
so the drag forces in each of these cases are

High Re: Fp = constpU?D?

Low Re: Fp = constuUR

The drag on a sphere... when viscosity negligible:
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F D = KQ,OU2R2
when inertia is negligible

F D = K 3 /M)R
Stokes Creeping Flow

Can get the following equations by simplifying and solving Navier-Stokes’ equations.

3
vy = —V cos () (1 _ 3k + R)

2r  2r3
vg = Vsin(6) 1—ﬁ+R73
o= 4r 43

=3 () Bty

To find the drag force on a sphere, need the pressure gradient and the shear stress at the surface, 7,9 and
integrate all the terms over the surface of a sphere

Stokes drag on a sphere

Fpg.= / e, - TdA = 6mrpRV = 3muV D
A

and so Cp of the sphere simplifies to

24

CpH =
DRe

Example 4 How long for a falling sphere to get to steady state velocity?

72



Chapter 8

Lubrication Theory

The key requirement for lubrication theory is that the ratio h/l << 1 is small, where h is gap between
surfaces and L is the length. More than one readily identifiable characteristic length scale. If there is a clear
separation of scales h << [ then we can use lubrication analysis to simplify the Navier-Stokes’ equation.
(Slender body analysis).

8.1 Cartesian Coordinates

x Yy v v t
¥ == = = v == vi =4 t* = —
L7 Y =% LT Wy, .,

v
PO . 52 o l
DPe P (V)

where V. is a characteristic velocity. Solving for the dimensional quantities in terms of the dimensionless
ones, we have

xz=z"l y=y"h v, = 0U v, = vy Ve t =t p=p"pc

8.1.1 Non-dimensionalization of Conservation of Mass
Starting with conservation of mass for 2-D in cartesian coordinates

0v, n Ovy

or "oy =

we substitute these into conservation of mass and get

o) | Do)
d(xz*l)  I(y*h)

Pulling out the characteristic terms we have

EOU; E(%Z
[ Ox*  h Oy*
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and so from this both of the dimensionless groups are are order one dimensionless quantities, and so we see
that the characteristic velocity must scale as

V, ~ —
l

8.1.2 Simplification of Navier-Stokes for Lubrication Theory
x-direction

The z-component of the Navier-Stokes equation in cartesian coordinates is the following

% %4_ % % — 62vx+620x+82’uz _@_’_
P\lgr Ty T Oy Yoz ) TH | a2 Oy? 072 or "

Simplifying these equations for 2-D flow, we get
O0vg ov O0vg v, vy Op
P =

X
ot i T ty oy ox2 Oy Ox + PYa

Substituting in the dimensional variables in terms of the non dimensional variables and characteristic values,
we get

(8(1)32U) ., 0sU) *Vaw:;U)): {MU) 82<U$U>}_a<p*pc>+pgx

atrt) | arl) Y ayrh) a2 alyh)2 | a(z*)
Pull out characteristic values to leave differential equation in dimensionless form

1% L7, AN B gﬁ%g’; N 2820; _ pcOp”
P\e.ar T 1T o T oy ) TP 2ar? T n2ay?| T 1 aa

Plug in the scaling for V' which came from continuity and dividing by u

+ P9z

(U@v; U2 ov: VU *81);)

wlox*

xT

p (U dv; U—2v* o} n U—Zv* ovy\ ga%;; n 2821); _peOpt  p
A\ t. Ot* [ *ox* I Yoy*) [120x*2  h20y*?

. . h2
Multiply both sides by 7+

ph? ov* n pUh? o ov:  pUh? o ov, hja%; 0%v:  h2p. Op* @
pte Ot* ul *ox* pl Yoy 12 0x*2 Oy pUlOxr  pU Iz

Notice now that to keep the left side of the same order, we must pick the characteristic time as

Ll
c U

Substituting this in to get

pUR? 0vl ~ pUR*  0vi = pUh* ,0vi  h? 0%} = 0%} B h%p. Op*  h?p

ul Ot + wul e g ul Yy oy* 12 0x*? + oy2  uUl Ox* ng

Recognize the Reynolds number terms
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T2 92 + oy*2  pUl Ox* ng

h? [ Ov} L Ovs LOvr h? 9%v:  0%v:  Rh2p.Op*  hPp
Re;— U, v =
12\ ot ox*  Yoy*

If Rel};—; << land %2 << 1 then we can simplify this expression

B 0%v:  hp.Op*  h?

p
Coy*2 pUl oxr pU Ju

Rearranging terms we can redimensionalize

0

_ pU vy pe Op*

0= h2 oy*2 | Oz*

+ P9

0*(Uvy)  O(pep”)
— -0
Mot o)
So the governing equation of motion for lubrication theory in the z-direction is the following, where g, is
the component of gravity along the x-axis.

v, 0
U —£+ng:0

Lubrication theory x-direction: 7 5 3
X

We can now separate this equation and integrate it back to obtain an expression for the velocity. How-
ever, we require two boundary conditions, and these depend on the problem being solved. A free surface
corresponds to Neumann boundary conditions, those where the shear stress at the free surface are zero, and
so the relationship of velocity and shear stress says that the derivative of the velocity with respect to the
perpendicular direction are zero. Will clear this up later. Dirichlet boundary conditions are those where the
velocity itself takes a certain value rather than derivative. Integrate the governing equation back.

dvy dp
© ddy_/<8a: P9x> dy
dvy,  (Op
Wy = (&r P9x>y+01
0
u/dvx=/<ap—pgx> ydy+/01dy
x

1 /0
g == (L — pg. ) 12 + Cry + Cs
2 \ Oz

y-direction

Taking the Navier-Stokes equation in the y-direction and substituting in the dimensional terms we have

a(vrV) . O V) . O V) B ?(V)  0*(viV) I(p*pe)
(ot * 5090 5 s ) = [a@cfwz Yo e | " o) T
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Pulling out the characteristic values so the derivatives are dimensionless

o U1 "o T h oy

+ PGy

(L0, UV 00 V2 0 [va%z v o) peoy

H172 902 + h2 Oy*2 h Oy*

First substitute in the expression from conservation of mass that gives the scaling of V/, and the characteristic
time
Uh

Vi~

this gives
1 0v; 2p  ov} 2p  Ov o0} 0%} . Op*

(URLOG  UPh 0v U 0%\ [UROP U 5] pedp

[ t.Oot* 12 *ox* 12 Yoy* 13 0z*2  hl Oy*2 h Oy*

+ PGy

Something here about if the flow is slowly varying, the timescale in the y-direction is roughly the same as
timescale in the x-direction, so we use again

p oL
‘U
pUh Qup | pU?h L Ovp  pU*h Ovy  pUhO%vy  pU 0%,  pedp o
12 ot 12 "*ox* 2 Yoy* I3 0z*2  hl Oy*2  h Oy* Y
U2 [ Ov} v o’ Uh 0% U 0*v:  p.op*
P2 Yy vt y_H}Z y :M3 Z+L g—gp—l-pgy
l ot* oz* dy* 13 Ox* hl Oy* h Oy*
multiply both sides by
? hd A2
Uph B~ Up

Where the first term we can see would make the coefficient on the left side become the Reynolds number
Re = pTUl. Then, the second term would make the left hand side be Re (%)3 That way if we can say that

Re (%)3 << 1, then the whole left side goes away. We will see what happens to the right hand side.
W\’ (Ovy  LOyk L Oy h\°? 0%,  hO%vy  phdpt | h?

Re | — Yol yz—i-v; Yr) = (2 2+ g_pc P + ——pgy
l ot* ox* oy* 1) Ox* [ Oy* Upoy* Up

And so if % << 1land Re% << 1 then this equation can be simplified to

h72 . pch Op* _
U,upgy Up dy*

Now we redimensionalize again, remembering that

1

u Vi
e peh? Oy
Vlupgy Vip oy*

h3 h3 O(pep*)
77 P9 — T o
Vip Vip 0(hy*)
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Finally we have

0
Lubrication theory y-direction: PGy — a—p =0
Y

And integrating this expression back, we can have the following function for pressure, where we have

to apply boundary conditions to solve for the constant

p=pgyy+C1
{ Lubrication Theory Equations: Cartesian %

momentum @ = @ + =
X- u v P o P9z =

y-momentum PGy — g]; =0
_— Ovy | Ovy

Contlnmty 87 aiy =0

8.2 Cylindrical Polar Coordinates
* * * R * * X
vy =0, U vy, = v,V t:tﬁ z=2z"h r=1r"R D =P Pec

8.2.1 Conservation of Mass

19(rv,) = Ov,
S
r Or z

Plut in quantities expressed in terms of the dimensionless and characteristic

=0

ULt | VoW
Rrx Or* h =z

and so from this we see

o <
2
> <

>

U

=

8.2.2 Navier-Stokes Equation
Neglect gravity and azimuthally symmetric (fully developed in the 6 direction)
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r-direction

This equation is for azimuthally symmetric flow on a spinning disk.

%+U%+%avr_gg+vavr — 2 EQ(T‘U) _|_82,UT _@
p ot " or r 00 r * 0z —# or \ror: " 022 or

The velocity vy was moved over to the right side and vy = rw. Then we get

%4_ %4_ % — g 13( ) +82U7~ _@_i_ 2
p Ot Ur or vz 0z —H or \ror or 022 or pwT

Now plugging in the non dimensional quantities we get

owyU) 0w U) =, 0vU)
(8(t*§) Y8 R) TV d(z*h) >

_ a 1 a * * 82(U:U) 8(}7*]90) *
=H [8(7“*}%) <r*R B R”’”U)> * 8(z*h)2} ~ gy TR

R t* +§UT67"*+ h Uzaz*

B U 0 [ 109(r*v)) U 0%v* pe Op* 9 x
s [Rzar* (r* or* > }1282*2]  Ror - Rpwr

p((ﬂav;‘ U ov: VU *81};>

Using the relationship from continuity

we get

h2 0z*2

pU? (Ov:  Ov:  , 0vF U 9 [19(r*v)) U 0%v} pe Op* 9 ¥
il N il _Fe R
R ( t* o o Vg FlRZor \r or R Or* et

We want to get Rep (%)2 << 1 on the left hand side to cancel all those terms, so want the left hand

side to have coefficient

h\?> pURK®:  pUh?
R —| == <<1
o (R) u R 4R
so to do this, multiply both sides by
h2

uU
giving
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R\? [Ovr L OvF L OuF
ReR oy —|- +

v v
t* "ort  F 0z

B hj U 9 (10("v)) 2821);5 B pch? Op* n hZRprT*
U | R2Or* \r* Or* h? 9z*2 RuU Or* ulU
simplifying
ren (1 2 [ ovr Pl
B\ R t* "orx  F0z¢
B fi a (10(rrvy) v} 3 pch? Op* h2Rpw2r*
| R2or* \r* Or* 0z*2 RuU or* uU
simplifying

B o0?v} B pch? Op*  h’Rp

022 RupU or* ulU

we want to keep the pressure term, so the characteristic pressure should scale as

0 wr*

pUR
pC: h2
giving
0:821);“_817* h2Rpw2r*
0z*2  Or* ulU
Redimensionalizing
bl
oo 2 2() werp e
2

h?0%v, R Op h2rpw2
U 022 p.or uU

_ h?0%,  Rh* Op n hQprg

0_5822  wWUROr U
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Chapter 9

Potential Flows

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the
velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a
valid approximation for several applications. The irrotationality of a potential flow is due to the curl of a
gradient always being equal to zero. A velocity potential is used in fluid dynamics, when a fluid occupies a
simply-connected region and is irrotational. In such a case

Vxu=0

where u denotes the flow velocity of the fluid. As a result, u can be represented as the gradient of a
scalar function ®:

u=V®

® is known as a velocity potential for u. Unlike a stream function, a velocity potential can exist in
three-dimensional flow. The stream function is defined for two-dimensional flows of various kinds. The
stream function can be used to plot streamlines In most cases, the stream function is the imaginary part of
the complex potential, while the potential function is the real part.

The general procedure for solving a potential flow problem is:

1. to guess a proper potential function $
2. check that it satisfies the Laplace equation V2® = 0

3. check whether the corresponding velocity field v = V@ satisfies the boundary conditions

9.1 Stream Function

The stream function is defined in general only for 2-D flows. There are some special cases of 3-D flows
where the stream function is used, but for this class we will consider only the stream function for 2-D flow.
Let stream function be defined so that

Ty VT o

Definition 3 Streamline Curve that is everywhere tangent to velocity field

_% oY

81



Looking at a velocity vector and the streamline, we can see there are similar triangles.

So along a streamline we have
dy vy

dr vy
which can be written
vpdy — vydr =0
Substituting the definition for stream function in

oY o

Notice that this is the derivative dv as evaluated using chain rule, giving
dip =0

So this shows the important fact that the stream function is constant along stream lines. Schwarz’s theorem:
if ) has continuous 2nd order partial derivatives (when is this true for the stream function?) over all space,
then

oy 9%y
oxdy  Oydx
9 (ovN _ 9 (0¥
or \ oy ) 0oy \ oz
9, -_9,
or * oy Y
Ovy  Ovy
o "oy T

And so stream function is defined in a way that automatically satisfies continuity for incompressible
flow. Units of stream function, as mass flow between two streamlines.

Example 5 Volumetric flow rate between two streamlines

Definition 4 Pathline Locus of points through which a particle of fixed identity has traveled

For steady flow path lines and streamlines are identical. See wikipedia streamline page video.
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Chapter 10
Vorticity

The vorticity w is defined as the curl of the velocity field:

w=Vxu

Kelvin’s circulation theorem states that the circulation I' does not change with respect to time.

szwﬂ
C

Recall Euler’s equation (2.1))

Simplify for steady flow dv /0t = 0 gives

pv-Vv)=-Np+pg
Use the identity, which is a general form of V(A - B)

%2@4D:yxzxy+@yﬁ

And we can substitute in for gravity g = —gVh giving

plu x ¥V xv)=p-V(v-v)+ Vp+ pgVh

1
- - 2

1
vava%=V<mf2+p+MM>

To look at this along a streamline take the unit vector s along a streamline and dot it onto both sides. The
directional derivative by definition is % = Vf -s. And so we have the change in Bernoulli’s along a

&3



streamline. On the left hand side, orthogonality of the vectors dotted into s gives zero. Looking at how this
quantity changes normal to a streamline, we take a unit vector n normal to the streamline.

1
plo xw) =V (pQUz +p+ pgh)

Integrate both sides from 1 to 2.
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Chapter 11

Boundary Layers

The essential characteristics of regions described by boundary layer theory are that they are thin and that
they have steep velocity gradients that make the viscous effects important. See Panton page 418.

11.1 Derivation of the Boundary Layer Equations: Cartesian Co-
ordinates

Derivation Outline and Assumptions
« Start with Navier-Stokes equation in the x— and y-direction, and conservation of mass
* Assume steady, 2-D flow and neglect gravity to simplify the Navier-Stokes equations
* Nondimensionalize to get the boundary layer equations

— Assume during the non-dimensionalization that Re>> 1
2 2
- (4)" ~Re>>1s0(%)" >>1

— Laminar

Start with Navier-Stokes equation in the z-direction and conservation of mass as shown below

Ovy, Ov,, v, 0y
E (x): o — T L
NSE (@) ”(m” or Ty T (9z)
O IR L B
Continuity: % + aavyy =0

The x Navier-Stokes equation can be simplified by only considering 2-D steady flow, where gravity is in the
y-direction, reducing this equation to

p e Ou _ f02 9% ) Op
P\ 9z Y oy B A oy2 " ox
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11.1.1 Non-Dimensionalize to Get Boundary Layer Equations

Define the following dimensionless quantities

x *_y *_UOU *:,0711 * b
) T Us Yo Ve Pe

where V. is a characteristic velocity. Solving for the dimensional quantities in terms of the dimensionless
ones, we have

x=2xa"L y=1y"d vy = V3Uso vy = vy, Ve p=Dp"De

x
Non-dimensionalizing Conservation of Mass
Substituting in the dimensional variables

Uso OvE V. Ovy

o -c =0
L Ox* 0 Oy*
And so from this we see
U Ve
L 0
and so our characteristic length scale is
Usod
I ~
Ve

Nondimensionalizing Navier-Stokes Equations in x-Direction

Plugging all the dimensional variables into the simplified Navier-Stokes equation we have

o 0TS | 0WiUx)\ | [P(ilUa) | P(iUa)]  O(ppe)
”(“xU” o) T a0 )‘“[ A L2 | 0y ) ]‘

Pulling out the dimensional quantities from the derivative terms

UL o0 Velso 00p i [Uso 00) | Uso 03] pe Op"
L *0x* § Yoyr  p | L% 0x2 62 Oyr2 Lp Ox*

Dividing through

Lovr VoL ovl 1 0% N L 0%} pe Op*
v v =V — -
Yox* Uy YOy* LUy 0x*2 52U, Oy*2 pUZ, Ox*
Using the result of non-dimensionalizing conservation of mass, and recognizing the Reynolds number term
this becomes
L 0vl L0vl
U, + v = —
ox* Yoy*  Redz*? 02Uy Oy*?  pUZ Ox*

Manipulating one of the terms on the right hand side this gives

1 0% vL 0%} pe  Op*

Ovp | Ovp L 0% v 20 pe Opf
Yor*  YOy* Redx? LU 02 0y*2  pUZ Oz*

86



Now we recognize this as another coefficient with the Reynolds number in it

* *
* avx + U* a/U.T

y _ i@zvé LE o*v pe Op*
Tox*  YOy* Redx*?  Red? dy*?  pUZ Ox*

We can also see what the characteristic pressure needs to be to satisfy this non dimensional equation
2
pC == ono

giving
o ov}; o ov}; _ ia%; n LL72 o0v _op”
Tor*  YOy* Redx*?  Re 2 dy*2  Ox*
So when the Reynolds number gets big, the first term with Reynolds number in the denominator goes
away. But in order for the second viscous term to remain when the Reynolds number gets big, we need the
following scaling relationship to hold

L2

572 ~ Re
So this gives that § needs to scale as

5 L

VRe

With the assumption that Reynolds number is large, and with ¢ scaling as above, the boundary layer equation

becomes

L Ovs e ov, 1 L? 9%v%  Op*

Tox*  YOy* Re d2 Oy*2  Ox*
The dimensionless quantities can then be substituted back in for, yielding the dimensional form of the x-
momentum equation for a boundary layer.

Nondimensionalizing Navier-Stokes Equations in y-Direction
11.1.2 Boundary Layer Equations in Cartesian Summary

To summarize, the simplified equations are shown below.

4{ Boundary Layer Equations: Cartesian }7

) <v Ovy 3%) 0%v, Op

- t -z &\ = _
X-momentum Ey + vy By 7] 52 oz
0
y-momentum L
Ay
ovy, Ov
Continuit —Y_0
muity oz + By

We can see the shape that the boundary layer makes over a surface depending on the pressure gradient
in the z-direction. That is, at the surface we have v, = v, = 0, so for % <0, % =0, and % > 0 we can

see the %J; , that is, the curvature of the velocity profile.
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Displacement thickness

Momentum thickness

Momentum Integral Equation
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Chapter 12

Surface Tension

Surface tension is not a property of materials but of interfaces between two (or more) materials. It is
implicit in its definition that the interface separates two kinds of materials that behave differently (otherwise
the interface would be just some imaginary surface inside the one material with no physical meaning) and
so there must always be some surface tension that sustains the physical interface. First of all, Marek is right
that a surface tension exists only between two different materials (well, I would say between two different
phases - for example water and ice)

o is the surface tension.

Surface tension for cylinder: Ap = g

,

. 20

Surface tension for sphere: Ap=—

r

. 1 1
Young-Laplace equation: Ap=c | —+ —
Ty Ty

Contact angle « is a property of the fluid, the material it is touching, and the third fluid it is in (like air).

&9



. Osv — Osl
Young’s equation: cosfp = 2%
Oly

where s, [, and v are solid, liquid, and vapor, respectively, and 0 is the equilibrium contact angle.
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Chapter 13

Appendix

Volume of sphere: V=—nr

Surface area of sphere: A = 47r?

Power of fan or pump where W is the time derivative of work, aka power, and 7 is the fan or pump
efficiency.

.
nW = 5 pv*Q

Work of fluid with velocity U applying force I’

Wexe = FU
Power is

P = FextU
Work is

W =QAp

13.1 Equation Summary Sheet

1 1
Bernoulli’s along streamline: 3 pv§2 + p2 + pgze = 3 pvgl + p1 + pgz1

Reynolds transport theorem (form A)

d

@ bdV +
dt Jov)

d
p(v—1v.) ndd=— pdV
cs dt Jarv

Material Derivative
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Navier Stokes Equation

Dv ov
PE— <8t+U'W>

Dv 9
Por = —Vp+ puVuv+pg
. . ov 2
Incompressible Navier-Stokes P e +v-Vo | =-Vp+uVu+ pg
Dv
PDr = —Vp+V.-a+pg
Duv 9
P = =Vp+ puVu+ pg

Form A:

Form B:

Mass Conservation |

pdV—l—/ p(t—7.) -ndA=0
) Cs(t)

/ @dV + / pvpdA =0
cv(y Ot Cs(t)

Upn = (T0—"17¢) 70

v is the velocity across the control surface.

[

| Momentum Conservation %

d _
Form A: — pvdV + / pu(V — T¢) - ndA = Feoy (t)
dt Jov cs(t)
Form B: / 9(pv) dv + / povndA = Feoy(t)
cvy Ot CS(t)
Vorticity: w=Vxuv
.. . d 2 0
Derivative of Error Function: —erf(z) = —e
dz N3
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13.2 Stokes
13.2.1 From Stokes First Problem

look at the dimensional analysis sheet and see that the time scale for the diffusion of viscous effects into
the fluid are like

L2
te~ —
v
and we need to pick a characteristic length scale, which is usually the boundary layer thickness d. This gives
52
te ~ —
Solving for 4 we have
0 ~ it
And we can approximate the shear stress as a linear velocity profile over the boundary layer
pU  pU
T, ~N — N —
To find boundary layer growth, we have the characteristic time scale for convection
L
tc — ﬁ
so Blasius boundary layer grows like
vL
0~ —
U

which is the solution for the growth over a flat plate. But the boundary layer is usually really small compared
to the radius of curvature of non-flat surfaces, so we can pretty much use this always.

{ Lubrication Theory Equations: Cartesian %

d*v,  Op
- t —_— — p— O
X-momentum " 7’ p + PGz
momentum — @ =0
Ovy, Ov
Continuit —+=2=0
v Ox oy

13.2.2 Boundary Layer Equations in Cartesian Summary

To summarize, the simplified equations are shown below.

4{ Boundary Layer Equations: Cartesian }7

X-momentum v, 4+ v, Pug _ Op
- v Vy— | = — —
P\ %0 Y oy : oy? Oz
0
y-momentum P _ g
Ay
Oov, Ov
Continuit -2 =0
ontinuity o T oy
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We can see the shape that the boundary layer makes over a surface depending on the pressure gradient

in the x-direction. That is, at the surface we have v, = v, = 0, so for g—g <0, % =0, and % > (0 we can
see the %”; , that is, the curvature of the velocity profile.
oo
Displacement thickness o = / (1 = w) dy
0 Uoo
oo
Momentum thickness = / Lo <1 - UI(y)) dy
0 Uoo Uoo
d au
Momentum Integral Equation —(U?0) + 6*U— = i
dx dx p
0 ~ Vut*
X
=
Uso
7 1 1
Young-Laplace equation: Ap=0oc | —+ —
Ty Ty
Surface Tension Energy: dE = odA

Bt — 0 At

13.3 What Formulas to use When

If the question says, show that a given functional form satisfies some governing equation, rather than
trying to derive the given functional form from some governing equation, instead pick a governing equation
and plug the given functional form in just to check that it satisfies it. Relating u to v: think continuity! When
asked to compare gravity and surface tension forces, compare hydrostatic pressure of the whole column of
fluid to the pressure due to surface tension as calculated from the Young-Laplace equation.

13.4 Stuff to Remember for Quals

dp _
5 T () =0
Ov, 809_
Ox +(97y_0
vy %4- %+ e\ _ 82%4—82%—1-82% —@"‘
Plat T e " Way T ) T 02 T a2 T 92| o P
op 1 10 0 _
il ;(Prvr)‘i‘;%(ﬂve)‘F@(P”Z) =0

94



ot ar o0 o ol W wall ISy, e -y 2l e

ov, ov,  vg Ov, ov, 10 ov, 1 0%v, O%v, Op
p FUoe b v | =1 r=
Ap=oc (% + %)
Boundary layer:

» Start with Navier-Stokes equation in the x— and y-direction, and conservation of mass

* Assume steady, 2-D flow and neglect gravity to simplify the Navier-Stokes equations
* Nondimensionalize to get the boundary layer equations

— Assume during the non-dimensionalization that Re>> 1

— (5)? ~Re>> 150 (£)?>>1

— Laminar

d / pudV + / p0(T — Te) - idA = Foy (t)
dt Jov cs(1)
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Part 11

Dynamics and Modeling
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Chapter 14

Linear and Angular Momentum Principles

14.1 Single Particle

Figure 14.1: Point mass m under action of force f. Point O is fixed in inertial space, and point B is a general
point, not necessarily fixed in inertial space.

Linear momentum: p=mu
. - dp
Linear momentum principle: f= d;
Torque about point O: T0 = Tom X [

Moment of momentum about point O: ho =rom X p

differentiate expression for ho
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ih = — X p+ X 4
dt—O - dthm B ZOT)’L dtB
but
d
%zOm =0

and since p = mu the cross product %Q)m x p =0 and so

ih — X 1
di0 — tom * P

and substituting the linear momentum principle d—% = f this gives

d

a@o =Tom X [

But the right hand side is just the torque about point O, so we have

d
Angular momentum principle of particle about point O: o= ho
About a general point B the torque and moment of momentum can be expressed as
B =1Bm X [
hp =Tpm XPp
Using rg,,, = rom — "'op and substituting in we have
75 = (Tom —ToB) X [
=Tom X [ —Top X [
=70 —Rop x [
Torque on particle about general point B: Tp=To —Top X [
and
hp = (rom —roB) X P
=Tom XP—Top XP
=ho —rop XD
Moment of momentum of particle about gen. point 5: hg =hp —Tpop % P
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Evaluate the following

ih = ih — ir Xp—7 X i
diB T gt T giroB * BT ToB X P
=Tp—upXp—rop X [

From above we have rop X f = 7o — 7 and so we can write

d
%hB =Tp—UpXP—Tp+7Ip
=—Up Xp+1p
solving for 75 this gives
Angular momentum principle of particle about gen. point B: Tp = - hg+vp xp

14.2 General System (System of Particles)

Figure 14.2: General system which is made up of many masses m,;, with total mass M. There are forces iz

acting on the ¢ particles. Point O is fixed in inertial space, and point B is a general point, not necessarily fixed
in inertial space.

d
Linear momentum principle for general system: F = g P

Hp = [Iow
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ext _ d

Angular momentum principle of general system about point O: o =4

Hp

Moment of momentum of general system about point B: Hp=Hyp+rogx P

To find the angular momentum principle for general system about general point B, we take the derivative
of above expression

d d d d
%ﬂB = %ﬂo — toB X P—rop X %B

:IeoXt—QB XP—rop x F

but we have that

Fext — Z fext
- )

)

The angular momentum principle of a system about a general point is the following

d
Angular momentum principle about point 5: T = e Hp+uvg xP

If we have another general point A we can write

Moment of momentum of general system about point B: Hp=H,+rgysxP

14.3 Kinematics of Rigid Bodies

Top

O

Figure 14.3: Rigid Body. Point O is fixed in inertial space, and point B is a general point, not necessarily fixed
in inertial space.
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Velocity of point P on rigid body relative to point G on body Up =Vg+WXragp

14.3.1 Moment of Inertia

Moment of inertia Hp =[I|pw

To find principle axes
Iprincipal - A =0

14.4 Impulse

Take linear and angular momentum principle for a rigid body. The linear and angular momentum prin-
ciples for a system about a general point are given as follows.

d
Linear momentum principle for general system: F = @ P
d
Angular momentum principle about general point B: T = o Hp+vg X P

and separate them and integrate them over a short period of time

t=0* P(0F)
/ Eextdt — / dB
t=0— P(0-)

t=0"1 Hg(0th) t=0%
/ r%‘tdt:/ dHB+/ vp X Pdt
t=0— Hg(07) t=0—

t=0"
AP = / FeXt
t=0—
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Chapter 15

Work and Energy Principles

S

Tog
O

Figure 15.1: Rigid Body. Point O is fixed in inertial space, and point B is a general point, not necessarily fixed
in inertial space.

The kinetic energy of this rigid body is
1
T=>Y" oML * L
i
In a rigid body v, is given by

UV, = Vgt wXr;

Substituting this in we get the following expression

1 1
T = 5 <Zmz) Vg Vg + Vg - (wx Zmlrl> +§Zmi(gxg).(£x£i)
7 i P

The middle term drops out if v; = 0 or if G is at the center of mass of the body, allowing the kinetic
energy to be written as
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1 1
KE of rigid body about CM: T = iM\QGF +3 Zmz(g x1;) - (wxr;)
i

1 1
KE of rigid body rotating about CM: T=35M v3 + > (Iow2 + Iyw; + Lw?)

15.1 Finding Center of Mass and Moment of Inertia

- > Airs
Finding CM: Tem = =2——
d
Finding CM: B, = fm am
/., dm
fV zdV
Finding CM: =
inding Zem fv %
Parallel axis theorem: Ig = Iy + MHh?

I, = / (y* + z%)dm
I, = / (2% + 2%)dm
I, = / (2% + y*)dm

constant density

I, = /(y2+22)dV
\%4

I, = /(:c2+22)dV
1%

L=p [ @ +P)av
1%
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Example 6 Cylinder

By definition, the moment of inertia is

Icylinder,z = / p(SC2 + y2)dv
\%4

The volume of a cylinder is given by

V = mr’L

A differential volume element is given by

dV = 2nrLdr

where 2 = 22 + y2. Substituting this into the expression for moment of inertia

R
Icylinder:/ pT‘227T’I”LdT
0

R
=2nwLp / r3dr

JU
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wLpR*
2

I cylinder =

But, for a cylinder, M = pV = ppR?L giving

1
Icylinder = §MR2

Example 7 Rectangular Cube

Y
y

This cube has depth w into the page. z axis is coming out of the page. By definition, the
moment of inertia is

Icube,z = / P(xQ + yQ)dV
1%

The volume of a cube is given by

V =waxy

A differential volume element is given by

dV = wdxdy
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Substituting this into the expression for moment of inertia

é % 2 2
Icube,z = N P(l' +y )wdxdy
- T2

L
2

Icube,z = pw [/

h

4 3
(ya® + %)dfﬂ]

Example 8 Sphere

3
Vsphere = §7TT

Example 9 Cone
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X

Find the centroid. The cone is symmetric about the z axis, so the centroid is along the z
axis, and we just need to find where.

., zdm
Fem = fm dm
Since the cone has constant density we have that dm = pdV and so this equation becomes
the following, where the constant density is pulled out of the integral and cancels

Jy zdV
o av
We integrate over this volume by using a stack of thin disks, and integrating from z = 0 to
z = h. Each disk has radius . We find the formula for the disk radius with z as

r:R—%z

A differential volume element is given by

dV = mridz

22 22
:7TR<1—h+h2>dZ
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integrating

Cylinder radius r: Teylinder = %mrQ
Sphere radius 7: Isphere = %mr2
Rod length L about end: Lrodend = émLQ
Rod length L about center: Iosd\ gy = %mL2
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Chapter 16
Lagrange

Holonomic system: the number of independent coordinates in the large is equal to the number of inde-
pendent admissible variations. Non-holonomic system is not holonomic. Usually the number of admissible
variations are less than the number of generalized coordinates. Usually we can see nonholonomic systems
by allowing the system to undergo large motions. Remember example of coin rolling without slipping on
table.

1. choose generalized coordinates in the large &1, ...,&,

* A complete set of coordinates should be able to exactly define the orientation of the system
without ambiguity

* An independent set of coordinates should not have any redundancy. In other words, none of
the generalized coordinates should be able to be written in terms of the others. Should be the
minimal amount of coordinates that can describe the orientation of the system

2. consider displacement about each of these coordinates one at a time, while holding all the others fixed
calculate the incremental work W done by the external forces under the incremental displacement
0&;. Express this incremental work as 6WW = Z;0&; to see what the generalized force is. Repeat this
for each of the generalized coordinates.

3. Find kinetic and potential energy 7" and V' for the system.
4. Make lagrangian . =T —V
5. Use the formula

d (oL 02
dt\og ) 0

That gives us the equations of motion
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Chapter 17

Problems

Looking at the arc lengths, and how the cylinder rolled inside the ring, with v the absolute angular
displacement of the cylinder, we have

(YV+0+¢)r=0¢R
:¢(R—r)—«9r



and so differentiating to get the angular velocity of the cylinder

p=d (1) -0
g

But we can also find this relationship using first principles: equations for motions of rigid bodies. Since
there is no slip, we will find expressions for the velocity of the material point of the ring where it touches
the cylinder (point B) and do the same for the material point of the cylinder where it touches the ring (again
point B). By equating these two expressions, we should be able to solve for 1/) in terms of the two generalized
coordinates # and ¢ and their derivatives and constants.

QB}ring = Wring X OB

Wring =

GQZ
ToB =Toc tTca
roc = Rsinféy — Rcos0éy

rop = Rsin(0 + ¢)éx — Rcos(0 + ¢)éy

yB‘ring = OR(sin 0 + sin( + ¢))éy + OR(cos 0 + cos(0 + ¢))éx

VB }disk =V + Whisk X TAB
vy =00+ O+ d)éy x roc

ve =0éz Xroc

Vo = OR sin 0éy + OR cos féy

roa = (R—7r)sin(0+ ¢)éx — (R —1)cos( + ¢)éy

vy = 0Rcosbéy + ORsinbéy + (6 + ) (R — r)sin( + ¢)éy + (6 + ¢)(R —r) cos(8 + ¢)éx

vy =(0RcosO + (0 + ¢)(R —7)cos(0 + ¢))éx+(ARsin b + (6 + ¢)(R — r)sin(0 + ¢)) éy

QB’disk = vy — Whisk€y X (rsin(f + ¢)éx — rcos(0 + ¢)éy)
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Equating the two velocities of disk and ring, and separating into X and Y components we have

ORcosf + OR cos(0 + ¢) = ORcos O + (0 + ¢)(R — 1) cos(0 + ¢) — waiskr cos(6 + @)

OR(sin O + sin(0 + ¢)) = ORsin 0 + (0 + ¢)(R — r) sin(0 + ¢) = waiskr sin(0 + ¢)
and both these equations simplify to

OR = (0+ ¢)(R —r) — waiskr

giving

/R .
Wdisk:¢<r_1>_9

/R .
Wiisk = {¢ <r — 1> —e}éz

Now start doing Lagrangian stuff. Start by writing an expression for the kinetic energy 71" and potential
energy V.

Ling = M R?
1
Lsisk = imrz

V =—MgRcosl —mg(Rcosf + cos(d + ¢)(R — 1))

1 1 1 1
T = iMQC "V + ijringwr%ng + §mQA “Uyg+ ifdiskwgisk
ve - ve = (ARsinh)? + (OR cos 6)?
_ (2R2

oy = 07
v v = (BRcosO+ (0 + $)(R —7)cos(f + ¢))?
+ (ORsin 6 + (0 + ¢)(R — ) sin(0 + ¢))?

Vv = 60?R?cos® 0+ 20R cos 0(6
+ @) (R—7)cos(0 4 ¢) + (6 + ¢)*(R — )2 cos®(0 + )
+ 02R%sin? 0 + 20Rsin 0(0 + ¢)(R — r) sin(0 + ¢)
+ (0 +¢)*(R —r)?sin’(6 + ¢)
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Vg Vg = 0°R?* + (9 + Q.b)Q(R —r)?
+ 20R cos 9(9 + qb)(R —r)cos(f + &)
+20Rsin0(0 + ¢)(R — ) sin(6 + ¢)

vy vp =R+ (0+0)*(R—r)°
+20R(0 + $)(R — 1) (cosBcos(f + ¢) + sinfsin(f + ¢))

cos 0 cos(0 + @) + sin @ + sin(0 + ¢) = cos(—¢) = cos ¢

va-v4=0*R2+ (04 $)*(R—7r)?+20R(6 + ¢)(R — ) cos ¢

2
hu={9(2-1) -4}
1

. 1 .
T= 5Me?R2 + 5MR292

tom (2R? + (6 4+ §)2(R — r)” + 20R( + 6)(R — r) cos o)

2
2
+ 1mr2 {(;5 (R - 1) — 9}
4 T
T = M6*R?

4 ém(éQRQ 0+ @)2(R — 1)’ +20R(0 + )(R 1) cos o)

2
—I-lmr2 {qb (R—l) —9}
4 T

. 1 .
T = M§?R? + 5m02R2

+om(@ + 200 + ) (R~ vy

+mR(6% + ¢0)(R — r) cos ¢
2
+ 1mr2 {gf) (R - 1) — 9}
4 r

V =—MgRcos —mg(Rcosf + cos(0 + ¢)(R—1))

L=T-V



O _ oMOR? + mOR? +m(0+ §)(R — )2

00
.. 1 ,(.(R .
+mR(20+¢)(R—r)cos¢+§mr o ?—1 — 6
0L . . .
w:MgRsm€+ngsm9+mgsm(«9+¢)(R—7“)

0L _ ) - 1 (. (R N\ /R
55 m(0+ ¢)(R — ) +mR9(R—r)cos¢+§mr {¢<T—1>—9} (r_1>
02
Ere

17.1 Wave Equation on String

This page gives an outline of the general procedure to derive the equation of motion, propose a general
solution, and solve for constants using boundary and initial conditions (here we assume the boundary con-
ditions are both ends fixed, and zero initial conditions just to get the mode shapes and natural frequencies.

Physical assumptions: homogenous string pA = constant, the string is perfectly elastic (no resistance
to bending), the tension is way more than gravity, and string only vibrates perfectly up and down.

1. Derive governing equation

(a) Momentum in z-direction gives T'(x) is constant
(b) Do momentum in the y-direction
(c) Use small angles: sin(a + g—;‘dz‘) =a+ g—fgd:p and tan(a) = «

0%y 0?
The governing equation is T— pA—= i

0z? ot?

2. Propose a general separable solution ‘ y(z,t) = a(z) f(t) ‘

(a) Rearrange the governing equation as C’Qa—y = atQ Y and propose f(t) = Ae™nt giving y(x,t) =
a(z)Ae™nt and plug in

(b) The governing equation becomes C’2 0% 97 Tw 2a(z) =0

(c) Propose a(x) = Be** and get w,, = C)\

(d) The total solution is then |y(z,t) = Be' ¢® Ae™! | which can be decomposed into sine and
cosine as y(z,t) = (B sin(Az) + Ba cos(Az))(A; sin(wpt) + Ag cos(wnt))

3. Apply boundary and initial conditions to get the constants

(a) Apply boundary conditions y(z = 0,t) = y(z = L,t) = 0 gives By = 0 and By sin(‘® L)

0so @L = nm wheren = 1,2,3.... Sow, = % The solution becomes y(z,t)

By sin(‘@x)( Ay sin(wyt) + Az cos(wnt))
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(b) Apply initial conditions y(x,t = 0) = 0 gives Ay = 0 reducing solution to y(z,t) = By sin(“&x)A; sin(wyt)
or by combining the constants

y(x,t) = Cy sin(%x) sin(wpt)

4. Now we have the governing equation, now we see if it is self-adjoint if it satisfies the following
conditions

(i) [upAvdzx = [vpAudx
(i) [o (—Taa—;) ude = [u (—T%) vdx

The first condition is satisfied automatically, since v and v (in our case a(z) and f(¢) commute. We
show that the second condition holds by doing integration by parts twice.

L 62
/0 a; (—TW> a;jdx
8 L L 3 dai
=a; | —T—=—(a; T—(a;)—d
¢ ( 8x<a3) 0 +/0 8x(a])dx ‘
one more integration by parts
L 2
0
il —T—== | a;d
/0 a < 8562)@] x

ca(r 2| - (ran) + [ () a

and since we evaluate the first two terms on the right hand side at x = 0 and z = L, the boundary
conditions dictate that a; = a; = 0 here, thus proving the system is self-adjoint. Self-adjointness
depends on the boundary conditions.

5. Now we use the self adjoint property to show that the modes are orthogonal, where a; and a; are
orthogonal functions if they satisfy
L
/ aja;dr =0
0
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Chapter 18

Aircraft Equations of Motion

18.1 Introduction

The equations of rigid body motion are expanded and expressed in state space form. The expression of
the equations in this form assumes the Earth is flat, and inertially fixed. The atmosphere is stationary with
respect to the Earth.

» Show linear equations represented in stability axes ...

» Show Taylor series expansion

Stability derivative has dimensions. Stability coefficient does not. (Nelson pg 109)
» Express stability derivatives in terms of stability coefficients

* How to know before linearization that longitudinal and lateral equations can be decoupled?

18.1.1 Notation

Tuse R for rotation matrix, and 7" for the transformation matrix from body axes to Euler axes. Etkin uses
L for rotation matrices, and R for the transformation matrix from body axes to Euler axes. Bilimoria and
Schmidt use [T'] for rotation matrices and [L] for the transformation matrix from body axes to Euler axes.
Some of the standard notation describing the expression of vectors in various reference frames is outlined
below.

» F, denotes reference frame « in Etkin. I will use lower-case f, to denote reference frame a.

* v, describes vector v of a point along axes of reference frame a, when the referred point is obvious.
* 7 indicates the velocity of point 0.

* vp, indicates the velocity of point 0 along the axes of reference frame a.

» SUPERSCRIPT BASICALLY MEANS RELATIVE TO. Bilimoria and Schmidt use | instead of just
a superscript, and often when there is no superscript, it is implied that it is actually relative to body
axes.

* A superscript indicates motion relative to a certain reference frame. v“ is the velocity of a point
relative to frame f,, when the referred point is obvious.
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* The notation vp* gives the velocity of a point relative to reference frame f, described along the axes

of fb.

* To be clear, when the point of interest is not obvious, or there are multiple points, the notation vg,*
would describe the velocity of point 0 relative to reference frame f,, described along the axes of f.

* w is typically reserved to describe the angular velocity of a reference frame relative to inertial axes f;.
Making use of the notation above, w” represents the angular velocity of reference frame fz relative
to fr. (pretty sure this is from Etkin) Bilimoria and Schmidt: w; 2 is the angular velocity of reference
frame 1 relative to reference frame 2. This implies vector is expressed in the coordinates of reference

frame 27?

* In Bilimoria and Schmidt V7 is the inertial velocity of the vehicle

I is inertial frame

F is Earth-surface frame

V is vehicle carrying frame

V' is vehicle-carried frame

A is atmosphere-fixed frame

B is body-fixed frame (body axes)

EC is Earth-centered, Earth-fixed frame

W is air-trajectory frame (wind axes)

S stability axes (special set of body axes)

* The transformation R, describes a vector transformation from being expressed in reference frame b

to being expressed in reference frame a.

* Typically capital letter denotes vector quantity

18.2 Equations of Motion

In this problem, the rigid body equations of motion shown in Equations (I8.IHI8.6) below were ex-
panded and expressed in a state space representation. See Steven’s and Lewis page 44 for moment equation

derivation. Poisson orientation equations page 28, and list of different kinematic equations page 46.

* Flat earth - this defined the reference frames. A constant velocity in the flat earth does not lead to

moments, but on a spherical earth it does.

* The aircraft is a rigid body - no rotating terms due to rotating turbo machinery

Force
Moment

Orientation Poisson:

Euler’s:

Location

Quaternion:

Vg = —wp x Vg + Rrg'g + Fg/m
dJB = J_1<MB — WRJ X JwB)

Rip = Ripwp,1

A = Rrpup
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Where the gravity vector in inertial coordinates g is given by

T
g=1[0 0 go]
Making use of the “hat” operator, the cross product operations in equations (18.1H18.2)) can be written

VB = —wpVp + R[BTg + Fg/m
wp = Jﬁl(—c:}BJwB + TB)
Rip = Rrpip

A = R[BUB

where the hat operator is defined as follows

a —c b
w=1|b = w=1c 0 —a
c -b a 0

The rotation matrix R;p is given by

coscosf cossingsind — cos¢siny sin ¢ siny + cos ¢ cos 1 sin
Rrp = |cosfsiny cos¢cosyy +singsinysind cos@siny sinf — cossin ¢
—sin6 cos fsin ¢ cos ¢ cos 0

with its transpose
cos 1) cos 0 cos fsinvy —sinf

RigT = |costsin¢sinf — cos ¢siney cosdcostp + sin ¢sinsind  cos O sin ¢
sin ¢ siny + cos g cosysinf cospsinysinf — cosysing cos ¢ cos b

The body linear and angular velocity components are given by the following:

D U
wp = |q Ve=|v
r w

Force Equations

Writing equation (I8.1]) out using the hat operator and the rotation matrix transpose

' U 0 —-r ¢ u —gp sin(0) 3
Ve=1|0|=|r 0 —p| |v|+ |gpsin(¢)cos(d)| + =B (18.7)
w —q p 0 |w gp cos(¢) cos(9)

where the force vector that represents all non-gravitational forces acting on the body, in body axes is given
by:

X
Fg=|Y
z
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The forces included in Fp are all forces other than gravitational forces. For an aircraft these forces are
aerodynamic and propulsive. Expanding equation (18.7) gives the following represent the force equations
of a generalized rigid body. These equations describe the the motion of its cg since the origin of the axis
system was placed at the cg.

i =rv—quw— gosin(f) + X/m
0 = —ru + pw + go sin(¢) cos(0) + Y /m (18.8)
W = qu — pv + go cos(¢p) cos(d) + Z/m

Moment equations

To expand equation (18.2)), the moment of inertia matrix .J is needed, as defined below. Defined (McLean
pg 21) (Stevens and Lewis pg 43)
Ja:x - J:):y - sz
J=|—Joy Jyy —Jy:
- sz - Jyz Jzz

Without any simplification, expansion of the moment equations would become very cumbersome. In gen-
eral, aircraft are symmetric about the x — z plane, mass is uniformly distributed, and the body coordinate
system is oriented such that J,, = J,,, = 0. This allows the moment of inertia matrix to be simplified to:

sz 0 _sz
J=10 J, 0
_J:Bz O Jzz

Sometimes the product of inertia J,, is sufficiently small, allowing this term to be neglected. This is the
case when the aircraft body axes are aligned with the principle axes. (McLean 23) A further simplification
can be made if it is assumed that the aircraft body axes are aligned to be principal inertial axes. In this
special case the remaining product of inertia J,, is also zero. This simplification is not often used owing
to the difficulty of precisely determining the principal inertia axes. However, the symmetry of the aircraft
determines that J is generally very much smaller than J,;, J,, and J. and can often be neglected. (Cook
pg 72) The inverse of .J is given by

Jzz
Jzszzsz.ZQ
0

JIZ
Jzszzsz.ZQ
J = 0
JIZ
JZEZEJzzi']IZQ

Jzz
J:Eszz*']zz2

o@“‘H o
<

where sometimes I' = J,,J,, — Jy.2 is used to simplify this expression (Stevens and Lewis pg 45, 110).
The input torque in body axes is given by

L
Mp=|M
N

Writing equation (I8.2) out using the hat operator and simplified moment of inertia matrix gives, where
T
wp=[p q r|:

124



_p- 0 -r q 1 Jﬂcx 0 _Jrz —p L
gl=Jt=1r» 0 —p 0 Jy O q| + | M
_fr"— _q p O n _sz 0 JZZ _T N
_p- [0 r —-q [ JraD — Jz2r L]

qgl =71 —-r 0 p Jyyq + | M
_7:_ L9 —P 0 L~ JzzP + J.r N_
_p- qTJyy + quxz - qTJZZ [ L

gl =771 —prdpe + 17200y — p?Jus +prd.. | + | M
_7‘1_ L quxw - qTJ$Z - quyy _N
_p- qT(Jyy - Jzz) +pqJe L]
q = J_l (72 - pZ)sz +pT(Jzz - sz) + | M
L7 pQ(JJ:a: - Jy ) —qrdzz N_
_p- qT(‘]yy - ‘]ZZ) +pqJe: L
g| =J 7| (=) uz +pr(Jes — Jow) |+ | M
_T_ pq(J$$ - Jy ) - qTsz N
Evaluating the first term on the RHS
JZZ JIZ
Ja:szz_Jzzz ? Ja:szz_Jzzz qT(Jyy - JZZ) + quxZ
0 Jyy 0 (Tz _pz)Jzz +pT(Jzz - Jxm) =

JmijiJu2 0 JmJ;]fiJu? 4oz = Jyy) = qrJa

Jzz[qr(Jyy_Jzz)"l‘quzz]“!‘Ja:z [pq(Jzz_Jyy)_quzz]

2 é]wZJZZ_J(L'Z
(T —p )sz+p7“(Jzz—Jm)

Jyy
Jacz[qr(Jyy_Jzz)+quxz]+Ja:x [pq(Jacm_Jyy)_qTsz}
Jacz2_waJzz

JZZ(Jyy_JZZ)QT+quszzz+quzz(Jzz—Jyy)—quzZQ
2 é]zszz_Ja:zz
(T —p )Jzz"l‘pT'(Jzz_Jzz)

Jyy
Jzz(Jynyzz)qT+Jzz2pq+Jzz(Jg::c*Jyy)p(I*Jzszqu
Jzz2*Jzszz

pq[szJzz+Jacz(Jma:—Jyy)]+QT[JZZ(Jyy—Jzz)—sz2] T
5 ZJxxJzz_szQ
(7" —_p )sz+p7'(Jzz_Jxx)

vy
qT[Jzz(Jyy*Jzz)*t]zzJzz]+pQ[JIZQ+JII(‘JTI*J’yy)]
Jzzz_-]zzt]zz

Jzz(Jzz*Jyy+Jzz)pQ+[Jzz(Jyy*Jzz)*Jzz2]qT ]
Jzszz*Jzz2
(rzfpz)Jzz‘i’pr(Jzz*Jzz)

Jyy
[(Jwa;_‘]yy)J;L':L'+sz2]pq+J:L'z[_chw'i‘Jyy_Jzz]q""
Joz"—Jzwdzz .

Evaluating the second term on the RHS
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Jo Joz JeeLtJoN

Jzszz*JIZQ (1] Jzszz*JIZQ L JxxJzM Jacz2
0 A 0 M| = =
vy
Jzszz*Jzz2 Jzszz*JZZQ Ja:zjzz_t]zzz

Putting everything together:

sz(me - Jyy + Jzz)pq + [Jzz(Jyy - Jzz) - szQ]qT JzzL + szN

p=

Ja:a:Jzz - Jzzz Ja:xJzz - szz
2 2
zz — Yxx — dxz - M
i— (Joz = Juz)pr — Juz(p”? —7%) M (18.9)
Jyy Jyy
1.0 — [(Jxx - Jyy)l’rx + sz2]pq - Jzz[Ja:x - Jyy + Jzz]qr Ja:zL + J:mvN
JCEZQ - erJzz J:Eszz - sz2

Kinematic Equations

The orientation, or kinematic equations describe the orientation of the aircraft body axes with respect to
the inertial axes. Expanding Equation 1i Converting from the Rip and Rip equation to whats below?
Also, make clear what subscript means exactly. The relationship between Euler rates and body angular
velocities is

q:S 1 tan(f)sin(¢) tan(@)cos(¢) D
0 1=10 cos(¢) —sin(¢) q
W) 0 sin(¢)/cos(f) cos(¢)/ cos(0) r

where the following is the transformation matrix 7'

1 tan(f)sin(¢) tan(6)cos(o)
T=10 cos(9) — sin(¢)
0 sin(¢)/cos(f) cos(p)/ cos(6)

Expanding

¢ = p + tan(6)[gsin(¢) + r cos(¢)]
0 = qcos(¢) — rsin(e) (18.10)

W = [gsin(¢) + r cos()]/ cos(6)

Navigation Equations

The location, or navigation equations describe the location of the origin of the body fixed coordinate
system with respect to the inertial axes. Writing out Equation (18.6) where A = [:c Y Z]T

T coscosf cosysingsingd —cosgsiny singsiny + cospcospsind| [ u
y| = [cosfOsiny cos¢pcosy +singsinysind cos¢sinysinfd — cosysing| | v
Z —sin6 cos 0 sin ¢ cos ¢ cos 0 w
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Expanding

& = ucost cos + v[cos ) sin ¢ sin § — cos ¢ sin | + wlsin ¢ sin 1) + cos ¢ cos 1 sin 0]
Y = wucos 0 sin ) + v[cos ¢ cos P + sin ¢ sin 1 sin ] + w|cos ¢ sin ¢ sin § — cos 1) sin @) (18.11)

Z = —usinf + vcosfsin ¢ + wcos ¢ cos

Equation Summary

The flat-earth, nonlinear 6-DOF equations which describe the motion of an aircraft in body axes are
summarized below, and are consistent with (Stevens and Lewis pg 110). The nonlinear equations above
started by assuming

* Flat earth - this defined the reference frames. A constant velocity in the flat earth does not lead to
moments, but on a spherical earth it does.

* The aircraft is a rigid body - no rotating terms due to rotating turbo machinery

¢ The products of inertia J,, = J,, = 0 due to symmetry of the aircraft

FORCE EQUATIONS
i =rv—qw—gpsin(@) + X/m
0 = —ru+ pw ~+ gp sin(¢p) cos(0) +Y/m (18.3)
W = qu — pv + gp cos(¢) cos(0) + Z/m
U =RV — QW — gsin(®) + X/m
V = —RU + PW + gsin(®) cos(0) + Y/m (18.12)
W = QU — PV + gcos(®) cos(©) + Z/m
MOMENT EQUATIONS
sz(Jmc - Jyy + Jzz)pq + [Jzz(Jyy - Jzz) - sz2]q7“ JzzL + szN
‘]CB.T‘]ZZ - J:vzz J:chzz - J:vzz
Jzz_Jxx _sz 2 — 2 M
i=1 Jor = Jeelp” 2 17) | M (T89)
Jyy Jyy
P [(Jxa: - Jyy)Jm + sz2]pq - sz[Jmc - Jyy + Jzz]qr szL + J:B:):N
J{EZQ - szJzz J:m:Jzz - J:vz2
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p— Jzluw = Jyy + Jo2) PQ+ [Joa(Jyy — Jz) — Jo*|QR L Sl + SN
Jma:Jzz - JrZQ Ja::chz - Jzzz
. J.. — Jpz)PR — J,.(P? — R? M
o_ ! ) ( ), M
Jyy Jyy
R — [(JII — Jyy)Jm + JSCZQ]PQ - sz[J:cr - Jyy + Jzz]QR Jg:zL + szN
J:pz2 - Jx:szz JxxJzz - J{L’ZQ
KINEMATIC EQUATIONS
¢ = p + tan(6)[gsin(¢) + r cos(9)]
0 = qcos(¢) — rsin(¢) (18.10)
W = [gsin(¢) + r cos()]/ cos(6)
® = P + tan(0)[Qsin(®) + R cos(P)]
O = Q cos(®) — Rsin(®)
I = [Qsin(®) + R cos(®)]/ cos(O)
NAVIGATION EQUATIONS

& = ucos cosf + v[cos 1 sin ¢ sin § — cos ¢ sin | + w(sin ¢ sin Y + cos ¢ cos 1) sin ]
¥ = ucos B sin ) + v]cos ¢ cos ) + sin ¢ sin ¢ sin ] + wlcos ¢ sin 1 sin @ — cos 1 sin @] (18.11)

z = —usinf + v cosfsin ¢ + wcos ¢ cos

The nonlinear, rigid body equations of motion are now expressed in the state space representation X =
f(X,U), where the state vector X and input vector U are given by

T
X:[uvaqr(;ﬁewa:yz]
T

U=[XY Z L M N|
The equations as represented in this form turn out to not be very useful. When considering the motion of
a spacecraft tumbling in space, forces and moments in the body axes may be able to be directly applied
using thrusters and reaction wheels. However, Euler angles are not the best way to represent the orientation
of a tumbling spacecraft, due to singularities that exist. For the motion of an aircraft, the body forces and
moments are not simply system inputs, as they are functions of the aircraft’s current motion. The forces and

moments in body axes would have to be calculated based on the current state and control surface deflections
to be of any use.

V="V +v Q=Qeq+q © = O¢q + 0
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Stability Axes

) w
sin(a) = —
(@)= .
approximating
w
o —
Veq
18.3 Linearizing
Consider the following system .
X = f(X,U) (18.13)
The equilibrium, or trim state Xq and input Ueq satisfy
Xeq = f(Xeqs Ueq) =0 (18.14)

The equilibrium state and input are found for the nominal steady, level cruise condition, and Equation (I8.13))
is linearized about this trim condition as follows. Defining = and u to be state and input perturbations about
equilibrium, the state and input can be expressed as

X=X+
U:Ueq+u

Using this representation for X and U we have

X =i = f(X,0)
= f(Xeq + 2, Ueq +u)

Performing a Taylor series expansion, neglecting second order terms and higher

of(X,U) 9f(X,U)
f(X,U) = f(Xeq, Ueq) + x|, T =g | “Te
q eq
where the subscript (-)q indicates these quantities be evaluated at the equilibrium point. With f(Xeq, Ueq) =

0, the linearization results in the state-space system given by

& = Ax + Bu (18.15)

where

L AX) 5 Of(X.U)

X |y ou

So now we need to see how to actually evaluate (18.16).

(18.16)

€q

of(X,U)|  of(X,U) N of(X,U)

X |y 09X 0X;

9f(X,U)
9X;

€q €q eq
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Let’s do an example from the X -force equation. The use of U as either control input vector or velocity can
be deduced by context, as can X as either the force vector in the X -direction, or to mean the state vector.

U=RV —QW —gsin(©) + X/m
So in this example, f(X,U) = RV — QW — gsin(©) + X/m. First term.

of

o =l =

€q

18.3.1 Stability and Control Derivatives

The equations in the form X=f (X, U) will do little to help solve control problems for aircraft using
the current input U (total forces and moments). For a spacecraft in outer space, the input vector U is quite
reasonable: forces and torques in body axes could be generated using thrusters and/or reaction wheels.
When the thrusters are switched off, no other forces will act on the spacecraft. However, for an aircraft, the
“input” U is not so much an input, as it is itself a function of the state X, as well as other terms (such as
w). That is, the forces and moments generated during flight depend on the state of the aircraft; the aircraft’s
current velocity, in addition to control surface deflections, determines the total body force.

Under steady straight and level flight, the longitudinal and lateral equations can be decoupled.

18.3.2 Longitudinal Equations

Grouping the longitudinal equations below, and dropping the dependency on the lateral variables:

= quw — gosin(f) + X/m
W = qu + go cos(¢) cos(0) + Z/m

M

g=—
Jyy

0=q

h = —usin(0) 4+ w cos(f)

These equations are to be linearized about a trim point X*. The state X and input U are given by:
X =X"+AX and U = U* + AU. The perturbation state and input AX and AU, respectively, are given
by:

AX:[Au Av Aw Ap Aq Ar A¢p A6 Ay Az Ay Az]T
AU =[ 67 6 60 6 ]

Linearizing
Linearizing for the x force equation:

mi = —mqw — mgo sin(f) + X (18.17)

where, for an aircraft the force X is a function given by X (u, 4, w,w, q, g, de, 56, d7). The linearization
yields:
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mAu = 8—XAU + 8—XA22 + (8X mq*) Aw + a—XAu'J

Ou ot ow O
0X . ox . . *
+ <c9q — muw ) Ag+ a—q,Aq — gp cos(0%)Af
0X oX ,. 0X
+ a5, Ade + a—seAde + %AéT

Dividing through by m and using the following definition

Lox

X, = —
Yom 0@

gives
Al = Xy Au + Xy At + (X — ¢7) Aw + Xy Aw + (Xg — w*) Ag + X3A¢ — gp cos(07) Al
+ X5, Ab + X5 Ade + X5, Al

By studying aircraft aerodynamic data it is found that many of the stability derivatives under most flight
conditions can be neglected. These typically are (McLean pg 33, Nelson pg 149):

Xa, Xq Xo X5, Za Zi My Z5, My,

giving:

At = X, Au+ (Xy — ¢") Aw + (Xg — w*) Ag + X3A¢ — gp cos(6%) A0 + X5, Ade + X5, Ad7
evaluating this linearization about steady wings level flight:

At = X, Au+ XpAw + (X, — w*) Aq — gp cos(0%) A + X5, Ab, + X5, Ady

For the w equation

A = ZyAu+ ZyAw + (Zg +u*) Aq — gp sin(0*) A0 + Zs, Ade + Zs, Adr

For the g equation

Aq = MyAu + MyAd + MyAw + My Aw + MyAq + MyAq + Ms, Ad, + MgeASe + M5, Adr
Where the following definition is used
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_ 1M
C Jyy Oi

M;

Dropping small terms gives

Aqg = My Au+ MyuAw + MyAw + Mqu + MqA(j + Ms, Abe + M5TA5T

writing these equations in the form E¢ = Az + Bu:

1 0 0 0 At Xy Xu Xg—w* —gocos(0*) Au Xs, Xs,
0 1-Z2Z; 00 Aw Zy Zy Zg+u* —gosin(6¥) Aw Zs, Zs, Adfr
0 —My 1 0 Ag | | My, M, M, Aq Ms, Ms, Ad,
0 0 01 Af 0 0 1 Ab 0 0
where F is given by
1 0 00
P 0 1-Zy 0 0
0 —My 10
0 0 01
with inverse given by
1 0 00
1
Bl 0 =% 00
= A,
0 —% 10
0 O 0 1
Multiplying stuff out
1 0 00 Xy Xu Xg—w* —gocos(0*)
0 =z 00 Zy Zy Zg+u* —gosin(6¥)
0 2% 1 0| | My My M, 0
0O 0 01 0 0 1 0
IN STABILITY AXES
] Zq Zi @
[Of] _ % 1R [a] +| W |,
q Ma Mq q Mée




18.3.3 Lateral-Directional Equations

Now the lateral equations are grouped, and the dependency on the longitudinal variables under steady
wings level flight is dropped:

O = —ru+pw + gpsin(e) cos(f) +Y/m
_ Jzz(_sz + Jyy - Jzz)pq + [Jzz(‘]yy — JZZ) — sz2]q7“ Jozl — Jou IV

oo Tzz — Joz? oo Tzz — Juz®
o oz = Tyy) Jaw + Ja2"I0q + JuolJow = Jyy + Joclqr | —JueL + JouN
oo dzz — Juz’ Jowdzz — Joz?
¢=p

Following the same procedure as was done for the longitudinal equations, and using the following definitions

10y 1 9y 1 ON

m 01 sz i Jzz 0i

The lateral-directional linearized equations of motion can be written in the form E4 = Az + Bu

1 0 0 o0 v Y, Y, Y,—u" —gocos(6¥) v Y5, Y,
0 1 $= () P L, L, L, 0 P Ls, Ls, ba
0 —J4= 1 0 i | | No N, N, 0 r Ns, Ns. || o
0 0 0 1 é 0 1 0 0 b 0 0
From Yechout page 291
1 0 0 0 v Yo Y, Y,—Usq gcos(O) v Y5, Y,
0 1 —%= 0 P L, L, L, 0 P, Ls, Ls, Sa
0 —J4= 1 0 i | | No N, N, 0 r Ns, Ns. Sy
0 0 0 1 é 0 1 0 0 b 0 0
1 0 o 077" 1 0 0 0
J:pz J:E.’L‘JZZ JZL‘ZJZZ
0 1 =72 0 |0 20EE s O
Jzz Jzszz Ja:chzz
0 _E 1 0 O ng_Jzszz Ja:szz_J%z 0
0 0 0 1 0 0 0 1

See also McLean page 37, where he defines primed stability derivatives, and then makes the linear model
as follows, as shown on page 49. The primed notation just takes into account coupling.

e 1 9

Jé; Ys 0 1 B 0 Y

p| | Ls Ly Lo 0 P, Ls, Ls, Sa
7 Ns N, N, r Ns, N, 5y
b 0O 1 0 0 é 0 0
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SEE STENGEL BOOK PAGE 293 HAS THE FULL LINEAR EQUATIONS WILL ALL THE TERMS
IN THEM!

18.4 Overview of Equations for Spherical, Rotating Earth

In this section the equations of motion describing the flight of a vehicle in the Earth’s atmosphere are
described. The Earth is assumed to be spherical, and rotating about the z-axis of an inertially fixed reference
frame. The Earth’s atmosphere is assumed to move with the relative rotation of the Earth.

Force Equations In (Bilimoria, Schmidt)

dv,
ditA +wB,[><VA+wE’[><VA+wE,1x(ijjx%):g+(FA+FT)/m (18.18)
B

Where V4 = [u v w]T and wp 1 = [p q r]T. The force equations in F'p are given by: (Etkin pg 123-
143)

X —mgsin® = m[u + (qg +qQw — (Tg +7)v]
Y +mgcosfsing = m[o + (rk + r)u — (p5 + p)w]
Z + mgcosfsin ¢ = m[w + (pg +p)v— (qg + q)u]

Moment Equations

dwp,

J
at |,

—l-OJB’[XJwB’]:MA—i-MT (18.19)

The moment equations in Fp are given by the following, where as in the force equations, the moments L,
M, and N are computed from look-up tables.

Ixy(q - Tp) - (Iy - IZ)QT
IyZ(f' - pQ) - (Iz - I;c)TP
Izm(p - q?”) - (I:U - Iy)pq

L= a:p - Iyz(q2 - TQ) - Iz:}c("‘" +pQ) -
M = yq - sz(TZ *]92) - I:ry(p + q?“) -
N = Li — Iy (p” — ¢*) — L= (§ + rp) —

Orientation Equations The orientation kinematic equation is given by

wpy|"" = Twgy|?

where the following is the transformation matrix 7" from body axes to Euler axes

1 tan(f)sin(¢) tan(6)cos(¢)
T=10 cos(9) — sin(¢)
0 sin(¢)/cos(8) cos(¢)/cos(6)
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Expressing this equation in terms of the scalar components

(Z:J 1 singtanf cosotanf| |p,

6 =10 cos ¢ —sin¢ Qv

¥ 0 singsecf cosgsech| |r,
where

Do D (Wearth + 7) cos A

@| = |q| — Ry -

Ty r —(Wearth + 7) sin A

Etkin uses captial letters to denote angular velocity of the aircraft with respect to the vehicle carrying frame,
whereas Bilimoria and Schmidt use subscript v.

Do P
w| = |Q
Ty R

The following rotation matrix is used to rotate a vector A expressed in the the vehicle carrying frame fy to
be expressed in body frame f5. Thatis: A|” = Rpy A|Y. This rotation matrix Rpy is given by (Bilimoria
and Schmidt use the notation [T7)):

cos 6 cos cos fsin) —sin6
Rpy = |sin¢sinfcosty — cos¢psiny sin¢psinfsiny + cos ¢ cos  sin ¢ cos b
cos ¢sinf cosy + sinpsiny cos¢sinfsiny — sin ¢ cosyy cos ¢ cos b

The rotation matrix from the body frame fp to the vehicle carrying frame fy, is given by:

Ryp = Rpy ' = Rpy"

Kinematics:
u W,
VE =|v| + |W, (18.20)
w W,

Finally, the absolute angular velocity are shown, as well as the angular velocity components due to the
Earth’s rotation in Fg:

P . pg Ccos A
E
wB = 4|, wp = |49 | = Lpy 0 Wearth
r rg —sin A

Navigation Equations The trajectory kinematics are given by rotating the absolute velocity components
of Fg into Fgc. Bilimoria and Schmidt use [T]T instead of Ly p like Etkin. The navigation kinematic
equation is given by

Val¥' = RpyTVa|P
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18.5 Representation of Uncertainties in Aircraft Model

18.5.1 Center of Gravity Shift

Start with the nonlinear 6-DOF equations of motion for flat earth. We could show the effect of the CG
shift as well using the equations of motion for a spherical, rotating earth, but essentially its the same thing.
Looking at the force and moment equations from Stevens and Lewis page 110, and shown as equations 6
and 7 above, these are just Newtons second law. In these equations, there is no specification to where the
origin of the body-fixed coordinate system is. So, when it comes to the moment equations with moment M
and moment of inertia terms J, we haven’t yet specified about which point this moment is to be taken. This
moment M is the entire moment on the vehicle? Aerodynamic, thrust, and gravity? Need to look what the
convention is for moment in body axes. Should be CG. Then, after I figure out how the moment changes
when the CG shifts in the body axis frame, need to convert to stability axes and show where the uncertain
terms are in stability axis representation. See Yechout page 153 for transformation matrix from body axes
to stability axes. Look at pitch equation

vy
Consider taking moments about a fixed point on the aircraft given by the aircrafts nominal CG location.
This moment has terms due to aerodynamics, thrust, and gravity. When the CG shifts to a new location, if
we take moments about the nominal CG location, the new moment M will change, as well as Jyy. The new
Jyy can be found using parallel axis theorem. The only change in this moment is that due to gravity. So we

can write this as

MHCW
Jyy,new

Q=

where

Jyynew = Jyy + m(Aaz2 + AZ2)
where Az and Az are the CG shift, and

Mew = M — mg(Ax cos + Azsin )
giving
0= M — mg(Azcos© + Azsin©)
B Jyy + m(Az? + Az?)

Linearizing this equation where Q = (Qeq + g and © = Oq + ¢ and taylor series expansion for sin and
cosine

cos O ~ €08 O¢q — sin Oyl

sin © =~ sin O¢q + cos Oyl
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[Jyy +m(Az? + Az)]G = M — My,

where

Mg = mg[Az(cos Oeq — sin Geq Af) + Az(sin eq + cos Oeq Af)]
= mg[Azcos eq — Az sin Oeg) A + mg[Ax cos Oeq + Az sin Oeq]

[Jyy +m(Az? + Az)]g = M — My,

when we linearize, will do Taylor Series expansion, drop higher order terms. Note that the moment M at
equilibrium is zero. Taylor Series expansion is given by

9f
02X,

0
x1+7f

FX) & F(Xeq) + e

To+ ...
€q

eq
So using the Taylor Series expansion to get the new linearized M we have
oM oM oM . oM oM . OM

M = M 0
R T A R LI TR B TR

SO

. oM oM oM . oM oM . oM
‘]yymewq: auu+ aww+ aww+ aqq+ 8q‘]+ 85656 _Mmg

Throwing out small terms

. oM oM . OM oM
J?Jy,rlewq = <8’LU w + 9w w + g q-+ as., 5e> - Mmg

18.5.2 Thinking About CG Shift and Doing Moment About New CG Location

model aircraft as a lift and drag force acting at the center of pressure. Consider moments about the CG.
At equilibrium flight condition, the moment about the CG is zero. If the CG shifts to a new location and
we take moments about that new location, the pitching moment effect of the wing is still the same, but there
is additional moment due to the lift acting along a nonzero lever arm. Assume that the moment of inertia
doesn’t change due to CG shift. Then the moment about the new CG is the following, where M is moment
about the original CG location.

M — LAz cosa — DAzsina + DAzcosa — LAz sin o
Jyy

Q=

18.5.3 CG Shift

e

. Zea 7
[Of] _|% R
q M, M,

o Zs,
[q} + [M(; } Oe (18.21)

We wish to use the method described above to design a pitch-rate tracking adaptive controller, when only
the pitch-rate measurement is available.
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M = M(a,q,0.)

In the conventional aircraft model, the total moment about aircraft center of gravity, in the longitudinal
direction, is due to lift and drag contributions from the wing and horizontal tail. Looking at the equation for
&, and with the total lift for Z independent of the CG location, no uncertainty will result in this equation
due to CG shift. In the ¢ equation the moment about the y-axis M is dependent on the CG location. The
moment change due to a longitudinal CG shift Az is

AM ={(Ly + L¢) cosa + (Dy + Dy)sina }Ax

The lift and drag terms are linear in «, and the tail contributions linear in J.. Taking the partial derivatives
of M, to determine the stability derivatives, we see perturbation in M, and Ms,_. We then see with Zs5_, ~ 0

Z
+ []\45;} A [wpl wpz]

e

Zo z,
% oltw
M, M,

Zy Z,
Za 11 % 0 0
MOé Mq Mée Awpl Mée Apr

18.5.4 Stability Derivative Uncertainties

Chr, and Cy, have already shown this for pitching moment coefficient, can show same thing on lateral-
directional equations of motion for yawing moment coefficient and several others as well

18.5.5 Control Surface Effectiveness
A

18.5.6 Actuator Saturation
18.5.7 Guidance Control Research

Consider the following linear model describing the longitudinal flight dynamics of an aircraft, where «
is the angle-of-attack, ¢ the pitch rate, 6 is pitch angle, and £ is the altitude. It is assumed in this problem that
« 1s not measurable, but acceleration sensors aligned with the vehicle body axes are, where a, is the vertical
acceleration. The follow equations show the dynamics of this system with the available system outputs.

al | 5—%\4 L+gs 0 0] [a] [%

ql | M.+ qu My+Ms 0 0f |q] | M|
- [+

4 0 1 0 of | 0

L 0 Vi 0 LP 0

a, ] [Z, 0 0 0] [« Zs,

gl |0 1 0 0f|¢q 0

ol =1o o1 olle]T|ol%

hl Lo o0 o0 1] |n 0

The control goal is to design an adaptive controller which will allow the vehicle to accurately track a
reference altitude trajectory in the presence of uncertainties.

138



Analysis of Open-Loop Dynamics

Transfer function from elevator to acceleration is relative degree zero, non-minimum phase. The altitude
is essentially the acceleration twice integrated.

a,  —18.6(s + 4.894)(s — 4.354)

S s24+0.9414s + 1.816

18.6 Linear Aircraft Models

In the previous chapter, simple linear models describing the longitudinal and lateral-directional dynam-
ics of a flight vehical were derived from general equations of motion by linearization, decoupling, and order
reduction.

Za Z Zs,
0[5 360 8]
q Ma Mq q M(;e
A, =Z,o+ Z5e(56
_ 9
A Yo 0 -1 £ 7[5 0 Y
Pl Lg L, L. O P N Ls, Ls, Oa
r Nﬁ Np r 0 r Nga N(gr 5r
& 0 1 0 0 b 0 0

18.7 Actuator Models

This note shows the block diagram representation for a second order actuator with rate and limit sat-
urations. The second order transfer function describing the deflection of the actuator due to an actuator

command is:

0 wp 2

Semd 52+ 2Cwns + wp?

Cross multiplying:

852 + 062Cwns 4+ 0wn? = Semawn>
5+ 2Cwn5 + 0wWn? = Gemdwn’
Solving for &
6= W2 (Oema — 0) — 2wnd

This expression can be used to begin the block diagram representation. Once § is had, it is integrated to get
0 and fed back to complete the block diagram.
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Figure 18.1: Second order actuator block diagram
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Chapter 19

Real Analysis

19.1 Notation and Preliminaries

-0 ED

Figure 19.1: From left toright: X NY, X UY, and X*

19.1.1 Random Stuff

e Zero (0) is even

¢ Rational numbers are countable

19.2 Chapter 1

e associativity: (z+y) +z =2z + (y+ 2) and (zy)z = z(yz)
e commutativity: * +y = y + x and xy = yx

o distributivity: z(y + z) = zy + x2

Definition 5 Fundamental theorem of arthimetic Every positive integer > 2 can be written as a prod-
uct of primes in exactly one way up to rearrangements. See Hully and Wright Introduction to the Theory of
Numbers sec 2.11.

Remark 1 A set is completely characterized by the elements in it. That is to say if X and Y are sets then
X =Y ifandonlyif, forall z, x € X ifand only if z € Y.

Definition 6 Proper subset A set X is a proper subset of Y if X CY but X #Y.
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Example 10 Pythagorean Proposition There exists no such rational number r such that
r? =2.

PROOF By contradiction. Suppose r = m/n is a rational number, that 72 = 2, and that m
and n have no common factor.

Rearranging the fraction
m? = 2n?

Any integer n when squared remains an integer. When this integer n? is multiplied by two,
the resulting quantity 2n? is an even number. Thus m? is an even number, and thus m must
be even as well. Since m is an even number, it can be expressed as the following, for some
integer k.

m = 2k

Substituting this expression into the above gives
2k? =n?

By the same argument as before, n is also an even number. With m and n both even, they
have a common factor, 2, and the beginning supposition is contradicted. O

Definition 7 1.5 - Order If S is a set, a relation < is an order on S if:

(i) for any x,y € S exactly one of the following holds

<y =Yy T >y

(ii) Forany x,y,z € Sax < yandy < z implies x < z

The relation < acts on the elements of the set S. Some examples of sets on which the order is defined are N,
Z, and Q, where < is the usual relation, that is < means for r,s € Q that r < s means s — T is a positive
rational number.

Another example is the set . = {strings of letters} where the relation < is lexicographic order. That is,
the order operation is defined on 1L that puts strings of letters (words) in order as they are found in the
dictionary: alphabetical order.

A non-example is subsets of N under C? That {1,2} not comparable to {3,4}? It is important to think
beyond the traditional greater than or less than. We will see later a way in which the complex numbers can
be an ordered set, although the complex numbers cannot be an ordered field.

Definition 8 1.6 - Ordered set An ordered set is a set S in which an order relation is defined.

Definition 9 1.7 - Bounded above / upper bound if S is an ordered set and E C S then E is bounded
above if thereis a € S such that B > v Vv € E. Such a B is called an upper bound for F.
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Definition 10 1.8 - Least upper bound / supremum [f E C S is bounded above and if o € S obeys both
of the following

(i) «is an upper bound for &
(ii) If v < « then 7y is not an upper bound of £

then « is the least upper bound of E, and we write o = sup E. The supremum o need not be a member of
E.

Similarly define: bounded below/lower bound, and greatest lower bound/infimum.

Definition 11 1.10 - Least upper bound property An ordered set S has the least upper bound property
if any set 2 C S which is bounded above has a least upper bound. That is that sup E exists in S.

Example 11 N or Z under <.

Example 12 The following is a counterexample. Q under <. The set £ = {p € Q[p? <
2} is bounded above but has no least upper bound.

Theorem 1 1.11 [f .S is an ordered set with the least upper bound property, and B C S is nonempty and
bounded below, then L = {3 € S : [ is a lower bound for B} is bounded above and sup L = inf B

PROOF Recall the definition for least-upper-bound property which states that the sup B exists in S.

S

L B

T
a=supL =inf B

1. Since B is bounded below, L is not empty.

2. By 1.7 Definition for lower bound, L C S consists of all y € S such that y < x for every x € B.

L={yeS|y<azVreB}

3. Every x € B is an upper bound of L by 1.7 Definition.
4. Thus L is bounded above

5. Because S is an ordered set with the least-upper-bound property, L C .S, and L is bounded above, by
definition o = sup L exists in S.

6. If we take a value v with v < «, then ~ is not an upper bound of L, and v ¢ B.
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10.

11.

. Every z € B is an upper bound for L, but we don’t know yet that the least upper bound of L lives in

B. All we know is that the least upper bound « is equal to or less than the smallest upper bound that
lives in B. Thatis o < z for every z € B.

From step (2) where the definition for a bound was used to define L, we see that o € L.

If we pick a 8 > a, then 8 ¢ L since « is an upper bound for L, so picking something larger cannot
bein L.

Since L is the set of lower bounds of B, and that if we take a value 8 > « that 8 ¢ L then (3 is not a
lower bound. But we already showed that o € L was a lower bound for B. Therefore « is the greatest
lower bound.

a=inf B

19.2.1 Fields

Remark 2 The neutral element 0 defined in the A4 the field axiom for addition is unique.

PROOF Proof strategy: assume there exists another neutral element 0 and then show that the two neutral
elements must be equal. The definition of neutral element is a O such that 0 + z = x Vx € F. Following
this definition:

O+x=xz Vel
O+z=2 VreF

Using these definitions for our two neutral elements, both of the following must hold

giving

0+0=0
0+0=0
0=0+0=0

and so the two neutral elements must be in fact the same

[@n)}
I
o

O

Remark 3 The additive inverse element defined in the A5 the field axiom for addition is unique.

PROOF Proof strategy: assume there exists another inverse element of a and show that the two inverse
elements of a must be the same. O

Some notes on fields. Given the field axioms, the neutral elements for addition and multiplication are
unique. In addition, the additive and multiplicative inverse elements are also unique.

Theorem 2 1.20 - Archimedean Principle For every z, y € R and x > 0 there exists n € N such that

nr >y
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PROOF (By contradiction) Let A = {nx | n € N}. To prove that nz > y we want to assume the opposite,
and show how this leads to a contradiction. So, the opposite of nx > y is to assume that

nr <y

for all n € N. If this was true, then y would be an upper bound of A. By 1.19 Theorem, R has the least
upper bound property, giving, with 1.10 Definition, that the least upper bound of A must be in R. This is
stated

a=supA a€eR

So, since x > 0 and o = sup A, we can say
a—xr <«

Since we defined « to be the least upper bound, and x > 0, then taking a value o — x will not be an upper
bound of A. Since A is the set of ma where m € N, with an upper bound «, if we take a value o — = which
is less than o, we know there will be some m € N such that ma € A. This means then that for some m € N

a—Tr < me

Rearranging this expression we get
a<z(m+1)

We see that z(m + 1) lives in A since m + 1 is a natural number. However, we said that o was the least
upper bound of A. That is, no value which lives in A can possibly be larger than «.. This is a contradiction
to our original assumption that nz < y Vn € N, so we know then that

nr >y

Corollary That is, for every x € R, x > 0 there is n € N such that
0<l/n<zx

PROOF Assume there is an € R with z > 0 such that x < 1/n for all n € N. If this were true, we would
get 0 < x < 1/n, and cross-multiplying would give 1 /2 > n for all n € N. 0

Corollary For every real number x there is an integer n such that xt < n < x + 1.
PROOF O

Corollary This corollary to the Archimedean Principle states that between any two real numbers there is
a rational number.

PROOF Start with two real numbers x,y € R on the number line, with y > z. We want to show that
somewhere between x and y there is a rational number, no matter how close x and y are together. If
y = x + 1, than we know there will be an integer on this interval. The thought process is: as x and y get
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closer together, we can scale the interval up by an integer and stretch it out until x and y are a distance of 1
apart, find the integer that is between x and y, and then divide this integer by how much we had to scale up
the interval, giving us a natural number.

The quantity z = y — x is a real number. We know from the corollary that states there are no infinitely
small numbers that 1/n < z. Or, 1/n < y — x. We then “stretch” this interval by n, multiplying both sides
of the inequality.

1 <ny—nx

rearranging
1+nz <ny

Now it is also clear that nx < nx + 1 and we also know there must be an integer m in between nx and
nx + 1.

nr<m<l+4+nr<ny

Now divide back through by n
r<m/n<(1+nx)/n<y

and the proof is complete

m x+1
r<< — <
n

<y

O
Theorem 3 1.21 Theorem - Extraction of nth roots / uniqueness of nth roots

Definition 12 Axiom of Completeness Every set of real numbers that is bounded above has a least upper
bound.

Definition 13 Well-Ordering Principle Every non-empty set of natural numbers has a least element.

Theorem 4 1.35 - Cauchy-Schwartz Inequality For complex numbers aq, ..., an; b1,...,b, € C, or
aj, bj € C then

n
> ajb;
=1

For real vectors in R" this is expressed as

2 n n
<> e Iyl
j=1 j=1

Tyl < l|z[lllyl

PROOF First define the following quantities. Let

A=>"la;]’ €R B=) |plPeR C=> ajbeC
j=1 j=1 j=1

and let both A > 0 and B > 0, or the Cauchy-Schwartz inequality is trivial. Start by evaluating the
following expression

> |Baj — Cb;|* =?
j=1
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Letting z = Ba,; — Cb; this can be written

n
>l =
j=1

Using Rudin Theorem 1.32 the absolute value of a complex number z is given by |z| = (2Z)'/2, allowing

the above expression to be written

n

ZW D_1)P Zzz

7j=1

Substituting back in z = Ba; — Cb;

n

> |Baj = Cb;[* = (Baj — Cb;)(Ba; — Cb))

=1

Using the property from Rudin Theorem 1.31 for complex numbers z and w that z + w =z 4w, zw =

, and Definition 1.30 that the conjugate of a real number is just itself gives
n n
> |Baj = Cb;* = "(Baj — Cb;)(Ba; — Cb))
Jj=1 Jj=1
n n
> |Ba; = Cbj? = (Baj — Cb;)(Baj — Cby)
j=1 Jj=1

n

> |Baj — Cb|> = > " (Ba; — Cbj)(Baj — C b;)

j=1 j=1
Multiplying out
> |Baj — Cb;|* =)~ Ba;a; — Ba;C b; — Cb;Bag + Cb;C by
— =
Z |BCL]' — ij|2 = Z B2achj — Z Bajébj — Z Cb]B@—I— Z ijélT
j=1 j=1 j=1 j=1 j=1

n n n n
> |Baj - Cb;|* = B*> a;a; — BC a;b; C’BZba] C> bsb;
j=1 j=1 j=1 j=1
Using Rudin Definition 1.32 for the absolute value of a complex number
n n n - n n
> IBaj = Cb;|> = B> |aj|* = BC Y _ajb; — CBY bja; +CC Y |,
j=1 j=1 j=1 j=1 j=1
Substituting in the expressions for A, B, and C'

> |Baj — Cb;|* = B>A—~ BCC -~ CB _b;a; + CCB
: ~
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> |Baj— Cb;|* = BPA—-CB> b;a;
j=1

J=1

Because C' =37, a;jb; then C = > j—1 a;b; allowing the above to be written
> |Ba; — Cb;|* = B>A - CBC
j=1

> |Ba; — Cb;|* = B*A - B|C|?

j=1
n
) "|Ba; — Cb;|* = B(AB - |C|?)
j=1
Because (by Rudin Theorem 1.33) the absolute value of a complex quantity is always non-negative, the left
hand side of the above equation is non-negative. Therefore
B(AB—|C|*)>0

Since B > 0 then
AB—|C]*>>0

Finally, substituting back in the expressions for A, B, and C'

n n n
> a1 P=] D ab
=1 j=1 j=1

2
>0

rearranging

n o 2 n n
D aibyl <Y a1y
j=1 i=1

=1

which is the desired inequality. O

Example 13 Prove the following inequality for vectors x and y
[zl = Nyll] < [l + gl
PROOF First start by expressing x as
r=z+Yy—y

with norm
2] = llz +y —

usinga =x+yand b = —y
]| = [la + o]
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By the triangle inequality
]l = lla + ol < llall + o]l = [l + |l + Il -yl

2]l <l +yll + [lyll

giving

]l = llyll < llz + 9l

Next express y as
=y+tx—zx

with norm
lyll = lly +2 —

now usinga =z +yandc= —=z
[yl = lla + ¢l
By the triangle inequality
[yl = lla+cll < llall + llell = llz + yll + | — 2|

Iyl < llz +yll + =]

giving

[yl = llzll < ll= + vl
If ||| > [ly|| then ||| — lyll| = ||z|| — [|y|| and the inequality is satisfied by the first
boxed equation. If [|y|| > ||lz|| then |||z|| — [ly|l| = |ly|| — ||=|| and the inequality is then

satisfied by the second equation. That is, for real numbers a and b

a—0b ifa>b
la—b =<0 ifa="5
b—a, ifa<b

so saying |a — b| < x is the same as saying a — b < x and b — a < x. So another way
to think about the proof is to prove two things: Prove both of the following inequality for
vectors x and y

]l = llyll < [l +yll

and
Iyl =zl < llz + yll

Which is what was done. O
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19.2.2 Problems

Example 14 Rudin Ch1l Prob 8 No order can be defined in the complex field that turns it
into an ordered field.

PROOF In order to attempt a solution to this problem, review 1.17 Definition on page 7
of what an ordered field is. An ordered field, which is also an ordered set, must therefore
satisfy 1.5 Definition of an order relation. Note that the neutral element is 0 € C = (0, 0)
and begin with a complex number z € C, with z # 0. By trichotomy, one and only one of
the following statements can hold

z2>0 or z<0

Then state that the complex number ¢ = (0, 1) is not equal to the neutral element, and
therefore must either be greater than or less than the neutral element. Examine both of
these cases. Suppose first that ¢ > 0

t>0

14 > 01

i? >0

-1>0

Now examine the case when ¢ < 0. Then
—i>0
(=i)(=1) >0
i2 > 0(—1)

-1>0

19.3 Chapter 2

* Injective = one-to-one
* Surjective = onto

* Bijective = both injective and surjective

Proposition 1 A set is infinite if and only if it may be put into one-to-one correspondence with a proper
subset of itself.

PROOF Assume the set X is finite, and has n elements where n € N, and assume the set Y is a proper
subset of X. Then, because X is finite and Y is a proper subset of X, Y must have fewer elements in it
than X. That is, Y will have m elements, where m € N with m < n. The only way to put two finite sets
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in one-to-one correspondence is if they have the same number of elements, which X and Y do not. This
proves the “if”” part of the statement, concluding that... O

Theorem 5 2.12 Let{E,}, n=1,2,3,..., be a sequence of countable sets, and put

s (s
n=1

Then S is countable.

PROOF Basically take each set E; and write its elements in a row. This will arrange all of the elements of
each set F; in an infinite array. Then form a sequence by ordering the elements along the diagonals. If any
two of the sets I; have elements in common, these will appear more than once in the sequence. Hence there
is a subset 7" of the set of all the positive integeres such that S ~ 7', which shows that S is at most countable
by 2.8 Theorem. Since F/y C S and E is infinite, .S is infinite, and thus countable. ]

Theorem 6 2.14 Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is
uncountable.

PROOF Here is the set A, whose members themselves are infinite sequences of 0 and 1.

A={{1,0,0,1,...},{1,0,1,0,...},{0,1,1,0,... },{1,1,1,0,... },...}

S1 89 S3 S4

Let E be a countable subset of A.

E = {81,52,83,84,...}

Arrange the elements of F by stacking the rows formed by the sequences s; on top of each other, making an
array. Then define a sequence s by taking the diagonal values from this array, but switching 0 to 1 and vice
versa.

1 2 3 4
S1 1 0 0 1
S92 1 01 0
S3 01 10
s411 1 1 0

So the sequence s is

s=1{0,1,0,1,...}

Because at least one element in each sequence s; was changed, this new sequence s is different from all of
the s; € E. The existence of this sequence which is in A but not in E shows that F is a proper subset of
A. Because we took an arbitrary countable subset of A and showed that it is a proper subset of A, then A is
uncountable (for otherwise A would be a proper subset of A which is absurd). O

Definition 14 2.18a - Neighborhood A neighborhood around a point p. ..
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Figure 19.2: Rudin 2.18 Definition neighborhood of point p

Theorem 7 2.19 Every neighborhood is an open set.

PROOF First reviewing some definitions:

* By 2.18 Definition (a) a neighborhood about the point p is the set of all points within some radius r
of p

* A set E is open if all of the points of E satisfy the definition of interior point

* A point p is an interior point of the set F if there is a neighborhood N of point p that is entirely
contained in E: N C F.

Now continue with the proof.

Figure 19.3: Rudin 2.19 theorem

1. Start with a neighborhood £ = N, (p) around the point p.
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Pick a point ¢ which is inside this neighborhood E.

Then define a radius h around the point ¢, where the radius h exists such that the following is true
d(p,q) =7 —h
Then, we have by the triangle inequality that there is a point s such that
d(p,s) < d(p,q) + d(q, s)
But if we consider the points s € S such that d(g, s) < h, we can write

d(p,s) < d(p,q) +d(q,s) <d(p,q)+h

But earlier we defined d(p, ¢) =  — h so we can substitute this in to get
d(p,s) <d(p,q) +d(q,s) <r—h+h

finally giving
d(p,s) <r

and the point s is in E.

. This proof shows that if we start with a set I, any point ¢ inside E has a neighborhood around it

which is entirely contained in £. This neighborhood we called S, and all of the points s € S are in
E, so the neighborhood S C F, and the neighborhood F is an open set.

O]

Theorem 8 2.23 A set F is open if and only if its complement is closed.

PROOF Insert figure.

1.
2.

Suppose E° is closed

Pickz € £

. By definition x ¢ E¢

* Also, x is not a limit point of E°. This is because we supposed £ was closed, which means E¢
contains all its limit points. And since x ¢ E° it is not a limit point of E°.

Because x is not a limit point, that means we can put any size neighborhood N,.(x) of radius r around
the point x that will not intersect ' anywhere. That means this neighborhood is entirely in . By the
definition of an interior point, because we found a neighborhood N,.(x) around the point z that was
entirely in E, the point x is an interior point.

Because this point z was picked arbitrarily and found to be an interior point of E, that means that every
point of E is an interior point of E, and by definition, F is open.

1.

2.

Now suppose F is open

Let = be a limit point of E° (without saying whether or not z is in E°)
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3. By definition of limit point, every neighborhood N,.(x) around x contains a point y € E° withy # =
4. Therefore x is not an interior point of &

* Because for x to be an interior point of E there has to exist some neighborhood around z that is
entirely contained in F.

* However, no matter how small we pick this neighborhood, it will always contain a y € E° with
y#x

* This means that neighborhood is not a subset of £
5. By definition, for £ to be open, every point of £ must be an interior point of &

* Since z is not an interior point of £z ¢ E
* Thusz € E°

Thus for an arbitrarily selected limit point in £¢, it is contained in £°. This shows that £ contains all of its
limit points, so E° is closed. O

Theorem 9 2.24 Page 34.
(a) For any collection {G,} of open sets, UyG, is open

(b) For any collection { F,} of closed sets, U, F is closed

(c) For any finite collection G, . .., Gy, of open sets, U G; is open
(d) For any finite collection F1, ..., F, of closed sets, U}'_, F; is closed
PROOF proof O

19.3.1 Convex Sets and Functions

Definition 15 Line segment A line segment connecting points y and x which belong to the set ) C R"
is shown in the figure below. The point z can be described as z = y + Am where \ € [0, 1]. The set of all
points z is a line segment L. Thatis L = {y + Am | X € [0, 1]}

A

>

Figure 19.4: Line segment in subset 2 C R"
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Every point between y and  can be written z =y + Am | A € [0,1] wherey + m =z > m =x — y.

z=y+Am
z=y+ Mz —y)
z=y+Ar— )y

z=Xx+(1-MNy

Definition 16 2.17 - Segment, interval, k-cell, ball, convex set See Rudin page 31.

Ball If © € R* and r > 0 the open (or closed) ball B with center at = and radius r is defined to be the
set of all y € R¥ such that |y — x| < r (or |y — 2| < 7).

Convex set A set () C R" is convex if for two points x and y that belong to ), all points on the line
segment L also belong to ). That is:

Ve, ye QCR"| w[z=Xx+(1-NyeQ VO<AL1

convex not convex

Figure 19.5: R? examples

PROOF (Balls are convex) A ball with center at x and radius r is given by |y — x| < r where the equality
is possible for a closed ball. In order to prove that a ball is convex, pick two arbitrary points within the
ball, and show that the line between these points is in the ball, by showing that it satisfies the definition for
convex set. The points we will pick are a and b, and in order to be in the ball must satisfy

la — x| <r

|b—x| <7
any point z between these two points must then satisfy
|z — x| <r

Since z is given by the line segment between a and b, this can be written using z = Aa + (1 — \)b as the
following, where we want the inequality to hold, but have not yet proved that it does.

[Aa+(1—-=XNb—zx|<r
Now we start manipulating this expression

Aa—Az+(1-XNb—z+Xzx|<r
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Aa—z)+ (1 =-XNb—(1=Nz|<r

Aa—2)+ (1 =Nb—2)| <7

By the triangle inequality we have that
[Ala =2) + (1 =) —2z)] < [Ma—2)[ +[(1 = A)(b - 2)|
Aa—2)+ (1 =XN)(b—2) < Aa—z|+ (1 —X)[b— x|
And because the points a and b were in our open ball to begin with |a — z| < r and |b — x| < r hold.
Aa—z)+ (1 =XNb—2)| <Ala—z|+ (1 =N)[b—x| < Ir+(1—=Nr
AMa—z)+ (1 -=Nb—2x)|<r
Aa+(1—=XNb—z|<r

which is the inequality we were trying to prove. O

19.3.2 Convex Function

A function f : R™ — R is convex if the graph of the function lies below the line segment joining any
two points of the graph. That is:

f(2) SAf(@) + (1 =X f(y) YO<A<1

A

f()

1
1
1
1
1
1
1
1
1
i

€T z Y

Figure 19.6: Convex function

Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function)
is a convex set.

PROOF (Every norm is a convex function) For a function f(z) to be a convex function, it must satisfy the
following:
JAz+ 1 =Ny) <Af(x)+ (1 =AN)f(y) V0O<A<1
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For f(z) = ||z|| with z = Az + (1 — A)y we have f(z) = || Az + (1 — Ny
Az + (1= Nyl < [[Az][ + [I(1 = Ayl

by the triangle inequality.
Az + 111 = Nyll = A=l + (1 = M)yl

by homogeneity, giving
Az + (1= Nyl < Allzll + (1 = Mllyll

fOx+ (1 =Ny) < Af(2) + (1 =N f(y)
which is the condition we needed to satisfy for the function f(z) = ||z|| to be convex. O

PROOF (Norm squared is a convex function) For a function f(z) to be a convex function, it must satisfy the
following:
fAz+ @ =Ny) <Af(z)+ (1 -AN)f(y) VO<A<1

For f(z) = ||z|? with z = Az + (1 — \)y the following must be satisfied.
Az + (1= Nyl* < Mlz]]* + (1= N)lyl?
Rearranging this expression
1Az + (1= Nyl* = Allz[[* = (1 = My ]|* =?

writing out the norms using the definition for Euclidean norm from Rudin page 16 that ||a|| = (a*a)'/? and
then ||a + b|| = [(a 4 b)*(a + b)]*/2. So ||a 4 b||> = (a + b)*(a + b)

1Az + (1= Nyll* = Mlz[* = (1= N)llyl* = Do+ (1= Nyl Az + (1= N)y] = Azl = (1= N)l|y[|*
=Mz + 201 = Nzey + (1= 2)yey = Alz]* = (1= 1)yl
= Ma]? + 201 = Nz ey + (1= 22yl = Alll* = (1 = \)y[?
= AA = Dl + 2X(1 = Nz ey + (1= A)[(1 = A) = [Jy]
= =M1 = Nl® + 201 = Nz ey = A1 = NIy
= =M1 =N) ([2* = 222y + [ly]*)

Using the inner product definition in Rudin ||a — b[|? = (a —b)*(a —b) = a*a —2a*b+b*b = ||a||* — 2a*
b+ ||b|? giving

Az + (1= Nyl? = Allz]* = (1 = Vlyl|> = =M1 = N)]lz — y|?
The quantity A(1 — A) is non-negative for 0 < A < 1, and ||z — yH2 is also always non-negative, so
Az 4+ (1= Nyll> = Alzl> = (1 = Mlyll> = =21 = N)[lz —y[* <0
Az + (1= A)yll> = Allzl]* = (1= N)[ylI> <0

which is rearranged to yield what we were originally trying to prove

1Az + (1= Nyl < Al ]]* + (1 = Ny [1*
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19.4 Chapter 3 - Numerical Sequences and Series

Definition 17 3.12 - Complete A metric space in which every Cauchy sequence converges.

Example 15 Complete metric spaces All Euclidean metric spaces and all compact metric
spaces are complete.

19.5 Chapter 4 - Continuity

The following definition of continuity of a function is known as a § — € definition. Other definitions can
be given in terms of limits of functions or limits of sequences. This definition is like that found in Slotine
pg 123.

19.5.1 Continuous Function

Roughly speaking, a continuous function is one in which “small” changes in the input to the function
result in “small” changes in the output of the function. In other words, when the input to the function is
changed an infinitesimal amount, there should be no “jumps” in the output of the function. The definition is
given below.

Definition 18 Continuous function (Rudin Page 85) A function f(x) : E C X — Y is continuous at the
point p if:
Ve > 0, 3d(g,p) > 0 such that Vx, dx(x,p) < d = dy(f(x), f(p)) <e

What this says is that for all p in the domain of the function, and any value of ¢ that we would like to
pick, for the function to be continuous there must exists a § such that for any x value we pick that is within §
of p, this implies that the function value f(x) is within € of f(p). The following figure shows a continuous
function.

fp)+e fons T
f(p) :
f(p) —¢

Y

7= P pTo

Figure 19.7: Continuous function
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When the function f(z) : R — R is continuous at the point p if:
Ve >0, 30(e,p) > Osuch that Vz, |z —p| < d = |f(z) — f(p)| <e

We pick an arbitrary point p in the domain of the function. We then sweep across all possible values of
e. Regardless of how we pick ¢, there is always a ¢ such that if x is within this ¢, that f(z) will be inside .
No matter how p, ¢, and x are picked, we can always find a § that satisfies the definition. This may be more
clear with an example of a discontinuous function.

A
f
f(p) -
P) & s 8
f(p) L2l
5D PE) >

Figure 19.8: Discontinuous function

In this example, a value of p is selected. For all values of € we want to pick (such as the one shown here)
and all z (such as the one shown here), we must be able to find a ¢ such that f(x) is within € on f(c). From
this figure, regardless of how big or small of a ¢ that is picked, f(x) will never be inside the € region shown.
Therefore this function is not continuous.

19.6 Uniform Continuity

For a continuous function, we said that once we selected an e, we simply needed to be able to find a §
such that if = was inside the § region, that f(x) would be inside the ¢ region. Nothing was ever stated how
large or small the value of § could or needed to be, only that one existed.

For a function to be uniformly continuous, the value of § does not depend on p. In particular, § does not
shrink as p — oo.

Definition 19 Uniformly Continuous function A function f(x) : R — R is uniformly continuous if:

Ve >0, 30(e) >0Vp, Vo : |z —p| <d=|f(x)— f(p)| <e
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Example 16 The following example shows a continuous function which is not uniformly
continuous. Take the function f(z) : R — R below:

fl@) =a?

Example 17 The following example shows a continuous function which is not uniformly
continuous. Take the function f(z) : R — R below:

flz) = e
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Chapter 20

Preliminaries

20.1 Introduction
20.1.1 Complex Numbers

Any complex number can be represented in exponential form, recalling Euler’s formula e/ = cos(6) +
jsin(f). Considering this representation of a complex number rel? = 7 cos(6) + jrsin(f) we can see that
in the complex plane r represents the magnitude of the complex number, and 6 is the angle. Additionally,
the angle of a product of two complex numbers is the sum of the angles of each complex number. That is

Zeieg = LeyZesy

20.1.2 Inverting a 2x2 Matrix
For the following 2 X 2 matrix A

the inverse A~1 is:

20.2 Norms
20.2.1 Introduction

In this note several types of norms will be explained. Given two real numbers, the notion of the “size”
of these numbers is apparent. However, given quantity such as a vector or a matrix, we may by interested
in how “big” they are when compared to another vector or matrix, respectively. A norm is a strictly positive
measure of the “magnitude” of such a quantity. In particular, a norm is an operation on a vector that returns
a non-negative quantity.

In the following section, the capital letter A will be reserved to denote matrices, while the lower case
letter = will be used for vectors, and time dependency will be added to imply time-varying vector-values
signals. H(t), g(t) and G(s) for systems described by transfer functions? Vectors are assumed to be
columns. The four types of norms described in this section are:

1. Vector

2. Matrix
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3. Signal

4. System

Properties of Norms

Norms satisfy three basic properties below, where x,y, z € R”, and a € R.

1. Norms are always non-negative: ||z|| > 0, and the norm of the zero element is zero: ||x|| = 0 if and
onlyifz =0
2. Norms are scalable: |az|| = |o||z]|

3. Norms satisfy the triangle inequality: ||z + y|| < [|z| + ||y||

There are some more properties of norms which can be constructed from these four.

20.2.2 Vector Norms

There are several common norms which are used to determine the “length” of a given vector, described
below. Often vector norms are denoted by the lowercase letter /,.

p-Norm Denoted ||z

p» and defined as follows.
1
n p
], = (Z |xi|p>
i=1
2-Norm The 2-norm, or Euclidean-norm is denoted ||z||2 = ||z||. This is basically an extension of Eu-

clidean length to n-dimensional spaces. Taken by squaring each entry of the vector, adding up all the
squares, and then taking the square root.

]2 = (f:

i=1

1-Norm The 1-norm, or Taxicab norm is denoted ||z||;. This norm corresponds to distance in a similar
way as the Euclidean norm, but is given by the length of the vector that a taxicab driver would have to drive
along a rectangular street grid. It is taken by adding up the absolute value of each entry of the vector and

adding them all up.
n
Izl =3 Jai
i=1

oo-Norm Denoted ||x]|s. The infinity norm of a vector x is the largest magnitude of an entry of the
vector.

[ ]loo = max{|z1], [z2], . .., |znl}
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Examples

Example 18 Vector norms Let v = [3 0 —4] " The following norms are

|v]le = VoTo=v9+0+16=5
o1 =3+4=7

[0]jco = 4

20.2.3 Matrix Norms

Matrix norms are an extension of vector norms. After having been introduced to vector normes, it is not
immediately intuitive how to extend this concept to a meaningful measure of the “size” of a given matrix.
Two matrix norms described below are induced norms and entry wise norms.

Induced Norms
Induced norms are norms on a matrix A which require multiplication of the A by a vector z, and then

evaluate the norm of the resulting vector, normalized by ||z||,.

Induced p-Norm The general definition for an induced norm is given below.

A
4l = ma L2l
2 e

= max {||Az||, : v € K" with |[z|, =1}

where p € NT. Depending on what particular value of p is used for evaluating this norm, there are different
interpretations, some of the common ones which are described below.

Induced 1-Norm For the induced taxicab, or 1-norm, this corresponds to taking the maximum absolute
column sum of the matrix.

Induced co-Norm For the induced infinity norm, it is calculated by taking the maximum absolute row
sum of the matrix.

Induced 2-Norm The induced Euclidean, or 2-norm for a square matrix A is given by the largest singular
value of A. The singular values of A are given by taking the square root of the eigenvalues of AHA. That is:

JATL = \ A (A74) = g (A)

Entrywise Norms

Entrywise norms are matrix norms which are taken directly on a matrix A itself, without first requiring
multiplication by a vector x.
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Frobenius Norm The Frobenius norm is calculated by taking the absolute value of each entry of the
matrix A, squaring it, adding them all together, and then taking the square root.

ii |Aij? = \/tr(AHA) = \/tr(AAH)

i=1 j=1

[Alle =

Examples

-
Example 19 Matrix norms Let A = B f) 4} . The following norms are
|All> = 4.76
[AllL =5
[A]loo = 6
[Allp = 5.39

20.2.4 Signal Norms

The next quantity which we apply the concept of a norm to is that of a signal. Given a signal (either
vector-valued or scalar), we wish to determine some measure of its magnitude. Perhaps the signal is very
large at one instance of time, and small everywhere else, or maybe it is moderately large for all time.
Whatever the case may be, we wish to have some way to quantify these varying degrees of the “largeness”
of a signal.

Often signal norms are denoted using the capital letter L,. The notation L in L, refers to the fact that
the integrand in (2.7) should be Lebesgue-integrable for the integral to exist. This is a generalization of the
standard (Riemann) integral to a more general class of functions. See DDV Chapter 15. Signals norms are
generalizations of vector norms. The signal norms we consider in this subsection are the following:

* l-norm: action
* 2-norm squared: signal energy
* oco-norm: peak signal magnitude

* signal power (average energy)

For the vector valued signal z(t) the following norms are given.

L, Norm

|mmm=([2mmm@;
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L, Norm

Ol = [ lleto)las

L5 Norm
Jo®lla =/ [ lato) 20t
Lo Norm
lz(t)]| Lo = sup (%)
Examples

Example 20 Signal norms Let x(¢) =. The following norms are

()], =
[z(®)]|z, =
|

[z L0 =

Existence of Signals in Normed Spaces?

Explain here what notation e(¢) € £ and so on.

20.2.5 System Norms

In addition to the Hs norm, which we have seen gives a characterization of the average gain of a system,
a perhaps more fundamental norm for systems is the H,, norm, which provides a measure of a worst-case
system gain. the H,, norm is simply a measure of the largest factor by which any sinusoid is magnified by
the system.

L1 Induced Norm

L> Induced Norm

1G(s)]l2 = \/ / " tlg(t)Tg(6)at
IG(s) rz—\/ / G (jw)'G (jw)]dw

1G(s)ll2 = SUP(UmaXG(]W))

|G(s)||2 = \/tr(BTQB) where QA+ ATQ+CTC =0
|G(s)||2 = /tr(CPCT) where AP+ PAT + BBT =0
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L o Induced Norm

20.3 Canonical State-Space Forms

There are four standard, or canonical state space forms into which a transfer function can be written. Two
of these forms, namely the observable canonical form and the controllable canonical form, are often called
companion forms. The other two canonical forms are modal and Jordan canonical forms. Each of these
four different state space realizations has its own uses and benefits, which will be outlined below. The form
of controllable and observable canonical forms will be shown below, where the former will contain a row
whose coefficients are that of the transfer function denominator polynomial, and the latter a column. If the
row of coefficients is on the bottom of the system A matrix, this is sometimes referred to as controllability,
and on the top referred to as controller. Likewise the column of coefficients on the left is called observer,
and on the right observability. See Kailath (1980).

Often the easiest way to demonstrate the process of writing a transfer function in state space form is by
example. The following examples will illustrate the conversion process for small systems, but this proce-
dure will extend to systems with arbitrarily large numerators and denominators. For these first examples,
assume every transfer function is strictly proper, ie. the order of the numerator is less than the order of the
denominator. See the following section for proper transfer functions.

Controller Canonical Form

Given the following transfer function, convert to controller canonical form. Converting this transfer
function to a state space representation in controller canonical form will result in a system that is guaranteed
to be controllable.

bos® +b1s+ b
§° 4+ ag28® + a18 + ag
A transfer function is an expression of an output/input. If y is used to indicate an output, v an input, and z
a state, the above transfer function can be written:

y_yzr
G == %u

Using this representation, the transfer function can be split into two products:
Y — bos® + bys + by
z

and:
x 1

u s34 ags? +a1s+ ag

Rearranging each of these equations and taking the inverse Laplace transform:
Yy = bk + b1 + box

and:
T+ agd + a1 + apxr = u

The order of the system, ie. the number of state variables needed is equal to the order of the transfer function
denominator. For this example, 3 state variables are needed. Define x; to be the first state variable, and build
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each subsequent state variable as a derivative of the first one.

r1T =

Tro — i?l =z

T3 ==T9 =X
Plugging in these state variable definitions:

y = baxs + bixa + bozy
and:
T3 + asr3 + a1x2 + apT1 = U

Rearranging the above:
T3 = —Q9x3 — A1T2 — ATl + U

Rearranging the state variable definitions and assembling the above into matrix form gives:

T1 = T2
Tg = X3
T3 = —agx1 — A1T2 — aoT3 + U
and:
1 0 1 0 T 0
To| = 0 0 1 zo| + |0f u
.%"3 —ap —a1 —ag €T3 1
X1
y=1[bo b1 ba] |22
T3
Observer Canonical Form
bys® +b b
G(S):g: 25 + 015 + 0
u 834 ags?+ais+ ag

y(33 + ags® 4+ a1s + ag) = u(bys® + bys + bo)
y + aggj + aly + agy = boti + b1t + bou

Y = baii — agfj + b1t — a1y + bou — apy

y = bau — agy + /(blu —a1y) + //(bou — apy)



T1 = bou — agxr1 + /(blu — alxl) -+ //(bou — a()iL'l)

Ty = /(blu —a1x1) + //(bou — apx)

9 = (biu — ar1x1) + /(bou — apry)

xr3 = /bou — apl1

T3 = bou — agx

T1 = —agr1 + T2 + bau
To = —a1x1 + 23 + biu

553 = —apx1 + bou
.fl —an 1 0 X1 b2

i:z——a101$2+b1u
x“g —ap 0 O T3 bO

I

y=1[1 0 0] |z
T3

Modal Canonical Form

b282 + bls + b()
(s+a1)(s+ a2)(s+ a3)

G(s) =

b282 + b1s + by 1 () 3

Gls) = (s+ai)(s+az)(s+a3) (s+a1) " (s + az) i (s +as)

bys® + bys + by = (s +a2)(s+as)ri+ (s+a1)(s+as)ra+ (s+ a1)(s + a2)rs

bos® + bys + by = [s2 + (ag + a3) + agas|ry + [s% + (a1 + a3) + asas]ry + [s* + (a2 + a3) + a1as]rs

Equating polynomial coefficients:

b2 =71 +7reo+73
b1 = (ag + a3)r1 + (a1 + a3)re + (a1 + a2)rs

bo = azazr; + arasrs + ajagrs
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For the arbitrarily large transfer function, this will give n equations in n unknowns, where n is the order of
the denominator polynomial, allowing the partial fraction expansion to be completed.

Yy 1 T2 T3
G S)=— = —+ +
(5) u  (s+a1) (s+a2) (s+as)
y_yr_ n o, m
u zxzu (s+a1) (s+a2) (s+as)
Xz T xT9 I3 . T1 9 T3

—=— =+ == - +
v u  u  u  (sta) (s+a2) (s+a3)

T 1
u  (s+ay)
T2 T2
u  (s+ap)
T3 T3
u  (s+a3)
il = —a1x1 +ru
.’i‘g = —agx2 + U
ig = —agzxr3 + r3u
T —a; O 0 T 1
To| = 0 a9 0 To| + |12 u
i‘g 0 0 —as T3 T3
T
y=1[1 1 1] |z
T3
I —a; 0 0 T 1
To| = 0 as 0 xo| + 1] uw
T3 0 0 —az| |x3 1
€1
Y= [Tl T2 7‘3] T2
3

Jordan Canonical Form
Lec. 7-6
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20.3.1 Proper Transfer Functions
20.4 Singular Values

A measure of the “smallness” of the matrix is needed: the singular values. The singular value de-
composition of a matrix M is the following factorization, where (-)* denotes the Hermitian, or conjugate
transpose.

M =U%V*

where U and V* are real or complex unitary matrices, i.e. U*U = UU* = I, and % is diagonal matrix with
nonnegative real numbers on the diagonal. The diagonal entries of X are the singular values of M. Taking
the Hermitian transpose of M gives M* = (UXV™*)* = VX*U*. Both pre- and post- multiplying M with
its Hermitian transpose:

MM* =ULV*VEU* =USE*U"
M*M =VEU ULV =VE*EV*

Since X is diagonal, this can be rearranged into the following eigenvalue problems, allowing the singular
values to be found as the non-zero eigenvalues of M*M or M M*.

(MM*U
(M*M)V

U(ZT*)
V(S*FY)

When the matrix M is a transfer function matrix H (jw), the magnitude at a any frequency w will depend
on the direction of the input. Different singular values will be excited depending on the input. However, for
any input the magnitude of H (jw) is bounded above by its maximum singular value o (H (jw)) and below
by its minimum singular value o(H (jw)). For performance and stability robustness o(H (jw)) should be
large at low frequencies and o(H (jw)) should be small at high frequencies.

To generate the singular value plot for the linear system & = Axz + Bu with output given by y = C'z,
the transfer function matrix H must first be calculated:

H(s)=C(sI - A)™'B

When the linear system & = Ax + Bu is augmented with integral error states, and full state feedback control
law u = — K x is used, the linear system becomes & = (A— B K )z + Bax; », y = Iz, with transfer function
matrix

H(s)=I(sI — (A~ B1K)) By

The singular values for each transfer function matrix H above can then be plotted versus frequency.

20.5 Positive Definiteness

The matrix BBT = (BB is symmetric for all B. In addition, BBT > 0 is positive definite. Def-
inition of positive definiteness: z'BBTz > 0. = € R™*! and B € R™™. Define C = BTz, where
C € R™*! giving CTC = ||C||3 > 0VC # 0
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20.6 Sensitivity Analysis
20.6.1 Introduction

The system & = f(z u) describing the dynamics of the GHV was previously linearized and written

T = Az + Bu

where the state vector x for the model is in body axes as shown in previous work. It is desired to transform
this linear system to use a new state which describes the GHV dynamics in stability axes. The subscript (-)s
indicates stability axes, and the state vector is shown below.

mS:[VTaﬁpqr¢01/J)\T%]T

After completing the transformation from body to stability axes, it was verified that the system poles had
not changed between A and Ag. Next, a linear transformation was needed in order to rearrange the states
in x5 so that the longitudinal and lateral/directional states would be grouped together, and any states which
did not influence the flight dynamics could be truncated. This transformation was accomplished using
the transformation matrix @. The entries of O are zero everywhere, with the exception of ones placed to
rearrange the states as described above.

=[Vr a ¢ 0 Z[B pr oy AT
Defining the transformation
7l = Oz
rs =0 a
iy =07 i,
Ts = Agxs + Bsu
0 ', = A,07'2), + Bu
i’ = QA0 2/ + OB,u
Al = 04,071
il = ALzl + Blu

20.6.2 Examining Modal Decomposition

After rearranging the original state-space system with state vector x into system with state vector 2%,
the system was examined to check the validity of decoupling the lateral and longitudinal dynamics, and the
truncation of the navigation states. Looking at the following transformed state-space system shown above,
and considering only the initial condition response, the following autonomous system results

i = Alal
The following transformation is introduced
x, = Vq
where V is the matrix of eigenvectors V.2 [ vy | ... | v, | giving
il = Vg



¢=V14Vq
The matrix VA,V~! must be examined.
AV=Avii vy | =[Av DA, [ =[ ViAol vpdn [ = VA
giving
q¢=Aq
where A is the diagonal matrix of eigenvalues. The solution is given by

q(t) = e*q(0)

Selecting an initial condition as a scalar multiple of an eigenvector v;, i.e. z(0) = «a;v; then ¢(0) =
V‘lx(O) = o;V~lv;. But since V~lv; = I where I is the identity matrix, Vly; is just the ith column of I.
In other words, the initial condition ¢(0) will have zeros everywhere, and « in the i*" row.

g(t) = ae’

This shows that only the mode corresponding to \; will be present in the response from an initial condition
along the i*" eigenvector. The response in terms of o, corresponding to )\; is then given by

z(t) = azelity

Based on this unforced modal response, if any entries in v; are “small” relative to the others, the correspond-
ing states are thus not influential in determining the initial condition response.

20.6.3 The Sensitivity Matrix
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Chapter 21

State Feedback Control

21.1 Introduction
21.2 The Regulation Problem

The plants for which we will seek to design controllers will be represented in the following form.
Tp = Apxp + Bpu

The LQR controller will be explained in this section. The LQR control is a full state feedback, static gain
controller. That is, the control input is calculated using the entire plant state ', and multiplied by a constant
gain matrix K, to get the control input u. The control law for the LQR controller is

T
u—prp

The method of obtaining the gain matrix will not be discussed here. There is a lot of information available
about the process of obtaining K, but for the purposes of this section, what needs to be known is only that
given a controllable plant, we can use MATLAB to generate K, that will stabilize a given plant, and place
the closed-loop poles in a “good” way. This command is: Kp = —-1qgr (Ap,Cp,Qlgr,Rlqgr)”’

The LQR controller as described above is of little use for the control applications we are interested in,
as it eliminates the ability to provide external reference commands, and serves only to regulate the system
to the origin.

21.3 The Tracking Problem

This control architecture is known as the LQR-servomechanism, LQR-PI control, or LQR with integral
action. This structure uses LQR control where the plant is augmented with an integrator to ensure tracking
of a reference command. This is done by adding states to the state-space representation, and adding an
additional input matrix through which the reference command enters. Given the following open-loop plant

Ty = Apzp + Bpu

(21.1)
2= Cpxp + Dpu

where 4, € R™»>™ B, € R™*™ and C,, € R**"™ and z € R is the regulated output, where the number
of regulated outputs is not to exceed the number of inputs, that is ne < m. Given that the state is available
for measurement, the control goal is to design a control input v so that the closed-loop system has bounded
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solutions and z tends to the reference command z.g asymptotically. In order to ensure command tracking,
we introduce integral action, and for this purpose an additional state x. is defined as

Te = Zemd — 2

and the plant in (21.1)) is augmented to lead to the following extended open-loop dynamics

T A 0l |z B 0
L e (e

The system in (21.2)) can be written more compactly as
& = Az + Bu + BcmdZemd (21.3)

where A € R™*", B € R"™"™, Bepg € R ™, and C' € RP*™ are the known matrices given by

A 0 B 0
A= P Np XTe B = P B — np XM
|:_sz Ongxne:| |:_Dpz:| emd |:Ine><ne:|

Thus, when the augmented system in Equation (21.2) reaches steady state, ., will be zero, and z = z¢pg.
The following control law will be used:
uw=Kx (21.4)

Substituting the control law (21.4) into (21.3)
T =Ax+ BKJZL‘ + BemdZemd
= (4+ BK] ) 2 + Bngzema

The gain K is selected to ensure the closed loop matrix A + BK,| is a Hurwitz.

Example 21 Integral Augmented LQR Control Synthesis: Longitudinal Aircraft Dy-
namics Consider the following state-space model describing the longitudinal short-period
dynamics of an aircraft. Given this system, the goal is to design a state feedback controller
to track pitch rate commands.

HRE AR AL

where « is the angle of attack, ¢ the pitch rate, and J. the elevator deflection angle. The
. T

state vector 1s z,, = [a q]

more compactly as

. With pitch rate as an output his system can be expressed

Ty = Apzp + Bpu

z2 = Cp,xp

where
Cp.=[0 1]
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To enforce reference tracking we augment the system with an integrator as described above,
and get the following extended open-loop dynamics

G Zo 1 0] [a = 0
q|=|Ms My 0| |q|+ |Ms, |0+ O] Gema
Qe 0 -1 0 Je 0 1

As shown above, these extended open-loop dynamics can be written more compactly as

T = Az + Bu + BemdZemd

—_

N = N I N WV )

20
21
22
23
24
25
26
27
28
29
30
31
EY)
33
34
35
36
37
38

o\

o° o° o° oo

o o 0 0 A0 A o A o° o° o

makeLQRPI.m

Flight Control Tools: Make LQR-PI Controller
Written by: Daniel Wiese, Wednesday 15-October-2014
Updated by: Daniel Wiese, Sunday 18-October-2015

This script makes an LOQR-PI controller given a system A and B matrices,
and Q and R weights. Additionally the user must specify which (up to two)
state variables should be augmented with an integral error state. Specify
which state variable(s) are to be integrated using a scalar parameter
corresponding to the ith state variable. If only one integrator is to be
used, specify only the first 'e', and it doesn't matter what the second
'e' is. Pass the weighting matrices Q and R to the function as vectors,
which will act as the diagonal entries of the weights.

function [Kx, P, A, Am, B, Bcmd, C, D, n] = makeLQRPI (Ap, Bp, Cp, Cpz, Dpz,

o

°

[
l
[

S
C]

n
P

i

e

i

e

)

°

Qlgr, Rlgr)

Find number of states and inputs of \dot{x} = Ax + Bu

np, m] = size(Bp);
1, -] = size(Cp);
ne, —] = size(Cpz);

The total size of the augmented system will be original size plus error
= np + ne;
= 1 + ne;

f rank(ctrb(Ap,Bp)) # np
error ('The plant is not controllable!')
nd
f rank ([Ap, Bp; Cpz, Dpz]) # n
error ('Selection of regulated output destroys controllability!"')

nd

Augment the system with the integral error state
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39
40
41
42
43
44
45
46
47
48
49
50
51
52

A = [Ap, zeros(np,ne); -Cpz, zeros(ne,ne)]l;

B = [Bp; -Dpz];

Bcmd = [zeros (np,ne); eye(ne,ne)];

C = [Cp, zeros(l,ne); zeros(ne,np), eye(ne,ne)l;
D = zeros(p,m);

% Solve for the LKQ feedback gain
[Kx, P, =] = 1lgr (A, B, dlag(qurlo)l diag(qur,O));

Kx = -Kx';
Am = (A + BxKx');
end

21.3.1 State-Space Controller Representation

Now that the fundamental loop transfer functions are found, we now want to be able to actually apply

this when using LQR-PI full state feedback controllers. Thus, it is important to show an example of how
to represent an LQR-PI controller in state space form, and from there be able to calculate the loop transfer
functions.

Controller Plant

Zemd

K(s)

G(s)

Figure 21.1: System block diagram

The LQR-PI controller is represented as the following, where the subscript (-). is used to denote “con-

troller”, and the only state in the controller is the integral error state ..

iy = Auto + B, [ZCmd}

- che + DC |:Zcmd:|
Tp

T T

The control law is a gain matrix multiplied by the state z = [w T } which is an augmentation of the
plant state x,, with error state x..

P €

Te = Zemd — 2

w=K,z
T
— (57 KT1[7]
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Te = Zemd — szxp - Dpzu

u:KeTme—FK;a:p

Te = Zemd — Cpz2p — DpZ(K;ra:e + KpTxp)

u:K;rxe+K;—xp

Te = —Dsz;rl’e + Zemd — (sz + DPZKZ;F)xp

u:KeT:ce—i-K;xp

. Z
fo = —DpK)ze + [1 Cpe+ DpoK)] [_Czd]
p

w = KeTl‘e n [0 _KPT] |:Zcmd:|
—xp

Looking at this we can see that

LQR Controller State-Space Model \

A, = —D,. K,/
Be=[1 Cp+ DpK]] oLs)
C.=K/] '

D.= [0 —KpT]

Example 22 Integral Augmented LQR Controller State-Space Representation: Lon-
gitudinal Aircraft Dynamics The general form of the plant as shown above, but repeated
here for the longitudinal subsystem is

&p = Apzy + Bpu
Yp = Cpp
2= Cpxp + Dpu

For this longitudinal subsystem the plant states are angle of attack «, and pitch rate g, with
the plant input being the elevator deflection angle .. That is, x,, = [oz q] i

HRERIAR AL
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Plugging in some numbers

10 1 10
AP = [0 1] BP = |:0:| CI’ = |:O 1:| CPZ - [1 0] DPZ - [O}
The general form of the controller is

Fe = Ao + B, ['fﬂ
p

u = che + Dc |:Zcmd:|

Inputs to controller are 2¢mg = Qemg and e = —x, = [—a —q] T. Combining these two

inputs into one input [acmd — —q}T we get
Qcmd
ie=[1 1 0] | -
—q

Oemd

U= keTe + [O —kq —k:q] -

—q

Ac=0 B.=[1 1 0] Cc=lke] Dc=[0 —ka —kq

This state space representation was then converted to a transfer matrix representation for
frequency domain analysis. This transfer matrix was 1 x 3: controller input oyg, —c, and
—q and the output was the elevator deflection angle Je.

21.3.2 Properties of Extended Open-Loop Dynamics
Controllability

Hautus controllability test Hespanha book page 113.

Theorem 10Popov-Belevitch-Hautus Test for Controllability The pair (A, B) is controllable if and only

if
rank([A—)\I B]):n, vaeC

If we apply this test to the extended open-loop dynamics, we get

A, =X 0 B, ]\ _
([ S B ) e

for all A # 0. So we just need to check the rank when A\ = 0 giving the following:

A B
rank b P }) = ny + ne
<[sz —Dyp. P
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Observability

Consider the observability matrix for 3J,,. Since this system is observable, it has full rank.

e
CpAyp
rank C;DA;% =ny
np—1
LCpAp” ]
Now look at the controllability matrix for the augmented system
[ C, 0
0o I
C, 0] 4 O
0 I|[-Cp. O
c, 0] 4, o
0 I]|-Cp. O
. n—1
C, 0] 4 O
L0 If[-Cp O ]

Note that

An 0]

Note that "
Ap 0] _
=GR AT 0

—Cp. 0
So the observability matrix for the extended open-loop dynamics becomes
- c, 0 -
0 I
CpA, 0
—Cp. 0
CpAZ 0
-Cy A4, 0

CpAp~t 0
L[Cp=Ap™2 0]

2
A 07 _[ 4 0] 4 o _[ 4
—Cp. 0 —Cp4p 0

|

And we can see that the n, columns that were added to the observability matrix for the extended open-
loop dynamics are linearly independent. So the augmented controllability matrix is full rank.

Rank of B, C,and CB

The proof is trivial.
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Transmission Zeros

Given system ¥, = (A4,, By, Cp) show that integral augmentation does not add any transmission zeros
to the system. The Rosenbrock system matrix for %, is

sl - A, Bp}
Rp(s) [ Cp Dpz
The transmission zeros are the values of s which make R,(s) lose rank. For the augmented system the
Rosenbrock matrix is
sl-A, 0 —-DB,
Cp2 sl Dy,
Cp 0 0
0 1 0

R(s) =

The augmented Rosenbrock matrix has 2n,. rows added and n. columns. When the >J,, is tall, that is m </,
then the maximum rank of R(s) is n, + ne + m. The rank of R(s) only drops for values of s which are
transmission zeros of X, due to the extra n. columns being added are linearly independent for all s, due to
the identity at the bottom.

21.3.3 Using Feed Forward

Finish this section, see 16.31 notes.

Controller Plant

Zemd

K(s)

Figure 21.2: System block diagram
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Chapter 22

Output Feedback Control

22.1 Introduction

When doing full state feedback pole placement problems, it is often the case that the desired pole loca-
tions can be achieved without using all of the gains. When this happens, the question may arise regarding
what values to assign to these “extra” gains. In regards to stability (that is, the closed-loop eigenvalue lo-
cations) they can be assigned arbitrarily. However, one may postulate that these gains may be assigned in
such a way that will improve the closed-loop performance of the system. Additionally, the idea of designing
a control system with only some of the state variables being fed back to the controller should seem like a
reasonable idea.

22.2 Projective Output Feedback

It can be shown that assignment of these “extra” gains allows the eigenvectors to be selected, in addition
to only the eigenvalues. These performance benefits may manifest themselves as increased robustness???

Example 23 Pole placement Put an example here indicating a full-state feedback pole
placement problem with extra degrees of freedom.

22.2.1 Static Projective Output Feedback

The full-state feedback LQR controller is a design which selects feedback gains optimally, based on
some user specified performance weights. Such a design results in good closed-loop performance, but relies
on the entire state vector being accessible. In cases where the entire state is not accessible, projective output
feedback will allow an LQR like full state feedback design to be achieved, without requiring full state
accessibility. The following notes are based on Eugene’s book Chapter 6, page 165.

Given a state-space plant of the following form

Ty = Apzy + Bpu

Yp = Cpxp
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A full state feedback LQR controller can be designed, with control law
T
u= K, zp
giving the following full-state feedback closed loop system
Ty = (Ap + BpK;—:r)xp
Yp = Cpp
_ T
Acl,fs - Ap + Bpr
jfp = Acl,fsxp

Now it is desired to design an output feedback controller, using gain feedback on only the output y,
instead of the entire state x,,. That is
-
U= Ky Yp

giving the following output feedback closed loop system
&= (Ap + B,K, Cp)xy
Acop = Ap + BpK, C,
ip = Acl’op:cp

The idea is to make the closed loop “A” matrix when using output feedback as close to the closed-loop “A”
matrix when using full state feedback. This can be done by requiring that n,, eigenvalues of Ao, are equal
to those of A5, where n,, is the number of outputs.

The eigenvalue problem can be written

Acl,fsv =VA

We can require that n, eigenvalues of A are maintained in Acjop. That is, taking these n, values of A
gives Ay, . In other words, this requirement gives n,, eigenvectors V;,, that satisfy

Acl,fsvny — Acl,oany
Solving this equation we can find K,
(Ap + BpK;)Vny = (Ap + BPKJCP)Vny

KV, = K, CpVy,

K, = K Vy, (CpVp, )™

To implement this procedure, first design the full-state feedback LQR controller. Then pick the eigen-
values and corresponding eigenvectors of this full-state feedback design “A” matrix A ¢ which should be
kept in the output feedback design. This gives you V;,, and A, . Using V,,, and K, solve for the output
feedback gain K.
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22.2.2 Dynamic Projective Output Feedback

Finish this section using the example problem in Eugene’s book.

22.2.3 Comparing Full State and Output Projective Feedback

gain margins? phase margins? what happens to these margins if the output feedback gain is increased?
what about an output feedback design which simply takes the full-state feedback gain matrix and deletes the
feedback gains corresponding to states which are not accessible? If output feedback is done by just zeroing
out gains corresponding to state variables which are not available for feedback, the system may not be stable.

22.3 State Observer/Estimator

Another way of dealing with control problems in which the full state is not available for feedback is to
design a state observer or estimator. The general block diagram for a closed-loop estimator is shown in the
figure below.

>

Y

Observer

Figure 22.1: Closed loop estimator

The idea is that an estimator contains a linear model of what the plant is expected to be. In reality, the
parameters assigned within the observer’s plant model may not be perfect, but hopefully they are close. The
feedback gain K is then used to correct the plant model based on differences between the actual output
y and estimated output ¢. Then, as this output error is reduced, the state estimate £,, is improved, and this
estimate can then be used for feedback control.

22.3.1 LQE Estimator Design: Kalman Filter
Plant given by the LTI state space system. State-space form of plant

&p = Apzp + Bpu + Bpow
yp = Cpxp + Dpu

Explain the input disturbance term B, that is up there later, but use this one for now.

&y = Apzy + Bpu

Yp = Cpxp + Dpu
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The following figure shows a more detailed block diagram of the closed loop estimator, and how one might
construct the block diagram in SIMULINK using basic gains, integrators, and summing blocks.

> Plant
Yp
| e |
| K ¢l )
| ! N
| |
|
| 9 |
> B, > 1 > Cp e B
| |
| |
| Ap [ |
| |
| > D, !
L e e e e e e e e e e e e e e e e 4
Observer

Figure 22.2: Closed loop estimator

A closed-loop estimator will then be used to reconstruct the plant state x,,. We will call this full state
estimate %,. The state-space representation for the closed-loop estimator as shown in the block diagram
above is given by

fp = ApZy + Bpu+ K (9p — yp)
Up = Cpp + Dpu

Inserting the known expression for the plant output

fp = Ap2p + Bpu + K¢ (CpZp + Dpu — yp)
Up = Cpp + Dpu

Combining terms gives the following closed-loop estimator state-space equations below

Zp = (A + K;Cp)ip + (By + K Dp)u — Ky,
G = Cpitp + Dyu

Where the inclusion of the state estimate as an output in the above equations is to emphasize that these
are the equations which would be used to implement an estimator to use, as possibly part of a controller,
in simulation. The input to the estimator block would be the control u, measured plant output y,, and
the output of the estimator would be the estimated state &,,. This estimated state would then be used in a
feedback control law where ordinarily the actual state 2, would have been used, if it were accessible. Such
a control architecture is known as a dynamic output feedback compensator, and is described in more detail
in following sections.
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How to obtain the Kalman filter gain is not covered here, but K¢ is given by
K; = P;C"Ry*
0=AP;+ PsA" + Qo — PyC Ry CPy

The Kalman filter gain Ky can be found by using the MATLAB function 1gr. In order to implement the
Kalman filter as given in these equations, the command would be: Kf=-1qgr (Ap’,Cp’ ,Qf,Rf)’.

22.4 The Regulation Problem

Now it is desired to add the integral error state of the LQR-PI controller to the DOFB architecture. This
will allow external reference commands to be given and followed with zero steady-state error, as well as
using only the output, and not the full state, for feedback.

&y = Apzy + Bpu 22.1)

yp = Cpp + Dpu
where A, € R™*" B, € R™*™ and C, € R0 Given that the state is available for measurement,
the control goal is to design a control input u so that the closed-loop system has bounded solutions and the
system is regulated to the origin. Now we would like to improve on this idea of using the estimated state Z,,
in feedback, just like in the case of full-state LQR feedback control. We would now like to use this same
procedure, but instead of feeding back on the actual state ), we will use a state estimator to generate an
estimate of the state #,,. The combining of an optimal state estimator and optimal controller is known as
LQG control. “For LTI systems with Gaussian models for disturbances and measurement noise, the Kalman
filter is the optimal state estimator. When optimal control (LQR) is combined with optimal state estimation
(Kalman filter) the control design is called the Linear Quadratic Gaussian (LQG) problem.” [2]] The control
law is given by

T4
u=K, @
We design a state estimator as described above, and with the proposed control law the combined system,
called the compensator, is described by the following equations

fp = ApTy + Bpu+ K (9p — yp)
Up = Cpp + Dpu

_ g1 A
u—prp

Substituting the control law and output equation in
&p = Apdp + BpK,) &p + Kf[Cpip + DpK,) & — 1)
u=K, i
Expanding
&p = Apdp + BpK,) &y + KCpiip + Ky DK & + Kp(—yp)

_ 1T
u—prp
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Grouping terms

—{ Output Feedback Regulator%

p = (Ap+ ByK, + K;Cp+ K;D,K,) )i, + K(—yp)

_ T A
u—prp

The basic block diagram which describes this combination of an estimator with controller looks just like
the LQR controller, and is shown below. However, now the output y; is being fed back to the controller,
instead of the full state z;, and the compensator K (s) is of increased complexity.

Controller Plant

Zemd

K(s)

G(s)

Figure 22.3: System block diagram

The following diagram shows a little bit more clearly the internal workings of the DOFB-regulator.

e e 1 Compensator
O T
Ky

A

Plant

Y
=
» |
Y
i)

$>

Y
LS

It doesn’t matter if the estimator feedback term is 4, — ¥, or y, — ¥,. All this does is change the sign
of Ky. We will use the representation shown above to facilitate representation of these equations in the
block diagram form with negative feedback at the summing junction for input 7. In addition, the feedback
control law can be written with a positive or negative sign. All of the terms can be combined and substituted
and rearranged within these above equations revealing that this dynamic output feedback compensator takes
as its input the plant output ¥, and uses it with an LQR full state feedback control law operating on the
estimated state & to generate the output u. This is called a dynamic output feedback compensator. This can
be implemented as shown in the following block diagram, where the compensator K (s) will contain these
additional dynamics, instead of just the integrator and proportional gains as in the LQR-PI controller case.
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This representation is also good because the only input to the compensator is the output feedback e = —y,,,
as is represented in the equations.

22.5 The Tracking Problem

Now it is desired to add the integral error state of the LQR-PI controller to the DOFB architecture. This
will allow external reference commands to be given and followed with zero steady-state error, as well as
using only the output, and not the full state, for feedback.

Ty = Apzy + Bpu
yp = Cpxp + Dpu (22.2)
2 = Cp.xp + Dpu

where A, € R"*" B, € R"*™ and C, € R0 and 2z € R™ is the regulated output, where the number
of regulated outputs is not to exceed the number of inputs, that is ne < m. Given that the state is available
for measurement, the control goal is to design a control input u so that the closed-loop system has bounded
solutions and z tends to the reference command z.,q asymptotically. In order to ensure command tracking,
we introduce integral action, and for this purpose an additional state . is defined as

Te = Zemd — 2

and the plant in (22.2)) is augmented to lead to the following extended open-loop dynamics

x A 0f |x B 0
R A R

The system in (22.3)) can be written more compactly as

T = Az + Bu + BemdZemd

224
y=Cx+ Du (@24

where A € R"*", B € R"™™, B.pg € R™ ", and C' € RP*™ are the known matrices given by

. [ A, onpxne} B [ B, } Buri = [onpxm} C:[ Cp ome]
cmu 0

_sz Onexne _Dpz Ine><nE Ne XN Inexne

In the tracking problem for state feedback, the control law was u = K, x where = [:z;,r IE;—] " In the
case of output feedback x;,, must be replaced by the estimate as

i
= [ K] K;}[xp}
e

= K, &+ K/

We now need to design an observer to generate the state estimate.
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22.5.1 Non-Augmented Observer

We would now like to use this same procedure, but instead of feeding back on the actual state ), we
will use the estimated state &,,. The integral error term will be the difference between the commanded output
value ycmg and the measured value y,,. It can also be defined as the difference between commanded output
and estimated output, but that will give different results. I don’t really know what the advantages/disad-
vantages of doing it either way are yet. The basic closed-loop estimator equation, with integral error, and
feedback control law The more detailed block diagram is shown in the following figure.

Compensator : U

—> Plant
% |
or |
I
) |
I
I
I
I
I
I
I
I
f |
L e e e e e e e — — — — — — — — — — — — — — — — —— — — — )

Figure 22.4: Observer controller and plant

Propose the following observer
Tp = Apip + Bpu+ K (ip — yp)
Up = CpZp + Dpu
Combining this observer with the integral error equation and the control law
Tp = Apip + Bpu+ K (ip — yp)
Up = CpZp + Dpu
Te = Zemd — 2

_ T T
u= K, zp+ K, ze

Tp = Apip + By(K) &p + K. xe) + K¢ [Cpap + Dy(K,) & + K, zc) — yp)
Te = Zemd — 2

_ T T
u=K,zp,+ K, z.

ip = Apip + BpK, &p + ByK, 1c + K;Cpdp + Ky DK, & + K DpK/ we — Kpyp
Te = Zemd — 2

Tx T
u=K,zp+ K,z
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Tp = (Ap + BprT + K;Cp + KpoKpT)gz«p + (ByK, + KyDpyK, )xe — Ky,
Te = Zemd — 2
u = KpT:Ep + Kz,

Combining into a state space representation gives the dynamic output feedback compensator with ser-
vomechanism: DOFB-Servo.

b A, + B,K] + K;C, + K;D,K] B,K| + K;D,K] [& 0 K 0
|:l’i:|:|: P L Of P Ut P Of P xi + I Zemd Of <_yp)+ I (_Z)

w=(n] K217

Te

Combining both inputs into one the final state-space representation for the DOFB-Servo compensator is had,
and will now be used for evaluation of the loop transfer functions.

{ Non-Augmented Observer (Full Compensator) }

0 0 To I o I|| %

—Z

Fcp] _ [Ap + B,K,] + K;Cp+ KfDyK, B,K] +K;D,K } {x,,] N [0 Ky 0] Fomd
Te

u=[ K, Kj]["%p]

Le

22.5.2 Augmented Observer

The plant for which we will design a dynamic output feedback compensator for is given by
&y = Apzy + Bpu
yp = Cpzp + Dpu
z = Cp,wp + Dpu

where z, € R", u € R™, y, € R’ and z € R™ is the regulated output. The integral error state is defined
by

Te = Zemd — 2 (22.5)
Using the error description in (22.5)), the state vector x,, is augmented to include this error by including z.
as a state variable
SRER AR ey
S = + u + P z 22.6
|:$e:| |:_sz OnexnE Te _Dpz Inexne cmd ( )
Writing the linear state-space representation in (22.6)) more compactly using x = [ x; z) ]T as

& = Az + Bu + BemdZemd
y=Cx+ Du
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where £ € R™, zemg € R™, A € R™" B € R™ "™, B.ng € R™ ™ and where
A 0 B 0 C, 0y D
|:_CPZ 0:| |:_Dpz:| emd |:I:| |:One Xnyp Ine XMe One xXm

and where y € RP where p = ¢ + n.. The difference in this case versus the non-augmented observer
approach is that now we will generate an estimator for the augmented system, and use that entire estimate
for feedback. This includes an estimate of the error state.Consider the following observer with control law

&= Af + Bu + BemdZemd + L(@ - y)

§=C%+ Du
w=K, i
& = Ai + BK, & 4+ BemaZema + LC% + LDK & — Ly
w=K]

i =(A+ BK] + LC + LDK,] )& + BenaZema — Ly

uw=K,] &

4{ Augmented Observer (Observer Only) }7

Zcmd:|

&= (A+BK, + LC + LDK, )i + [Bema L] [
(22.7)

uw= K] &

The above is a representation only of the observer, and not the whole compensator, as the integral error
state is also a part of the compensator and needs to be included in the dynamics

L= [Lp LE]

-

.
[Zcmd “Yp _Z]

&= (A4 BK] + LC + LDK, )& + Bemazemd — Lpyp — Lez
Te = Zemd — 2

— Ts
u=K, %

—‘ Augmented Observer (Full Compensator) %

[m] [A + BK] + LC + LDK] o} [1:] [chd L, Le] Fomd
T = + —Yp
15 0 0f [xe 1 0 1 _ (22.8)

— Ts
u=K, %
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Controller Plant

K(s)

Figure 22.5: System block diagram

22.5.3 Loop Transfer Recovery

See Lavretsky, Wise page (184) 193. In analyzing the compensator and understanding loop transfer
recovery, we consider two control systems: one state feedback and one output feedback. If the state feedback
system is designed using LQR, then it will have excellent margins. If the output feedback system is designed
using LQG, its margins may be arbitrarily bad. The process of loop transfer recover attempts to make the
LQG controller like the LQR controller. While this statement is rather vague, the two systems will never be
the same, as the LQG controller has many states, whereas the LQR controller without integral action has no
states. However, what we mean by making the LQG controller look like the LQR is that the loop shapes in
the frequency domain will be the same over a frequency range of interest, thus recovering the LQR margins.

To do this comparison, we break the loop at the input of both the LQR and LQG controllers. We look at
the transfer function from u; to u, and see how we can change the observer gain so that these two transfer
functions start to look the same. The plant has state-space representation

.i‘p = Apl‘p + Bpui
The transfer function from the plant input to its output is given by
2 - (sl — Ap)_pr
U;

The LQR compensator is described by

_ T
Uy = pr Tp

Multiplying the two transfer functions together gives the transfer function through the control loop when it
is broken at the plant input for the LQR controller

Uo T —1
w —K, (sl = Ap)"" By
Now let’s analyze the output feedback compensator. In this case the plant equation must include the
output. If we dont use a D term the plant is described by
Ty = Aprp + Bpu;
Yp = Cpmp
The transfer function from the plant input to its output is given by

% — Cy(sT - A)7'B,

Usg
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The LQG compensator is described by

ip = (Ap — K;Cp — B,K,)i + Ky,
uo = —K, &
This gives the following transfer function from the input to the compensator (which is the plant output) to

the compensator output (the control)

u T Ty—1
?; =-K, (sI — Ay + K;Cp, + B,K, )" Kj
Multiplying the two transfer functions together gives the transfer function through the control loop when it

is broken at the plant input

2o — K] (sI — Ap+ K;Cp+ B,K]) 'K ;Cp(sI — Ap) "' B,

Uj

22.5.4 An LTR Alternative to Output Feedback

Consider the following MIMO uncertain open-loop system

Ty = Apzy + Bpu
yp = Cpxp (22.9)
2 = Cp.xp + Dpu

where A, € R™*" B, ¢ R"*™ (), € RExnp Cp, € R"™ > are constant known matrices. z is the
regulated output, and the number of regulated outputs cannot exceed the number of inputs, that is ne < m.
The goal is to design a control input v which will make 2 tend to the reference command z.,g asymptotically.
In order to ensure command tracking, we introduce integral action, and for this purpose an additional
state x, is defined as
Te = Zemd — 2

and the plant in (22.9) is augmented to lead to the following extended open-loop dynamics

)= L F [ e ]

(22.10)
Y| _ Cp 0] |zp
Te 0 TI| |xe
The system in (22.10) can be written more compactly as
& = Ax + Bu + Bcma*
cmd<cmd (22.11)

y=Cx

where A € R"*", B € R"™™  B.pg € R™ ", and C' € RP*™ are the known matrices given by

A { A, on,,mc] B [ B, } Bumg — [onpxm} o [Ocp ome]

_sz Onexne _Dpz Inexne Te XM Inexne

Note that p = ¢ 4+ n.. We make the following assumptions about the system > = (A, B, C,0) in (22.11).
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Assumption 1

a) (A, B) is controllable.

b) (A, C) is observable.

¢) B, C, and CB are full rank.

d) Any transmission zeros of ¥ are strictly stable.

e) Xistall: p > m.
Remark 4 Assumptions |lj and |1jp| are standard. Assumption |lic| implies that inputs and outputs are not
redundant, as well as a MIMO equivalent of relative degree unity. Assumption [I|d|is a standard requirement

for adaptive control. Assumption|[IE|can be considered without loss of generality as the case of wide systems
p < m holds by duality.

Remark 5 Given a system X, = (A,, B,, Cp, 0) which satisfies

* (Ap, Byp) is controllable.

* (Ap, Cp) is observable.

* By, Cp, and C, B, are full rank.

* Any transmission zeros of X, are strictly stable.

* The rank of the following matrix is full

A B
rank P p ]) =Ny, + Ne
<[_sz —Dp. P

when augmented with the integral error state as shown in (22.10) also satisfies Assumption [llaHdl In other
words, under these assumptions, integral error augmentation does not destroy controllability or observability,
the rank conditions, nor does it add any transmission zeros[3]].

22.6 PIl-Observer and Controller

Consider again the same plant as before, but this time with a constant sensor bias dy on the output as
represented in the figure below.

The equations describing this system are

Ty = Apxp + Bpu
zp = Cpp

Zp =Yp + dout
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First augment this state-space representation with an integral error state &, = 2cmg — 2 for the controller

)= T [0

This system can be represented more compactly as follows
T = Az + Bu + BemdZemd

From which we write the regulated output z, and the corresponding biased regulated output 2, as follows,
and also we can define the measured outputs in the same way as ¥, and ¥y, where the measured outputs
contain the regulated outputs, but also include as additional outputs the integral error state.

Zp = [Cp O] x
=CLx

Zp = [Cp 0] T + dout
= C.2 + dout

and the measured outputs are

C, 0] 1
yp = Op I T + |:0:| dout
= Cz + Bpdou

Together these equations are

T = Az + Bu + BemdZemd

Up =Cx
Yp = Cz + Bpdou
zZp, =Cx

2p = CLx + dout

Using the control law
u=K ;— T

And substituting in, the compact form of the plant augmented with the integral error state, and closed loop
with control law is

T = At + BemdZemd
Up =Cx
yp = C:L' + BDdout
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So, at this point we have basically assumed the state x,, was available for measurement and the plant
was completely known in determining the above system. We can now write these dynamics in a different
form to include the disturbance as a state.

.Z.L‘ _ Aref 0 T + chd P
dout 0 0 dout 0 cmd

This system can be represented more compactly as follows

:tf = Afxf + Bchmd

Outputs
= [C. 0]y
=[Cp 0 0]y
= Ceuy
p=[C: 1]ay
=[Cp 0 1]ay
= Cafxf
and the measured outputs are
_ [, 0 0]
=10 1 0"
= Cyay
C, 0 I

“=1lo 1 0"
=Cray
So everything is

Sbf = Af$f +szcmd

Jp = Cyy
Yp = Cray
zp = Cepay
zp = Copiy

where

Ty = [:L‘; xeT doTut
So now we have the plant with a closed-loop LQR-PI controller and disturbance with integrator all expressed
in a single system. The problem is that we cannot implement the above controller as the state x;,, which was
used in the control law is unavailable. We attempt to estimate not only this state, but also the error state and

disturbance. That is

]T

iy = Agis+ Bpzema + Kr(fp — vp)
yp = Cyiy
Up = Cyiy
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where -
s AT AT g7
Ty = |:$p Le dout}

Expanding this estimator representation we get the following

j: _ Aref 0 j“ + chd + LU (A _ )
dout =1 o 0 Czout 0 Zemd L; Yo — Yp

giving

ng = Arefﬁi'f + BemdZemd + Lv(gp - yp)

dout = Ll(@p - yp)
Yp = Cyiy

Design PI-Observer First, Then Control Later Dealing with an output bias is a dual problem to that of
dealing with an input bias using an input integrator like in LQR-PI control. The first step is to represent the
system equations to include the disturbance as an augmented state as shown below. Mathematically, these
equations are exactly the same as above, just represented in a different way.

)= o))+ [

2 = [Cp 1] [;p ] + Dpu
out
More compactly these equations can be written
i = Ax + Bu
zp = Cx + Dpu

Now we design an estimator for this new system. The state z and corresponding estimated state Z are

Tp . Tp
z = Zz = ~
[dout] [dout}
This allows the biased output y,, and the non-biased output ¥, to be estimated, and thus the estimate of the
bias to be determined.

Z= A2+ Bu+ K (jp — yp)
Up = CZ+ Dpu
Up = C2+ Dyu
where the output matrix for the estimate of the unbiased output is
C=1[C, 0]

Can also have output matrix for disturbance estimate

Cy=1[0 1]
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To make the proportional and integral components of this observer more clear, represent the observer above
by splitting up K’y and writing

Tp = Apiy + Byu+ Kp (G — yp)
CZout = Kl@p - Z/p)
gp = C’pfﬁp + Czout

ﬁp = Cpf’}p

where

The thinking here is a little bit different than when creating the integral error state in LQR-PI controller.
In LQR-PI control, this error state is constructed by considering measurements which are available, and
asking ourselves what signals should be differenced to make an error which should then be driven to zero.
That is, if we have an unbiased output measurement which we want to drive to some reference value, we
difference these, then call this difference the derivative of the error state. Then, by augmenting the state-
space description with this error state, we convince ourselves that at steady state this error derivative must
become zero, requiring the measurement to be equal to the command.

With the PI observer it is a little bit different. That g, will track y,, at steady state in the presence of
an output disturbance is not what we are interested in, but rather that this process gives convergence of %,
to z,. It is from this estimated state which we can then construct an estimate of the unbiased output yj,. In
thinking of this problem it is convenient to think always of the plant as the system which includes the output
bias, and concern ourselves only with estimating Z,,.

From here we can design a controller. Here we will use an LQR-PI controller, which has control law

TA T
u=K, T+ K, z.
where the integral error state is defined as

Te=1—Hz)p
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Chapter 23

Frequency Domain Analysis

23.1 Introduction

Frequency response method: give a system a sinusoidal input. The output (will always be?) a sinusoid,
with a magnitude and phase which may be different than the input, but the frequency will be the same. Then,
sweep the input frequency across a wide range, and observe how the gain and phase shift of the measured
output change with frequency.

23.2 Compensator Analysis Using Loop Transfer Functions
References: see [2] (Chapter 5) and Astrom and [4] (Chapter 11).

Relative Stability

This block diagram below encompasses the types of controller designs we want to consider. If z.mg = 0,
this is the classical block diagram, where the error signal e is the only input to the controller. When r = 0,
the input is given directly through z.nq, as is the case with the LQR-PI controller.

din dout
Zemd Controller N Plant N
Uo + U; Yo + Yi
r e K(s) O Gls) O
_\J
-~
v "

Figure 23.1: General MIMO feedback control block diagram

The following section will explain how to determine the various transfer functions of interest which
describe a plant and compensator in the block diagram form shown in Figure 23.1] In order to find the
different loop transfer functions, the control loop will be broken at different points, and the transfer function
at this broken point evaluated. This is used to analyze what happens if noise or disturbances are injected
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at these different loop break points. The following show how to find the loop transfer functions for MIMO
plants and controller. This is important because unlike SISO systems, multiplication of matrices is not

commutative.

Note also:
LI+L)y'=I+L0)'L

23.2.1 Input
Loop Transfer Function Breaking the loop at the plant input  means to evaluate the transfer function
from “input” u; to “output” u, while all other signals are zero.

y=G(s)u;

Return Difference Transfer Function Differencing the “input” w; and “output” u, using the expression

for output from above:
u; — uo = u; — K(s)e
(

w; — up = u; + K(8)G(s)u;
u; —uo = (I + K(8)G(8))u;
)

w; — up = (I 4+ Ly(8))u;

I+ Ly(s)

When plotting this loop shape, it will be large at low frequencies and tend to unity at high frequencies, since
the loop transfer function L,, — 0 at high frequencies. This loop will dip below 0 dB, before leveling out,
and the more it dips below 0 dB the worse the gain margin is.

Input Sensitivity Transfer Function S,,(s) The input sensitivity transfer function is from dj, to u; while

all other signals are zero.
U = Uy + din

uo = K(s)e = —K(s)y
y = G(s)u;

w; = —K(s)G(s)u; + din
(I + K(s)G(s))ui = din
u; = (I + K(s)G(s)) 'din
ui = (I + Lu(s)) " din

Su(s) = (I + Lu(s)) ™"
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Complementary Input Sensitivity Transfer Function T,(s) Unlike the T} (s), the input complemen-
tary sensitivity transfer function does not represent an relationship between any of the system inputs and
outputs. This transfer function is given by using the identity S, (s) + 7,,(s) = I, hence the name com-
plementary sensitivity transfer function, but otherwise there is little intuition regarding what this transfer
function represents.

Su(s) +Tu(s) =1
(I4 Ly(s)) ' 4+ T, =1
I+ (I+Ly(s)Ty =14 Ly(s)
Ty = (I+Ly(s)  Ly(s)
Ty = Su(8)Lu(s)

With L(I + L)™' = (I 4+ L)™' L, which can be shown by pre- and post- multiplying both sides by (I + L),
we can also write T, (s) as
Tu(s) = Lu(I + LU(S))_l

Stability Robustness
1+ L,*

At low frequencies L;* — 0, so this loop shape will be unity for low frequencies and large at high fre-
quencies, since at high frequencies L ! — oo. It will dip below 0 dB before going up, and the more it dips
below 0 dB, the worse the gain margin will be.

23.2.2 Output

Loop Transfer Function L,(s) Breaking the loop at the plant output y means to evaluate the transfer
function from “input” y; to “output” y, while all other signals are zero.

Return Difference Transfer Function Differencing the “input” y; and “output” ¥, using the expression
for output from above:

Yi — Yo = yi + G(s)K(s)yi
Yi — Yo = (I + G(5)K(s))y;
Yi — Yo = (I + Ly(s))yi

I+ Ly(s)
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Output Sensitivity Transfer Function S, (s) The output sensitivity is from doy to y; with all other
signals are zero. “The sensitivity function tells how the variations in the output are influenced by feedback”

(4]
Yi = Yo + dout
Yo = G(s)u; = G(s)u,
o = K(s)e = —K ()y,
yi = —G(s)K(s)yi + dou
(I + G(s)K(s))yi = dout
yi = (I + G(s)K(5)) ™ dow
yi = (I + Ly(s)) ™" dow

Sy(s) = (I + Ly(s)) ™

At frequencies where plant disturbances are to be rejected, we want .S, (s) — 0.

Complementary Output Sensitivity Transfer Function T} (s) Unlike T,(s), this transfer function rep-
resents the relationship between the noise n and the output y; = y,. This transfer function also satisfies the
identity Sy(s) + T}, (s) = I, hence the name complementary sensitivity transfer function.

w=y —n

yi = G(s)K(s)e

e=r—yY+tn

e=1r—G(s)K(s)e+n
(I+G(s)K(s)e=r+n

e=(I+G(s)K(s)"'n

yi = G(s)K(s)e

yi = G(s)K(s)(I + G(s)K(s)"'n

Ty(s) = Ly(s)(I + Ly(s)) ™"

This transfer function is the same as that between r and the output y; = y,.

23.2.3 The Gang of Six

Now that the basic transfer functions have been found for a generic plant and controller feedback system,
and an example of how to find the transfer function for the LQR-PI has been presented, we want to explain
how to use the transfer functions to create some plots that will aid in control system analysis and design.
The following figure shows singular value plots of the “gang of six”.
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23.2.4 Margins for MIMO System

23.3 Stuff

23.3.1 Gain and Phase of Poles and Zeros

These two examples that follow connect the transfer function representation of the integrator and differ-
entiator to a differential equation and show how, when the system is given a sinusoidal input, that the zero
causes the output to lead the input, and the pole causes the output to lag behind the input.

x 1

u s
The differential equation is

T=u

This whole thing of gain and phase is for a given sinusoidal input, so u(t) = A sin(wt) and then we want to
see how that will affect the output x(¢) for this system.

d
d—f = Asin(wt)

separate and integrate back

T t
/ dx = | Asin(wt)dt
o

to
giving

— 3o = — = cos(wt) + = cos(wt
T — Xo - cos(wt) + - cos(wt)

x(t) = 4 cos(wt) + A cos(wtp) + o
w w

x(t) = —é cos(wt)

but — cos(x) = sin(z — 90°) so the input and corresponding output can be written

u(t) = Asin(wt)

x(t) = 4 sin(wt — 90°)
w

So we can see that the magnitude of the output depends inversely on w, getting smaller as w gets larger.
More importantly we can see clearly that there is a 90° phase lag from the input to the output. Consider now
a differentiator.

gives



and with u(t) = Asin(wt) we have

x(t) = Aw cos(wt)

together the input and output are

u(t) = Asin(wt)
x(t) = Aw cos(wt)

But we have cos(x) = sin(z + 90°) giving

u(t) = Asin(wt)
z(t) = Awsin(z + 90°)

and here we can see that there is a positive phase shift, or say that the output leads the input by 90 degrees.

23.3.2 How to Make Bode Plots

first normalize the transfer function, so all the factors look like (1 + sa;)

23.3.3 Nyquist Plots
23.3.4 Output Filters
Types of Filters

Talk about the different types of filters here, including elliptical filter. Talk about why I want to use any
particular one, and which ones work best.

First Order Low-Pass Filter

Filters can be used to condition an output signal which is to be used in feedback. A low pass filter is
given by the following transfer function, where the input to the filter is v and the output is y.
y 10
u  s+10
Such a filter is best implemented in SIMULINK by representing it in state-space form, thus allowing the
initial conditions to be set, which cannot be done using a transfer function representation.

y yx 10

u  zu s+10
1

s+ 10

=10

218
I

T=—10x 4+ u
y = 10z
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A=-10 B=1 C=10 D=0

This state-space representation of a low-pass filter can now be implemented in SIMULINK, but the initial
conditions must be specified. The filter takes as its input the unfiltered state x and outputs the filtered state
x . When the simulation begins, if the initial conditions are not set, the filter will cause an abrupt spike in
the state before settling down. The initial conditions must be set such that when the simulation begins, at
the first time step the output signal is the same as the input signal, and the filter state derivative should be
zero. That is, #(0) = 0 and 2 ¢(0) = =(0). Using the state as the input v = x, the filtered state as the output
y = xy, and the actual internal filter state z = ...

0 = —10z4(0) + x(0)
xf(0) = 10z4(0)

We see 25(0) = x(0)/10 = (0) will make the filter state derivative @5 = 0 and the filtered output the same
as the input.
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Chapter 24

Linear System Stuff

24.1 The Matrix Exponential
24.1.1 General System Stability

Given a linear ODE of the following form
any™ 4 -+ ag§ + a1y = bypul™ 4 - 4 byii + by

with a specified input function u(t), the solution is the output function y(¢). We say the system is BIBO
stable if, given a bounded input function u(t), the output function y(¢) is bounded for all time. That is
ly(t)| < oo < oo. Considering the Laplace transform of this system

Y (8)(ans" + -+ ags® + a18) = U(8)(byns™ 4 - - + bas® + by s)

Y(s)  (bns™ 4+ +bas® +b1s)  N(s)

U(s) (ans"+---+ags?+ars) D(s)
And for BIBO stability this corresponds to the denominator D(s) having all of its roots have real part that
is negative. When taking the inverse Laplace transform of G(s) if any of the roots were positive, this would
result in the output taking the input and multiplying it by some increasing exponential. So, regardless of
which bounded input was fed to the system, the output would grow unbounded. That is why stability requires
the roods of D(s) be negative. Considering the transfer function representation of a stable system such as

Y(s) _ N(s) (s)
= = S
U(s)  D(s)
Now, although the system is stable, we may want to know how stable it is. We do this by looking at the roots

of the denominator (which must all be all in the LHP for stability) and see how far they have to go before
they become in the right half plane.

24.1.2 Stability Margins

Stability margins for a system have no meaning when considered outside the context of feedback. Take
a stable system G/(s). If an additional gain or time delay is introduced between the input and the system, the
output will be delayed, and scaled by this gain. The same goes for delays or gains at the output. But these
will not effect the stability of the system. Likewise if the system G(s) is unstable, regardless of how the
input is magnified or time-shifted, the resulting output will always “blow up”. Stability margins for a system
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G(s) have to do with placing the system in feedback, and then determining how delays or gains added to the
system will affect stability for the closed-loop system. Consider the following system where the plant G(s)
is stable. (It doesn’t have to be) and we are designing a feedback controller to achieve some performance
objectives out of the closed-loop system. The input to the system is U(s) and the output Y'(s).

Y(s) _ KG
06~ 1= T ken
Call the quantity
L=KGH
giving
Y(s) K@
o) 2 =17

Now the loop transfer function L simply takes as an input a complex frequency s, and the result is a complex
number with some magnitude and phase. It is not obvious what values of s would result in what complex
numbers from L, or even what a “good” or “bad” value of L is. However, we can see from this equation that
if L = —1 that the closed-loop system will “blow up”, which is bad.

Intuitively, we know that given an arbitrary input, if the system is amplifying the signal through the
feedback loop, the output will become larger and larger, indicating system instability. One way to think
about this is: after some initial amount of time with an arbitrary input, turn the input off. If the signal within
the loop eventually decays, the closed-loop system is stable. If the signal in the loop grows, the system is
unstable.

We consider the case when the input to the system is an arbitrary sinusoidal input.

Consider the block diagram of the system I above, with the loop broken at the output. Inject a signal
din into H and see what happens when it goes through the blocks and comes out of the output y and call this
signal doy. Notice that the output signal is

5out = _L(Sin

Again keeping in mind that the input and output are both sinusoidal signals, and if we consider sweeping
across all frequencies with our input signal di,, the output will be a sine wave of the same frequency that has
been phase shifted and scaled by some magnitude. When is L bad? What must L do to the input to be bad?

Consider the case where we find the frequency such that L has a phase shift of 180°. This is equivalent
to flipping the sine wave, or multiplying it by a negative. When this happens the magnitude of L then must
be less than unity, otherwise the output will be the same phase as the input, but larger? Is this true?

What is the explanation for why |L(s)| can be larger than unity when its phase is —180°? Finish this
explanation.

In any case, looking at the denominator, we know that L(s) = —1 is bad. So, we sweep across all input
frequencies and look at when |L(w)| = 1, we then want to know, at this value of w, how far is the phase
from being —180°? This is called the phase margin.

For gain margin, sweep across all the frequencies w and find the one such that Z/L(w) = —180°. Then,
for this value of w, determine how far the magnitude of L is from being unity. This is gain margin.
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24.1.3 Time Delay Margin

s = o0 + jw Considering sinusoidal inputs only, that is s = jw Considering a Bode plot of a transfer
function G(s), the phase margin is Consider an input u(¢) and output y(¢). The input and output of the
system can be represented as an exponential. That is consider the input

u(t) = e

The output will be of a similar form, of which we are trying to find the specifics when there is a delay
between the input and output

and the input with this delay is

and we can write

which is

y(t) = u(t)e™™"

and so we can see given an output that is delayed by 7 from the input is represented by e~
transfer function with delay

S

7. Taking a

Y(8) e

Now we want to know when this system is placed in feedback, how large would the delay have to get
before the closed-loop system becomes unstable? A delay does not affect the magnitude of the system, only
the phase. Look at the transfer function G(s) when its magnitude is 1. Then we want to know what the
relationship of the delay to phase is, where we are looking for how much phase shift can occur before G(s)
with the delay hits —1. Evaluating G with the delay at the frequency where its magnitude is 1.

G(jweg)e ™07 = —1
Z(G(jweg)e I9eoT) = —180°

The magnitude of G is 1 and the magnitude of the delay is 1, so now we just need to check when the
combined phase of the two is —180°.

A(G(jWCQ)e_jwch) = AG(jwcg) 4 feIwWesT — _180°

and the angle of the delay is

Lo IWesT — —WegT
LG (Jjweg) — wegT = —180°

Recalling the definition of phase margin

211



PM = 180° + £G(jweg)

we get
PM = weyt
and solving for the delay ™ we get
PM
T =
Weg

Magnitude more than 1 OK only when phase is £180° The maximum tolerable time delay is one which
causes the transfer function % to become —1,

24.1.4 Introduction

Consider the following linear, time varying, autonomous state space equation where A(t) € R™*" and
z(t) € R

(t) = A(t)z(t)

We want to gain insight into solution of this matrix equation by first considering the time invariant scalar
equation

Proposing a solution of the following form:

t
Bt) =Tttt o gt

differentiating

2

t
BE)=0+1+t+ 5+

and notice that the function x(¢) is in fact the derivative of itself, and satisfies the given equation. Define

this function z(¢) = ef, which is described by the following sum, to be the exponential function, noting that
0= 1.

. Z"o tn t2 3
n=

(See Rudin pg 63 for definition of e) Extending this function definition to the scalar first order differential
equation

z(t) = ax(t)

where a € R. We are looking for a function x(¢) which, when differentiated, results in z(¢) being multiplied
my a. We propose a solution z(t) = e by replacing each ¢ in the above definition by at. That is
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(at)? | (at)’

z(t) =e" =1+at+ TR TR
which, when differentiated gives
342
t
x(t) :O+a+a2t+%...
1w a2t2
= a + a + T .
= qe™
= ax(t)

which solves the given differential equation. In general
z(t) = ec
is a solution, where ¢ = x(0)

z(t) = e™2(0)

Or more generally for ¢y # 0 the solution to the differential equation & (t) = ax(t) is given by
z(t) = 1) ()

24.1.5 Matrix Exponential
Similarly, if the following solution is proposed for the matrix differential equation
(At)?  (At)°

() =T+ At 4 =+

+...

it can be differentiated in the same way as the scalar case, thus defining the function known as the matrix
exponential.

(A2 (A

At A
e =T+ At + 51 T

+ ...

giving the following solution to the matrix differential equation z(t) = Ax(t)
z(t — to) = e (1)

The quantity given by evaluating the matrix exponential is known as the state transition matrix:
x(t —tg) = ®(t, t0)x(to)

which is sometimes written ®(¢ — t() as well. The state transition matrix may be time varying, or time
invariant, depending on the system from which it resulted. The following examples will help show different
way in which the state transition matrix can be found by evaluating the matrix exponential.
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Diagonal A Matrix

et 0 0

0 et 0

oAt — '
0 0 ent

Finding the State Transition Matrix

Example 24 Using the definition - Time Invariant For the system % (t) = Axz(t) with A
given below, the matrix exponential can be evaluated using the series definition.

0 1
=0 o]
Aty — | LU0 0] (t—t)+l 01 2(t—t)2+
0 1 0 0 “Torlo 0 0) e

but

A”:[O 0}f0rn€N22

0 0

eA(t—to):[(l) (”Jr[g H(t—to)z[é (t—lto)}

So the state transition matrix is given by:

B(t,ty) = { 1 (t—to) ]

giving

0 1
and the solution to the state space equation is:

o) =[5 7 |t

Example 25 Using Inverse Laplace Transform - Time Invariant For the system & (¢) =
Ax(t) with A given below, the matrix exponential can be evaluated using inverse Laplace
transforms.




where
B(t, to) = L (s — 4)")

(sI—A)_{g _1]

Using the formula to invert a 2 X 2 matrix:

A7 = i Lo s )= LG

Taking the inverse Laplace transform:

l

So the state transition matrix is given by:

w \»—AC'JN‘H

Swl=

B(t,to) = [(1, %) ]

which matches the answer we got in the first example by using the series definition.

Example 26 Using the definition - Time Invariant The last example showed how the
series definition could be used to find the state transition matrix for a simple linear time
invariant system. This example was made particularly easy because the series terminated
after the first two terms. In this example, the entire series will have to be considered, and
recognized as a series representation of a commonly known trigonometric function. For the
system @(t) = Ax(t) Ais given by:

0 1
A=] e o
Evaluating the first terms in the series definition of the matrix exponential:
pe_| 01 [0 1] [-a* 0
—a®> 0| -a® 0] | 0 —a?
2 r 1 2
3 A24 a 0 0 1 . 0 —a
A_AA_[() —a® || =a®> 0| [a* 0
0 —a®>][ 0 1] at 0
4 _ A34 _ —
AT=A474 [ at 0 i —a? 0 | L0 a }
A5_A4A_Fa4 0 0 11 [ 0 qa*]
N N L 0 a* —a*> 0] | —a® 0 J




Assembling these components using the series definition of the matrix exponential, the state
transition matrix becomes

1—a2ﬁ+a4ﬁ—... t— ...

Recognizing the series in the entries of the state transition matrix, it can be simplified to:

O(t, to) = [

and the solution to the state space equation is:

rrxr ITxx
rrxr IxIx

rrr xIxx

() = {

See Hogan'’s notes Unforced_LTI Response.pdf

J o

TXT TXT

Example 27 Directly from A Matrix - Time Varying 6.241 notes Wed. 2/29

0 ¢
= 0]
il(t) = tIL’Q(t)
da(t) =0

j?l(t) = tl‘g (t())
do(t) =0

Example 28 Using Inverse Laplace Transform - Time Varying 6.241 HW 3.4. Find an
expression for ®(to, tg) for the system & (t) = A(t)z(t) given

=l

when
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k=0 fort<O
k=1 fort>0

for tg < 0to t2 > 0. Since the matrix A(t) is time varying and described for two different
cases of k, only on state transition matrix ® will not be able to be used. Two state transition
matrices are needed.

D(tg, to) = D(ta, t1)P(t1,t0)

The first one will go from ¢ = t5 < Otot = ¢t; = 0, and is given by:

@mJ@:mpqgéhhmO

([} ov)

Using the series definition of the matrix exponential, the state transition matrix is calcu-
lated. The series definition can be used because the series terminates after the first two
terms. That is all powers of A greater than 1 are zero.

oo ([5 5 w) <[4 O]+ [ b cwmen[d 4] core

D(t1,t9) = _0 1 ]

Now, the second state transition matrix ®(t¢o, 1) must be calculated from t = t; = 0 to
t=1ty > 0:

@@m:mdiéwrm)

-en([5 )

The series definition can not be used to evaluate the state transition matrix in this case, since
it does not terminate after two terms like it did before. Another way to evaluate the state
transition matrix is the following:

z(te) = L7 ((sI — A) Na(ty)

where
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Using the formula for the inverse of a 2 x 2 matrix:

-1 s 1
-1 1 s 1 1 s 1

I—A)t=1|° - - - _ | s

(el=4) [1 ] det(s — A) [—1 ] s?+1{—1 } L e

Now, taking the inverse Laplace transform of (s — A)~! (which only depends on t5 and
not 1) using a Laplace transform table, by hand:

-1 |:82L11 521+1:| . |: COS(tQ) Sin(tg):|
=1 s | T | g t t )
2+ 241 sin(tz)  cos(tz

Combining the two state transition matrices:
o = D(tg,t1)P(t =
(t2,10) = Blta, t)0(01,10) = | ) ST

_ [ cos(tz)  sin(ta) —tg cos(t)}
—sin(ty) cos(t2) + tosin(ts)

cos(tz) Sin(tg)] [1 —to]

Several other state transition matrices ®(t2,to) would exist for different conditions of ¢o
and ¢g. For instance, if ¢2 and ty were both greater than zero, the state transition matrix
would only be calculated for £ = 1 giving:
1ty —to
D(ta,tg) =
(t2, to) [O ] }

24.1.6 Non-Autonomous Systems

In order to find the state of a state space model at time ¢; based on initial conditions at ¢y and in input
u(t), the methods of the state transition matrix can still be used, although they must be extended to include
the input.

() = B(t1, to)z(to) + / " B(ty, ) B(u(r)dr

to
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Example 29 Non-Autonomous System - Time Varying QR10B from 6.241 midterm
review Given the following differential equation, find y(27). The initial conditions are
y(0) = 1 and y(0) = 1. The input u(¢) = 1 for all time.

1 for sin(t) > 0
0 for sin(t) <0

§(t) + k(t)y(t) = u(t) wherek(t) = {

Putting this information into the differential equation, and based on the final time at which
we are asked to calculate y, this problem can be broken into two parts, and solved separately
using the formula above. That is, with {9 = 0 and ; = m, we will first find the value of
y(t1) and g(t1). Over this time interval k£(¢) = 1 is a constant, and the problem can be
solved as a time invariant one. Once the values of y and ¥ are had at ¢;, the problem will
be repeated with t5 = 27r.

The given differential equation will be rewritten for the first interval over which it will be
solved, and the corresponding state space model for this system must be found.

y+y=1
Define the following state vector z(t):
y(f)]
x(t) = |~
®) [y(t)
with the state vector derivative
: z)(t)]
x(t) = |
®) L/(t)

Using this state vector, the system equation can be expressed using the following state space

model ‘
ol =[5 o) [+ [

From this state space model, the state transition matrix ®(¢1, ty) must be found.

B(t1, to) = exp <[_01 é] (t — t00>

This state transition matrix may be more difficult to evaluate using the series definition of
the matrix exponential, so the inverse Laplace transform method will be used:

‘P(tl,to) = 3_1((81 — A)_l)




Using a Laplace transform table, or by evaluating the inverse Laplace transforms by hand:

cos(t; —tg)  sin(t; — 750)]

O(t1,t0) = [_ sin(t; —tg) cos(t; — to)

With the initial conditions plugged into the state vector:

1
ofto) =o(0) = |
All of the components to use the equation are had. Plugging them in:

w(my — [ o5l sin(ﬂ)} H .\ /0 [ cos(m — 7) sm@_ﬂ] [0] .

| —sin(7) cos(m)| |1 —sin(r —7) cos(m —71)| |1

[ e
(1] [eos(m — 7)} ‘”

- -1 * | sin(m —7)

|
—_
Q
@}
w0
/N TN —
o
~—
|
Q
Q
n
—~~
|
SN—
[—

This procedure must now be repeated for the second time interval, from ¢; = 7 to {5 = 27,
using the following state space model

) = Lo ol o) < ]

with the “initial” conditions:

Again, using the inverse Laplace transform method to find the state transition matrix
(I)(tg, tl)i
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Using a Laplace transform table, or by evaluating the inverse Laplace transforms by hand:

Db, t1) = [1 tg—t1:|

0 1

2(t) = a(m) = [_11}

All of the components to use the equation are had. Plugging them in:

o(2m) = | 7{] [_11] +/07r [(1) %1_7] m dT
1SR it

= -

24.2 Controllability, Reachability, and Observability
24.2.1 Introduction

The concepts of controllability, reachability, and observability will be explained, as well as the weaker
conditions of stabilizability and detectability. The differences between these terms will be explained for
continuous and discrete time. In a broad sense, the concept of controllability is the ability to command a
system to do what we want it to do through the action of a control input. The concept of observability is the
ability to see what is going on inside a dynamical system given the sensor outputs. To better illustrate these
concepts, eigenvalue decomposition will be used, and is explained next.

24.2.2 Eigenvalue Decomposition

Eigenvalue decomposition is the representation of a matrix A in terms of its eigenvalues and eigenvec-
tors. Only diagonalizable matrices can be factored this way, and the result is a diagonal matrix with the
eigenvalues of A along the diagonal.

The matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. To check
whether A is diagonalizable, first find its characteristic equation 64 = det(A] — A) = |A\[ — A| = 0.
From the characteristic equation, all of the eigenvalues \; can be found. Then find the eigenvectors by
plugging in each of the eigenvalues into (\;/ — A)v; = 0 and solving for all of the eigenvectors v;. Once
all of the eigenvectors are obtained, their linear independence can be checked by combining them into an
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eigenvector matrix V. If the determinant of this matrix is nonzero, the eigenvectors are linearly independent
and the matrix A can be diagonalized. The diagonalizability of A can also be verified by attempting to do
so through row operations, although if it is verified this way that A is diagonalizable, the eigenvalues and
eigenvectors will have to be found anyway.
The eigenvalue problem, or eigenvalue equation can be stated as follows, and is the basis for finding the
eigenvalues and eigenvectors of A.
Av; = v\

Assembling these n linearly independent eigenvectors in a matrix V, and the eigenvalues along the diagonals
of a matrix A, the eigenvalue equation can be written in matrix form.

AV = [ Avy Avy ... Awv, ]
VA = [ ’Ul)\l U2>\2 e Un)\n }
AV =VA

Since V' is composed of the n linearly independent eigenvectors, it has full rank, and is thus invertible,
allowing the following to be written:
A=VAV!

A=V"1AV

This is the process of diagonalizing a matrix A using its eigenvalues and eigenvectors.

Given the system & = Ax+ Bu with state vector x, a linear transformation z = M x can be proposed, so
long as M is full rank. The requirement of M to have full rank has to do with the necessity of all information
in x to be preserved under the transformation. Since M has full rank, it is invertible, and the state vector z
can be written

r=M"'z

with derivative
=M1z

substituting the transformed state into the system equation
M= AM 'z + Bu

3= MAM 'z + MBu

looking at this representation, and recalling that we can select M to be any matrix with full rank, we select
M = V. The system can then be simplified and represented as follows

z2=Az+VBu

This shows that given a state space model & = Ax + Bu, the system can be rewritten using a new state
z where the matrix A has been transformed into a diagonal matrix A with the eigenvalues of A along the
diagonal.

The following examples will help show the process of finding the eigenvalues and eigenvectors, checking
the diagonalizability of A, and then finding the representation 2 = Az + V Bu when possible.
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Example 30 Eigenvalue decomposition with distinct eigenvalues Given the matrix A
below, we would like to determine if it can be decomposed using its eigenvalues and eigen-

vectors.
1 2
=121

Find the characteristic equation 64 = det(A] — A) = 0 of A. First, setting up the matrix
M — A:

A-1 -2
M_A_[ —2 )\—4}

taking the determinant

A—1)(A—4)—4=0

A —5X1=0
AA=5)=0
giving the following eigenvalues
A1=0
A2 =5

both eigenvalues are distinct, so we expect that the corresponding eigenvectors be linearly
independent. Finding the corresponding eigenvectors

s ( ﬁiizizzo] =10
el S R
I EA R S

It is verified that the two eigenvectors are in fact linearly independent, as we expected.
Eigenvectors are not true vectors... they are like a set of vectors... So any choice for

the eigenvectors will work. Choosing a = 1 gives the following eigenvectors, which are
arranged in the eigenvector matrix V.

o-[2] we2] o[

Since the matrix A is diagonalizable, and we all of the eigenvalues and eigenvectors of A,
we can write the following:

R IR

The significance of this will become clearer with further examples.

For )\1 =0

For )\2 =5
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Example 31 Eigenvalue decomposition with repeated eigenvalues Given the matrix
A below, we would like to determine if it can be decomposed using its eigenvalues and
eigenvectors.

This matrix has repeated eigenvalues, but is diagonalizable.

Example 32 Eigenvalue decomposition with repeated eigenvalues Given the matrix
A below, we would like to determine if it can be decomposed using its eigenvalues and

eigenvectors.
11
=01

Find the characteristic equation 4 = det(A] — A) = 0 of A. First, setting up the matrix
A — A:

AI_A:[A—l —1}

0 A—1

taking the determinant

(1= A)(1—\)=0

A=1)2=0
giving the following eigenvalues

A =1

A2 =1

With repeated eigenvalues there is no guarantee that the eigenvectors will be linearly inde-
pendent. Finding the corresponding eigenvectors

(NI — A)v; =0
ot e =]
o o)l ]=l0]) w16

There is only one linearly independent eigenvector of A, so A is not diagonalizable.

For\i =X =1
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24.2.3 Controllability, Reachability, and Stabilizability

Controllability and reachability are two concepts with relate to the ability to command a system to do
what we want it to do through the action of a control input. In continuous time (CT) systems, these terms
have the same meaning, given by the following definition:

Definition 20 Controllability (CT) A continuous time system is controllable if for all initial states xq all
states x, and some time t1 which is greater than tg, there exists a control input which will take the state x
Sfrom z(tg) = xo to x(t1) = 1.

Vg, z € R"WT > toEIu(t)‘t0<t<T cx(t) s 2(to) = 2o, x(ty) = 21
For discrete time systems, controllability and reachability are different, as given by the following defi-

nitions. (Kalman 1961)

Definition 21 Controllability (DT) A discrete time system is controllable if there exists a control input
which will take the state to the origin in finite time.

Definition 22 Reachability (DT) A discrete time system is reachable if there exists a control input which
will take the state from any initial state to any final state in finite time.

24.2.4 Controllability versus Reachability

The need for the two different, but similar definitions for the discrete time case is explained here. . . Examples:

x(t—i—l)—[g ?]x(twm]uu)

:Jb(t):[g ?]x(t)+[?]u(t)

Include example of DT system which is controllable but not reachable

24.2.5 Applying the Concept of Controllability

Now that the definitions for controllability and reachability have been presented and explained, we
will focus our attention only on CT systems. The process of determining if a system is controllable will
be explained, and some examples using eigenvalue decomposition will be used to make the concept of
controllability clear.To investigate the controllability of a system, the controllability matrix must be found.
This matrix will serve as the basis for controllability calculations

* Explain how to derive the controllability matrix

M.=|[ B AB A?B ... A"'B ]

In order for a system to be controllable, the controllability matrix must have full rank. For a system sys-
tem with a single input this corresponds to the column vectors B, AB, A%2B ... being linearly independent.
That is to say the square controllability matrix M. must be non-singular; its determinant must be non-zero.
The following examples show the process of determining the controllability for CT systems.
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Example 33 A controllable system & = Ax + Bu

-1 0 2
R
Calculate the controllability matrix M,:

M.=[ B AB}:[? _32}

The controllability matrix has full rank of 2, so the system is controllable.

Example 34 An uncontrollable system & = Az + Bu

-1 0 2
R
Calculate the controllability matrix M,:

M.=[ B AB}:[? _H

The controllability matrix has rank 1, so the system is not controllable.

Determining the controllability of a system by checking the rank of the controllability matrix is procedu-
ral operation which results in only a yes or no answer to the question: is this system controllable? However,
if a system is uncontrollable, this does not mean we must pack up and go home. We would like to gain some
more insight into systems which are not controllable to better understand what is going on.

When we say that a CT system is uncontrollable, this does not mean that we have zero influence over
the output of the system, but rather that not every state vector in the state space can be achieved. The range
of the controllability matrix M, (the span of the columns of M) gives the possible state vectors that can
be achieved by the system by application of control. For a square matrix M., if its columns are linearly
independent, it will span R™, and any state vector in the state space R™ can be achieved. The state vectors
that are achievable by application of control are called controllable primal states. We call a state vector a
primal state to differentiate it from individual state elements or components of the state vector.

If M. does not have full rank, then there are primal states in the state space which are not spanned by
the columns of M..

So, we know that for a system that is not controllable, there may be some primal states which are
controllable, and some that are not. The uncontrollable states are best described in terms of uncontrollable
dual states. The concept of dual states may be best explained by first providing some examples.
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Example 35 Revisited: A controllable system Consider again the system @ = Ax + Bu
with the following A and B matrices.

<[] -T2

The controllability matrix was found before to have full rank, meaning the system is con-
trollable. Based on the definition of controllability for CT systems, we know it is possible
to to command the state vector x to any desired value. To better see this we will represent
this system using the transformed state = = V'z. This results in the system

2 =Az+VBu

where A is given by
A=V"1AV

Finding V' and A: Find the characteristic equation 64 = det(A] — A) = 0 of A. First,
setting up the matrix Al — A:

_[A+1 0
MA_[ ~1 A—J

taking the determinant
A=1)(A+1)=0

giving the following eigenvalues

both eigenvalues are distinct, so we expect that the corresponding eigenvectors be linearly
independent. Finding the corresponding eigenvectors

()\ZI - A)UZ =0

A+ 1 0 Vi1 | 0
-1 )\z —1 V;,2 - 0

For A\; =1
2 0 V1,1 . 0 . 0
-1 0 V1,2 o 0 1= a
For o = —1
0 0 vp1 | | O vy — —2a
-1 -2 V22 o 0 27 a
usinga =1
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allowing the system to be written

simplifying
z = L0 z+ -2 U
0 -1 3

From this representation using the new state vector z, it may now be more clear that since
z1 and z» are decoupled, and the control effort can effect both state variables, thus allowing
any state to be reached through application of a specific control input.

* How to find unreachable primal states? Is that even a thing?
» Explain what dual states are
* Do controllable dual states mean anything?

* Explain controllability of a system (fully controllable system) versus controllability of a mode

Example 36 Revisited: An uncontrollable system & = Ax + Bu

-1 0 2
S ETIES N
The controllability matrix M, was calculated and found to be rank deficient (it did not have

full rank) and thus the system is not controllable. What else can we find out about this
uncontrollable system?

24.2.6 How Controllable?

condition number of controllability matrix

24.2.7 Observability and Detectability

C
CA
M, = CA?

- CAn_ 1 -
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24.2.8 Reachable Primal States, Uncontrollable Dual States

Given a state-space model, be able to find the set of all reachable primal states, and uncontrollable dual
states.

010 0
A=|0 0 1| B=|1| C=[0 1 1] D=]0]
a 2 0 1

* Reachable primal states are given by the span of the columns of the controllability matrix M,

Computing the controllability matrix:

01 1
M.=[B AB A?B]=|1 1 2
1 2 a+2

Reachable Primal States For this square 3 x 3 matrix, if it has full rank, its columns would span R3
and the entire states-space, i.e. R? would be a reachable primal state. Because it is square, we can take the
determinant. When the determinant is zero, the controllability matrix loses rank, and then its columns would
not span R3.

det(M,.) = —a+1

So the controllability matrix is full rank for ¢ # 1, and it loses rank when a = 1. With full rank, the
reachable primal states are anything in R?. This can be written:

1 0 0
for a # 1 the reachable primal stateis: x = ¢; |0 +¢co [1| +¢3 |0 for ¢y, ca, c3 € R
0 0 1

When a = 1 and the controllability matrix loses rank, we need to still find the set of reachable primal
states. That is, with a = 1, what is the span of the columns of M_.? In the case when a = 1, M, becomes:

M, =

= = O
[N

1
2
3
By inspection, or through a series of row reductions, it is seen that only two of the columns are linearly

independent. Thus, the reachable primal states when a = 1 are given by a linear combination of any two of
the columns of M. That is:

0 1
for a = 1 the reachable primal state is: x =c; [1| +¢c2 |1 forci, co € R
1 2

Uncontrollable Dual States Uncontrollable states are a linear combination of each of the entries of the
state vector z. That is, an uncontrollable state z; is given by:

z; = Px  where P is a row vector
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The row vector P is such that:
PM. =0 or, alternatively MTPT =0

Using the second expression this gives:

0 1 1 D1 0
1 1 2 p2| = |0
1 2 a+2]| [ps 0

Whena # 1, P=[0 0 0]. The answer would be given as:
“when a # 1 the uncontrollable dual state is given by: z = Pz, with P definedby: P = [0 0 0]
When a = 1, the following system would have to be solved for p1, p2, and ps.

01 1] |;m 0

1 1 2| |p2| = |0

1 2 3| |ps 0
b2 = —p3

p1+p2+2p3=0 — p1+p3=0 — p1=-p3

p1+2p2+3p3=0 — —p3—2p3+3p3=0 — Op3=0

So, when a = 1, ps3 can be selected arbitrarily, and then p; = —p3 and ps = —ps3. The answer would be
given as:

“when a = 1 the uncontrollable dual state is given by: z = Px, with P definedby: P = k [—1 -1 1}
fork ¢ R”

Reachability of System A system is reachable if the entire state-space is reachable. That is, the only
uncontrollable dual state is z = 0.

24.2.9 Observable Dual States, Unobservable Primal States
Unobservable Primal States Unobservable primal states given by the nullspace of M, which is: M,z =

C 0
M,=|CA| = |a
a

1 1
2 1
CA? a+2 2

Take the determinant of M,:
det(M,) = a(a — 1)

The observability matrix loses rank when a € {0, 1}.
* When the observability matrix M, has full rank, the system has no unobservable primal states.

* When M, loses rank, there will be some unobservable primal states
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To find the unobservable primal states, plug in each value of a which make M, lose rank, and solve M,z =
0. For a = O:

01 1 I 0
0 2 1| |z2| =10
0 2 2 I3 0

By inspection, z; can be made anything, and x2 = x3 = 0.

1
for a = 0 the unobservable primal state is: z = k |0 fork € R
0

Fora = 1:
01 1 I 0
1 2 1| [zo| = |0
1 3 2 €T3 0
Solving:
Ty = —3
1+ 229 +23=0 — 2x1—23=0 — x1 =203
1+ 3x2+2x3=0 — x3—3r3+223=0 — Ox3=0
x3 can be selected arbitrarily, with 1 = x3, and 9 = —z3. This gives the following unobservable primal
state:
1
for a = 1 the unobservable primal state is: © = k | —1 fork € R
1
Observable Dual States

* Observable dual states are given by linear combinations of Cz, C Az, C A%z and so forth.

To find the observable dual states expressed as z = Px where P is a row, transpose the observability matrix
and take the linearly independent columns. In the example above, when a ¢ {0, 1} the observability matrix
has full rank, and all of its rows and columns are linearly independent. Thus, when it is transposed, the span
of these linearly independent columns can be expressed as:

Observable dual state fora ¢ {0,1}: z=c¢;[1 0 0] +c2[0 1 0] +c3[0 0 1]

For a € {0, 1} the observability loses rank, and the observable dual states are found by taking the linearly
independent columns of M,T. Fora = 0:

000
MT=1[1 2 2
1 1 2

and only two of the columns are linearly independent, giving:

Observable dual state fora = 0: x =¢; [O 1 1] + co [O 2 1]
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Fora = 1:

M," =

—_ = O
= N

1
3
2

and only two of the columns are linearly independent, giving:

Observable dual state fora =1: x = ¢ [0 1 1] + ¢y [1 2 1]

24.3 More Linear System Stuff
24.3.1 Zeros

Rosenbrock matrix

Let’s take D = O for now

_|sol —A Bj|zo| |0
=" ] )=
so is a transmission zero if R loses rank and so there is a nonzero vector vg = [z ug |’ such that
Rvy = 0.
Zeros Introduced by Postcompensator

The zeros are sy and vy such that (sg)vg = 0. So if we post compensate the output as

riw = [ O] o] =[]

Then all of the zeros of R are also zeros of R, and there might be additional zeros. We can see by
looking at

Ch
C=|Cy
Cs

and we know that C1x¢g = Coxg = Csx¢ = 0. But if we square down using

S1=[S1 Si2 S

S1C = [S11C1 + S12C9 + S13C5)

and

[51101 + S12C9 + 513(13}:1:0 =0

S11C129 + S12C220 + S13C370 = 0

so there can be additional zeros.
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Chapter 25

Robust Control

25.1 H, Optimization Using Completion of Squares

General state-space form of plant for which the optimal controller K (s) will be designed:

j::Ax—i—Blw—i-Bgu
e =Ciz + Diiw + Disu
y = Cox + Dorw

The optimization setup has control singularity when either of the following matrices are not left invert-
ible forall w € [0, o0] and for Dj9 at w = oo.

. A—ij BQ
Ec(s)—[ cr Dlz] and Do

The optimization setup has sensor singularity when either of the following matrices are not right invertible
allw € [0, 00] and for Dg; at w = oo.

A —jwl B
Em(s)—[ Cy Dm] and Doy

A matrix A is right invertible if there is a matrix B such that AB = I. A matrix A is left invertible if there
is a matrix B such that BA = I. For a square matrix A, left and right invertibility are the same, and is just
regular invertibility.

Aright_l = AT(AAT)_I

At = (ATA) AT
Finding the optimal controller K (s) with the general form:
Te = (A + LCy + BQF):Be — Ly

u=Fuz,

General form of completion of squares used to find the optimal control and observer gains F' and L, respec-
tively, where the vertical bar brackets mean 2-norm:

|C1x + Dioul? + 22’ P.(Ax + Byu) = |Dig(u — Fz)|?
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|B1'% + Dot€? + 29 P (A + Co'€) = | Doy (€ — L) |?

where A + BoF and A + LC5 are Hurwitz matrices.
Once the stabilizing solutions for P, and P, and thus F' and L are found, the corresponding minimal
square of the closed loop H2 norm is given by:

Jnin = tr(BlchBl) + tr(DlgFPeF/Dlgl)

Also, once the matrices F' and L are found, a transfer function for the controller can be written by
using. ..

K(s)=C(sI —A)'B+D

Example 37 A state space plant of the general form has matrices:
A=a By =[0 1] By=1
C1=0 Di=[0 0] D=1
Co=1 Dy=1[b 0

Substituting these matrices into the first completion of squares equation:
lu® 4 22’ P.(ax + u) = |u — Fxf?

Since the system is scalar, ' = =, and also |n|* = n? allows this expression to be simplified
to:
u? + 2zP.(ax +u) = (u — Fz)?

u? + 22 P.(ax +u) = u? — 2Fzu + F22?
2P.az® + 22P.u = —2Fzu + F%a?

Equating coefficients on both sides:
2Pa=F* and P.=-F

These equations need to be combined into the Riccati equation for P, in terms of the plant
parameters. This equation will have multiple solutions for P,, and the stabilizing one that
makes A + BoF' a Hurwitz matrix should be selected.

2P.a = P.?
P.(P,—2a) =0
P.=0, 2a

If a < 0, the plant is stable, and no control is even needed to stabilize it. That is, the
stabilizing solution is F' = 0, giving P. = 0. However, when a > 0 the plant is not stable,
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and the stabilizing solution ' = —2a, and P, = 2a is used. In general, the larger value of
P, should be selected as the stabilizing solution.

fora<0 F=0 P.=0
fora >0 F=-2a P.=2a

Substituting the plant matrices into the second completion of squares equation does not
simplify as easily as the first equation.

B¢ + Doy€|? + 20 P (A" + C'€) = |Doy’ (€ — L')

This equation is scalar, with ¢ € R and £ € R? Comparing the two completion of square
equations and looking at dimensions, ¢ should have same dimensions as x, and ¢ same
dimensions as y. So, for this problem v and £ are scalars, and so are L and P..

I am pretty sure the absolute value sign that Magretski uses is actually the vector 2-norm,
making the completion of squares actually written:

|B1't + Doy'€||o” + 20 Po (A4 + Cy'€) = | Do’ (€ — L) |2

substituting values from problem:
I+ ol
e |’ 2 2
I + 2R +6) = (e~ L)
[9,-veree
V€2 + 4 + 20 Pe(ay) + &) = 0°(€ — Ly)?
b€ + 9 + 2aPy? 4 2Pop¢ = b2 (€ — Lyp)?
b6 + ¢ + 2aPop® + 2Pp€ = b2 (€2 — 2L9pE + LPy?)
D*E? + % + 20Pet)? + 2Ptp€ = 076 — 27 Lp€ + b* L2
V2 + 2aPp% 4 2PapE = —202 L€ + b2 L2442

V2 (1 + 2aP,) 4+ 2P = =202 Lapé + b2 L2)?

Equating coefficients on both sides:

2 2

r2vna+9) = [o] €~ o)

2 2

14 2aP. =b’L? and 2P. = —20°L

Again combining these equations to find an equation for P, with multiple solutions by first
solving for L:
Pe

L:_b7
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P2
b4

L? =

P2 —2ab’P, — > =0

Solving this quadratic equation for P,

P 2ab? + /4a2b + 4b2

¢ 2

_ 2ab® + /46 (a?)? + 1)

P, 5
P 2ab? £ 2bv/a?b? + 1
=
2

P =ab®> +b\/a2b? + 1

In general, select the larger value of P, to be the stabilizing solution

P. = ab®> 4+ bv/a?b? + 1

Solve for L:
va?b? +1
a —_—

Small Gain Theorem
For the feedback interconnection of LTI system P and A a memoryless system, the small gain theorem
states that if the product of Ly gains for P and A are less than one, that the closed loop Lo gain will satisfy

the following, where the Lo gains are denoted by +, and the closed loop system is G

it ypya <1 then ~g< — 1P
I =vpya

25.2 Q-Parameterization

In this note Q-parameterization is used to express a given feedback control structure in terms of a differ-
ent structure with feed-forward only. The closed-loop system G is to be expressed using Q-parameterization,

where e can be any general output.
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_____________________________________________

Figure 25.1: General feedback control block diagram for closed-loop system GG

25.2.1 General Form of Plant

The plant P in the block diagram is given in its general form by:

Continuous Time

T = Ax + Biw + Bou
e = Ciz + D1iw + Disu
Y= Cox + Doqw

Discrete Time

z(t+ 1) = Az(t) + Biw(t) + Bou(t)
€(t) = C’lx(t) + an(t) + Dlgu(t)
y(t) = Cox(t) + Daw(?)

Q-parameterization basically lets the closed loop plant from above be expressed as the following system.
Then, from the equations for S5 and .51, the blocks G, GG1, and G5 can be found.

" 5 0
w (&
—> 5 S1 —>»
Aw .
>

Figure 25.2: Feedback control block diagram
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Go

Y

Figure 25.3: Feedback control block diagram

S, A = (A+ LCY)A + (By + LDop)w
' 0 = CoA + Dyyw

g x:(A—i—BgF)x—i—Bg(v—FA)—l—Blw
! e = (Cl—‘rDlQF)x—i-DlQ('U—FA)—i-DHw

25.3 LQR-PI With Anti-windup

Y

Lo ZT;

Figure 25.4: MIMO Control Block Diagram for LQR-PI

The plant which we would like to control is given in state-space form as

&y = Apzy + Bpu

y = Cpxp + Dpu

where everything is scalar for the velocity plant subsystem. An LQR-PI controller can be represented in
state-space form as

Te = Acxe + Bee + Bpr
u=Kye+ K¢z,

where e = — V7 is the full state feedback. Since
Te = VT,cmd - VT
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and r = V ¢mq the controller can be rewritten

.i'e = 0$e — BCVT + BrVT,cmd
u=KyVr+ K.z,

In order to implement anti-windup, logic needs to be written which will reset the integrator. This logic
will require that the actual velocity is greater than the commanded velocity, and the throttle input is saturating
for the integrator to be reset. This will keep integration error from accumulating, causing the throttle to
continue to saturate, even while the commanded velocity has been exceeded. The question is what to reset
the integrator to.

In a classical control feedback setup, where the integration error e = r — y needs only to be reset to
zero, with LQR-PI this is not the case. For LQR-PI the reset value is found by first determining the throttle
input required to maintain the commanded velocity in equilibrium, based on the plant parameters. That is

VT = ApVT + Bputh

0= ApVT + Bputh

want Vp = VT,cmd

Then, knowing the required throttle to maintain equilibrium, the value of x. that must exist at equilibrium
to maintain this condition (since Vi, Ky, and K. are known) can be found

ugy, = KyVp + Kexe

again ith Vp = Vp cmg
o = Wh T KvVr cma
. =
K.

which is the value the integrator must be reset to.

25.4 MIMO Zeros: Introduction

MIMO zeros for non square systems, MIMO zeros for square systems, how many zeros there will be,
how squaring up by augmenting B moves existing zeros. Zeros of MIMO system not zeros of each TF in
the transfer matrix. See 16.31 Lecture 8.

Definition 23 MIMO zeros Zeros of a MIMO system are (y such that lim,_,¢, (H(s)u(s)) = 0.

Example 38 The following system has a zero at s = 3.

u 18 finite.
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(s V] [2]) -l - [0

H (s) has a pole at a frequency py if some entry of H (s) has a pole at s = py.

From DDV book: H (s) has a zero at (y if it drops rank at s = (y. This particular defnition corresponds
to what is termed a transmission zero.

H (s) has full column rank if there is no rational vector u(s) # 0 such that H(s)u(s) = 0. Ata
transmission zero of H(s), it will drop rank, and then there is a ug # 0 such that H((p)up = 0. The
problem with this is if the MIMO system has a pole at the same frequency as a zero, and so this zero may
not be detected.

MIMO transfer functions can have poles and zeros at the same frequency. So the refined zero definition
is the limit one above. The above example is from DDV. We can see there is a pole at 3, but if we look in
the limit as s — 3 we see that the second column looks like the first one:

1 00
0 1
(the ratio of the terms in each column are co) So we use the updated definition text and find the zero.

The following matrix is the Rosenbrock matrix.

R(s) = [SIEA —lﬂ

o sI — A is full rank, except at system poles

* Input decoupling zeros are where the following matrix loses rank, which can only happen when

sl — A loses rank.
Ri(s)=[sI—A —B]

Input decoupling zeros are a subset of system poles

* Output decoupling zeros are s where the following matrix loses rank

Ro(s) = [815 A]

Output decoupling zeros are a subset of system poles
* Invariant zeros are values of s where rank(.S(s)) < min{n + rank(B), n + rank(C)}

* For a controllable and observable system, the invariant zeros are the same as the transmission zeros
Difference between invariant zeros and transmission zeros?

Difference between a system’s transfer function G(s) = C(sI — A)~'B and its realization Xp =
{A,B,C}?
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Chapter 26

Passivity

The concept of passivity was first introduced by Popov. The essential feature of a passive system is
its inability to increase its own energy.[5] For example, a network of passive components, e.g. inductors,
resistors, and capacitors does not generate any energy and is therefore stable. Another example given in
Reference [0] is a gravity tank into which water flows in to the top of the tank and out through the bottom. It
is straightforward to show that the rate of change of stored energy in the tank is less than that supplied to it
by the inlet flow rate. Passivity relates a system’s input and output to the storage function and thus defines a
set of useful input-output properties.[6] The following document repeats some definitions from the literature
and presents an example of a passive and non-passive system using a mass-spring-damper.

Consider the following square system >:

T = f(z,u

y=hew ey

wherex € X CR",y € Y C R™and u € U C R™. The Instantaneous Power Supply Rate is denoted[7]]
w = w(u(t),y(t)) (26.2)

Assumption 2 [7]], pp. 327 Given the system in (26.1) the instantaneous power supply rate w(t) satisfies

t1
/ w(r)dr <00 V>0

to

Definition 24 Dissipative System and Storage Function [7], pp. 327. The system in (26.1)) with supply
rate w is dissipative if there exists a positive semi-definite function S(x) : X — R, called the Storage
Function such that

t1
S(x(t1)) — S(x(ty) < / w(T)dT (26.3)

to
forallr € X, u € Uandt > 0.

The inequality in (26.3) is called the dissipation inequality, and says that the stored energy S(x(¢1)) at
time ¢; can never be greater than the sum of the initial energy in the system at time ¢g plus the energy into
the system between ¢ and ¢;. In other words, the system in (26.1)) is dissipative if it is not generating any
internal power: the increase in energy (storage function) during the interval (to,¢1) is no greater than the
energy supplied (via the supply rate) to it.
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Definition 25 Passive System [8], pp. 1229 The system ¥ in (26.1) in passive if it is dissipative with
respect to the following supply rate

w(u(t), y(t) = y(t) Tu(t) (26.4)
and the storage function S satisfies S(0) = 0.

Example 39 Mass-spring-damper Take a mass-spring-damper system, and let m = 1,
b =1, and k£ = 1. The transfer function from force to velocity is given by the following:
Vi(s) s
F(s) s24+s5+1

Given a sinusoidal input
u(t) = f(t) = sin(wt) (26.5)

we can show the particular solution has the following form
y(t) = v(t) = Asin(wt + ¢) (26.6)

where the phase shift ¢ € (0, 7/2). With this input and choice of output we use Definition
[24]and show that the system is dissipative with respect to the following supply rate, as given
in Definition

w(u(t),y(t)) = Asin(wt + ¢) sin(wt) (26.7)

We evaluate the following integral from Definition 24| from ¢ to ¢;

t1
Asin(wt + ¢) sin(wT)dr

to

and using the identity
1
sin(a) sin(b) = 5 [cos(a — b) — cos(a + b))

we can rewrite and then evaluate the integral as follows

t1 t1
/ Asin(wt + ¢) sin(wT)dr = % / cos(¢) — cos(2wT + @)dT
to to

t1 t1

= % cos(p)r| — i sin(2wt + ¢)

to to

= % cos(¢)(t1 — to)— Liu sin(2wty + ¢) — i sin(2wty + ¢)
(26.8)

From this we can see the bracketed term is bounded and the first term is always positive
because the phase shift between force and velocity is ¢ € (0, 7/2). This example is not suf-
ficient to show that the mass-spring-damper with velocity as an output is or is not passive,
but is useful to see.
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However, if position is selected as the output, the transfer function is given by

X(s) 1
F(s) s2+s+1

If now this system is driven by a sinusoidal input as in (26.3)) we can again show that the
output is given by (26.6) where now ¢ € (0, 7). As before, the supply rate in Definition
[25]is given by (26.7). We evaluate the integral from Definition [24] with this supply rate
and get (26.8). The difference now is that ¢ € (0,7) and so the first term in for
the case where position is the output is negative for all ¢ > 7 /2, while the bracketed term
remains bounded. So we can see that when driving the system with a sufficiently large
input frequency, we can pick ¢y and ¢; such that no positive semi-definite storage function
exists satisfying the inequality (26.3). Thus the spring-mass-damper system with force as
an input and position as an output is not passive.

26.1 Difference Between Passive and Positive Real

For linear time invariant systems they are the same, as long as the system is detectable.[l6] Passive
systems are positive real. “The notion of Positive Real system may be seen as a generalization of the
positive definiteness of a matrix to the case of a dynamical system with inputs and outputs” Reference [9]]
Positive-realness is a property of a function of a complex variable s. From Reference [6], pp. 14-15. The
input-output property of passive systems is called positive realness. Passivity implies positive realness. For
a detectable LTI system passivity is equivalent to positive realness. For LTI systems passive and positive
real are the same.

Definition 26 Available Storage [/, pp. 327 The available storage, S, of a dynamical system % with
supply rate w is the function from X into R, where RE is the extended real number system { —oo }URU{o0},
is defined by

Su(z) = sup —/Olw(t)dt

r—t1>0

where the notation x — denotes the supremum over all motions starting in state x at time 0 and where the
supremum is taken over all u € U.

Theorem 11 [[7], pp. 328 The available storage, S,, is finite for all x € X if and only if ¥ is dissipative.

Example 40 Mass with velocity output Consider a mass m with force f as the input and
velocity v as the output. This system is represented as

f=mv

or in the form of 269) with z = v, u = f,y = v,f(z) = 0, g(z) = L and h(z) = =.
This system is passive if it is dissipative with respect to w = fv. That is the inequality in
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Definition must be satisfied for all x, u, and ¢ > 0. The mass starts from rest at time
to = 0 and is driven by a sinusoidal force input

[ =sin(?)

The velocity of the system is given by

Sll’l
m

= m —(1 — cos(t))

Look at the inequality in (26.10) with this particular choice of f and the corresponding v,
the system is passive if it satisfies the following inequality

0< L [ sin(r)(1 — cos(r))dr

m Jo

This function is periodic and we can look at the integral over the first period and argue that
this inequality is always satisfied.

Example 41 Mass with position output If we go through the same process as in Example
only now taking the position output, it is easy to show that our choice of f does not
satisfy Definition 24| for all ¢, indicating that in this case the system is not passive.

f=mzx

integrating, with zero initial conditions

1 t
:/ fdr
m Jo

This system is in the form of (26.1]) with u = f and y = . we choose u = sin(t),

SlIl
m

= —— COS

Integrating again
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Now we can let m = 1 and calculate the supply rate w as

= sin(t) (¢ — sin(t))

Using Definition 26]to determine the available storage

Sa(z) = sup —/0 1 sin(t) (¢ — sin(t))dt

z—t1>0

Integrating this we get

1 h
Sa(z) = sup —=(—2t+4sin(t) + sin(2t) — 4t cos(t))

z—t1>0 0
which is not finite as t; — oco. Thus, by Theorem [TT]this system is not dissipative. Since
it is not dissipative with respect to the supply rate w = uy, by Definition [25|this system is
not passive.

26.2 More Stuff

Reference [10] gives some definitions of passive and SPR. If the storage function in (26.3)) is differen-
tiable, we can write (26.3)) as

as

— <

dt —
which says that the rate of increase of system energy is no greater than the input power.[6] Consider now a
special case of (26.1))

w(t)

&= f(x) +g(@)u

(26.9)
y = h(z)
If we look at Definition 24 and Definition 23] the system in (26.9) with 2y = 0 is passive if
¢
0 < S(z(t) < / y' (T)u(r)dr (26.10)
0

forallz € X, u €U and ¢t > 0.
Definition 27 Positive-Real System [8], pp. 1230 The system in (26.9) is positive-real if for all t > 0

0< /0 yT (Pu(r)dr

whenever x(0) = 0.

Definition 28 Positive-Real System [1]|], pp. 63 A rational function H(s) of the complex variable s =
o+ jwis PRif
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(i) H(s) is real for real s
(ii) Re[H(s)] > 0 for all Re[s] >0

The essential feature of a passive system is its inability to increase its own energy.[5] Think about a
system that is just a mass. E is energy, P is power into the system, and power is the time rate of change of
energy

d . . .
T [stored energy] = external power input + internal power generation

Integrating both sides

A passive element is one for which E(t) > 0 for all ¢. For if not, this would mean that the integral of power
is negative, even more negative than £(0), meaning the system increased its own energy. If we think about
our system that is a mass, power is given by force times velocity

E(t) = E(0) +/0 f(m)v(r)dr

And we know this is true. However, the definition for passive systems is more complicated than this, as it is
an input output property of a system, and thus depends on which inputs and outputs are used.

26.2.1 The Dissipation Inequality

We said before that a passive system is one that cannot deliver more energy than it has received. But
when we say “energy”, what we mean is the integral of an instantaneous power supply rate, which does not
have to correspond to physical energy.

The definition of passivity relates the change in storage along solutions to the total supply, which is
given by the integral of the supply rate, and the supply rate y ' u involves only the input and output. The
supply, or instantaneous power supply rate w(u,y) is given by

w(u,y) =y u

S=ylu—g

where g is used in Slotine’s book Reference [[12] as the negative of the internal power generation term, i.e.
g > 0 for passive system. S is a storage function, and is positive-semidefinite. Since S need only be positive
semi-definite, it does not make it necessarily a Lyapunov function. The storage function for a passive linear
system must be quadratic.
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26.2.2 How to Determine if a System is Passive
Definition 29 « strictly stable linear SISO is passive if and only if
Yw > 0, Re[h(jw)] >0

Definition 30 a strictly stable linear SISO is passive if and only if its phase shift in response to a sinusoidal
input is always less than or equal to 90°.

Properties

1. Necessary conditions for passivity: system be minimum phase and relative degree O or 1.

2. Passive system are not necessarily stable. This is only the case if a positive-definite storage function
is used, but since the storage function only needs to be positive-semi-definite, stability is not always
ensured by passivity.[6]

The poles of LTI passive systems have negative real parts.

26.2.3 Interconnections of Passive Systems

Parallel and feedback interconnections of passive systems are passive.[9]
“If the system Z(s) is SPR, this implies that the system remains stable for any positive static gain, even
arbitrarily large, i.e. Z(s)/(1+ kZ(s)) is stable for any £ > 0.”

26.2.4 Positive Real Systems in Adaptive Control

“The choice of the Lyapunov function is simplified substantially when the transfer function of the rele-
vant linear time-invariant system is strictly positive real.” [[13]

éx = (A4 LC + BU e, + BAO " z,,

26.3 Householder Transformation

A Householder transformation is a linear transformation that can be used to transform a given matrix into
one which is upper diagonal. This transformation is Hermitian and unitary. For operations on the matrices
describing a linear state space system, all entries will be real valued, and so in the rest of this document we
assume the Householder transformation matrix H is real valued, and give its properties with this assumption.

H' =g !

When applying the Householder transformation we essentially want to find the matrix H € R™*" such
that given a vector x € R", when multiplied by H gives the following

Hr=y
where
R T
Yy = [ 0.. 0]
= i’elT
where e is the standard basis vector
-
er=[1 0... 0



26.3.1 Properties

The Householder matrix is a matrix of the following form

H=1—-2ww"

where w € R™ ! is a unit vector. Evaluate the following

H'H=(I-2ww" )" (I-2ww")
= (I —2ww")(I —2ww")
=7 —2ww' —2ww' +dww ww'
=T —dww' +4w(w w)w'
=1

From this we see that the following property is in fact satisfied by

H =H!
Suppose we pick the unit vector w as follows
u
[

where

u=ux— |z|e;
giving

o afles

lz = [lz/lex]]

This gives

Hz = (I -2ww')z

T
_ < z — [|z[[er ) ( z — [|z|er )
=x—2

o= llzllex) \To = flallei]

= [[z[les

So we have defined H, showed that it is an orthogonal transformation, and showed how to pick w so that
Hx = Ze;. The following section will clearly lay out the steps to code this algorithm for taking a matrix
and making it upper diagonal.
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26.3.2 Applying Householder Transformation

Given a matrix B € RV*M

B=[Bi By ... By

where each B; € RV*1. We apply the Householder transformation to the first column first, and the proceed
with the remaining columns. Define

e € Rnxl
Let
x = B;(i: N,i)

Note each z € R™"*!, where n = N — i. Calculate

Calculate

Basically the idea is that at transforming the columns of B in each step the calculated Householder matrix
decreases in size, but we need to keep the matrix N x NV, so that when we multiply Ho H; B, that H will
not alter the first column of H; B.

HB=[iie; By ... By
10
Hy; =
1o s

Then, to find the matrix 7', which will transform B to an upper diagonal form, multiply the H matrices
together as

T=H,- --HyH

And we can show that 7" is also an orthogonal transformation. Because each HZT = Hi_1 and so

T" = (Hy,---HoHy) "
:Hlez_l"‘H;zl
= (Hm"'H2H1)_1

=71
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26.4 Controls Quals Notes

26.4.1 Frequency Domain

Frequency response method: give a system a sinusoidal input. The output (will always be?) a sinusoid,
with a magnitude and phase which may be different than the input, but the frequency will be the same. Then,
sweep the input frequency across a wide range, and observe how the gain and phase shift of the measured
output change with frequency.

26.4.2 Gain and Phase of Poles and Zeros

Why do zeros add phase and poles reduce phase? These two examples that follow connect the transfer
function representation of the integrator and differentiator to a differential equation and show how, when the
system is given a sinusoidal input, that the zero causes the output to lead the input, and the pole causes the
output to lag behind the input.

x 1

u s
The differential equation is

T=u

This whole thing of gain and phase is for a given sinusoidal input, so u(t) = A sin(wt) and then we want to
see how that will affect the output x(¢) for this system.

d
d;: = Asin(wt)
separate and integrate back
T t
/ dx = / Asin(wt)dt
xo to
giving
x —xg = —— cos(wt) + — cos(wtp)
w w

x(t) = 4 cos(wt) + A cos(wtp) + o
w w

A
t) = —— t
x(t) " cos(wt)
but — cos(z) = sin(x — 90°) so the input and corresponding output can be written
u(t) = Asin(wt)

A
x(t) = — sin(wt — 90°)
w
So we can see that the magnitude of the output depends inversely on w, getting smaller as w gets larger.
More importantly we can see clearly that there is a 90° phase lag from the input to the output.
Consider now a differentiator.
=s

_IR

gives



and with u(t) = Asin(wt) we have
x(t) = Aw cos(wt)

together the input and output are

u(t) = Asin(wt)
x(t) = Aw cos(wt)

But we have cos(z) = sin(z + 90°) giving

u(t) = Asin(wt)
x(t) = Awsin(z + 90°)

and here we can see that there is a positive phase shift, or say that the output leads the input by 90 degrees.

26.4.3 How to Make Bode Plots

first normalize the transfer function, so all the factors look like (1 + sa;)
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Part IV

Adaptive Control

253






Chapter 27

Introduction to Adaptive Control

What is adaptive control? Why adaptive control? Explain in simple terms some of the benefits of
adaptive control, and given an overview of some applications that are well suited to adaptive control. Provide
some neat and simple motivating examples.

Adaptive Control - the control of plants with unknown parameters. These notes will only cover continuous-
time adaptive control.

explain tracking error, and parameter error.

Also explain how our stability proofs are centered around driving the tracking error to zero (and the
parameter error too, if we can) and so our stability proofs look at stability of the origin.

27.1 Preliminaries

Include basic stuff here on set notation and more. Many students may not have seen this before.
R set of real numbers R" set of real-valued vectors with length n. Taken by convention to mean column
vector? R™*" set of real-valued matrices of size n x m.

27.1.1 Classes of Systems

In the following systems, z, y, and u are the state, output, and input, respectively. 6 is an unknown
parameter. The following is a nonlinear time varying system

T = f(x,u,@,t)
Y= h(x7u797t)

The following is a linear time varying (LTV) system

z=A(0,t)x + B(6,t)u
y=H(0,t)x

The following is a linear time invariant (LTT) system.

&= A(f0)x + B(0)u
y=H(0)z

In this class, we will mostly look at LTI systems
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27.1.2 Four/Five Classes of Adaptation

1. Passive
2. Input-Signal (Characteristic)
3. System-Variable

4. Extremum
(a) Parameter-perturbation method

(b) Sensitivity method

Controller Plant

O G.to .

Extremum Adaptation

Idea in extremum adaptation: J cost function, 6 is an adjustable parameter. Details regarding the deter-
mination of the gradient... The changing of theta changes the cost.  like a knob, J like a gauge... dial the
knob to minimize the reading on the gauge... Adaptive law: (MIT Rule)

. 0J .
0 x 20 (gradient)

27.1.3 Control Goal

Given unknown plant P with parameter 0,, design controller C' with parameter 6. C'is kind of like the
inverse of P.

27.1.4 Direct and Indirect Adaptive Control

Why parameter estimation? In a control system, if a plant parameter is known, a suitable stabilizing
controller can be selected based on the known plant parameter. When the plant parameter is unknown, can
estimate the plant parameter, and then use this estimate to find the control gain. Essentially, direct and
indirect adaptive control are described by the following.

Indirect Adaptive Control: 0, is unknown: estimate 6, as 6, then compute 0. = f(6,)

Direct Adaptive Control: 6. unknown. Estimate éc - direct adaptive control

27.1.5 Motivation for Reference Model
Consider the following transfer function representation first order plant with input u and output x,.

Tp _ _kp
u S—GP
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Our goal is to make the plant output x;, follow some desired output x4. We define the tracking error, the
difference between the actual output and desired output as

=Ty — Iq

This is represented in the following block diagram.

T4
Plant

u kp Iy + N e
s—ayp /

In order to achieve the goal, we must choose the control input u so that e — 0. However, x, can
not follow any arbitrary command we would like, for example a series of steps, or some other non-smooth
commands. Instead, we must ask the system to do something which it can actually do, which in this case
a first order system can at best follow first order responses. This is where the need for the reference model
comes in. We transform the problem of shaping the input to shaping the reference model so that x,, is as
close to x4 as possible. The reference model is

Tm km

T4 S — G

Now we modify our goal slightly based on the statement above, where we don’t try to track x4, instead we
try to track x,,. That is find u so that e goes to zero, where now the tracking error is

€=1ITp— Ty

In the case of indirect adaptive control, we may not use the reference model output or the error signal above
in the process of controlling the plant, but we keep the reference model in mind as basically the model
describing where we want to put the poles of the closed-loop plant.

27.2 Direct and Indirect Adaptive Control

The following example talks a little bit about the difference between direct and indirect adaptive control.

Example 42 Direct and indirect adaptive control Consider the following transfer func-
tion representations of a plant and reference model below

Ty _kyp

Uu S—ap

Tm km

Tg S—am
in state space these are represented as

p(t) = apwp(t) + kpu(t)
Em(t) = amzm (t) + kpyr(t)
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Assume for this example that k, = k,,, = 1, a, = 1, a,,, = —1 giving

Tp 1
u  s—1
Tm 1
xd_s—i-l

With this knowledge, we can see that we need to shift the plant pole from 1 to —1 to match
the reference model. Fortunately we can do this through feedback. The goal is to find the
feedback gain 6 that will place the pole of the plant so it matches the pole of the reference
model. This will ensure e — 0.

Reference Model
1 Tm
S+
r jﬁ e
Plant +<
LV P
N s—1
+
The closed loop transfer function is
Tp _ kp
r 5 —ap — kpl| g
substituting numerical values we get
Tp 1
r s—1-—0
From this expression, we can see that using a feedback gain of § = —2 will place the

closed-loop plant pole to match the reference model pole, and will result in (after initial
conditions) perfect tracking. Basically, if we knew what a, was, we could then back-
calculate the required value of 6 to place the pole where we wanted. This problem of trying
to identify a,, and then using this estimate to determine 6 is called indirect control.

In direct control, we need not know, or attempt to determine what the value of a,, is, but we
know there exists a feedback gain 6 that will put the pole in the right place. Once the pole
is in the right place, the tracking error e — 0. The problem of direct control is to adjust ¢
based on the tracking error output e alone.

If we wait and identify a,, we can then back-calculate what ¢ needs to be. This is indirect adaptive
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control. 6 = —a, + a,,. In Direct adaptive control, all we need to know is that the ideal parameter that
results in perfect tracking exists, and we seek instead to identify 6. Identify 4 as 6. to adjust DC gain. Define
0* and k* as the values of 0, k so that plant + controller = reference model.

The closed loop transfer function of the following plant

Lp kp
U s+ ap

with control law u = 0z, + kr is given as follows, where the ideal values k* and 0* are used for the adaptive
gains
Ty kEk,

r s —ap — kpl| . p-

matching condition

km
k=
kil’
a Qa
o = 2 tm
kp

so if a,, and k,, are unknown, then 6* and £* unknown.In the direct control approach, seek to identify control
parameters 6* and k* as 6 and k. but we need to adjust §(¢) and k(t) so that 6(¢t) — 6* and k(t) — k*. But
his is hard to realize since §* and k* are unknown. So now modify the goal so that instead we adjust 6 and
k so that e(t) — 0. Now that controller is time varying, no more transfer functions, no Laplace operator...
Laplace transforms don’t exist.

27.2.1 Direct Adaptive Control

This section will introduce direct adaptive control using the following example. In this example, there
is no attempt to identify the unknown plant parameter, and the feedback gain is adjusted using only the
tracking error between the reference model and actual plant responses.

Example 43 Direct adaptive control of a scalar system with one unknown The plant
and reference model are represented below

Ep(t) = apmp(t) + kpu(t)
T (t) = am@, (t) + kpyr(t)

where

k, known

a, unknown

We would like to design a control input u such that the plant state x,, follows the ref-
erence model state x,, in the presence of the unknown parameter a,. That is, we want
lim;_, e(t) = 0, where the error is defined as e(t) = x, — x,,. The block diagram for
this problem is shown below.
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Reference Model

r i Tm
S—am, _
am <0 ( ) €,
Plant
_l’_
u k
y4 ‘rp
s—ay

We propose the following controller
u(t) = 0(t)xp(t) + k*r(t)
which can be represented in the following block diagram
Reference Model

kum T
S—ay,

r am <0 j e
Plant (

) kp r

oY

(v)
\&

Substitute the proposed control law into the plant equation
Ep(t) =(ap + kpb(t))zp(t) + kpk™r(t)

Recall that we define 6* as the fixed values of 0(t) such that the closed-loop plant matches
the reference model. This is known as the matching condition. That is, we compare the
plant to the reference model and solve the following expressions for 8*. Since k,, is known,
we know £* and can use that directly in the control law.

a, + k0" = ap,

kpk™ =k,
Solving, we obtain
o — amk; ap




We define the parameter error as the difference between the actual parameter value, and the
“ideal” parameter value

O(t) = 0(t) — 6*
Using A(t) = 6* + 6(t) and substituting we get
ap(t) = (ap + k0™ + kpé(t))xp + kmr(t)
Using a, + k,0" = a,, we get
p(t) = amay(t) + kpB(t)xy(t) + kmr(t)
Defining tracking error as
e(t) = zp(t) — zm(t)
and differentiating
ét) = ap(t) — m(t)
= am@p(t) + kpb () 2p(t) + k7 (t) — Q@ (t) — kimr(t)
= ame(t) + k,0(t)z,(t)

And we can recognize this as error model 3, as shown in the following block diagram.

Ip 1 e

S—a,

O

We now propose the following candidate Lyapunov function in order to prove stability of
this adaptive system

V@a%mo):%£@y+%ﬁ@)

Differentiating along system trajectories we get
V(e(t), 8(1) = e(t)é(t) +B(1)6(1) ‘
e(t) <ame + k0T () (t)) +0(1)4(¢)
= an€*(t) + e(®)k, " (B)z, (1) + BO)(2)

We propose now the following adaptive parameter update law

0(t) = —e(t)kpy(t)

Substituting this into V we get

V(e(t),0(t) = ame?(t) + e(t)kp0(t)z,(t) — e(t)kpf (), (t)
= a,e’(t)
And since a,, < 0, V < 0, ie. negative semi-definite. While it may appear that 1%

is negative definite, as it is a negative quadratic, we must remember that V', and thus its
derivative are functions of both e and , and so V' may be zero when its inputs are nonzero.
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The previous example illustrated a basic adaptive law on a scalar plant with one unknown parameter. In
the next example, we will consider the case where the plant has two unknown parameters, but the sign of
the input parameter is known. This will require a modified Lyapunov function and parameter update law in
order to prove stability.

In addition, this introductory example to direct adaptive control showed only stability in the sense of
Lyapunov. That is, we showed only that the errors would remain bounded. In direct adaptive control
examples to follow, we will include more thorough stability analysis, and show that the tracking error does
tend to zero.

We return now to direct adaptive control to show more general adaptive controllers that can handle
additional unknown plant parameters, as well as introduce additional tuning tools. From this point onward,
explicit time dependency of different quantities will be dropped, only being used in order to emphasize this
dependency.

Example 44 Direct adaptive control of a scalar system with two unknowns The plant
and reference model are represented below, where a,, and k,, are unknown, but the sign of
k, is known.

Tp = apxp + kpu

Tm = AmTm + kT

where

k,, unknown (but with known sign)

a, unknown

We would like to design a control input u such that the plant state x, follows the reference
model state x,, in the presence of the unknown parameters a,, and k,. That is, we want
lim;_, e(t) = 0, where the error is defined as e(t) = x, — x,,. The block diagram for
this problem is shown below.

Reference Model
r ko, Lo
S—0m
am < 0 e
Plant C:
+
u k, p
s—ay
We propose the following controller
u =0z, + kr

which can be represented in the following block diagram
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Reference Model

km Tm
S—Qpm,

r am <0 : e
Plant (

Substitute the proposed control law into the plant equation
&p(t) = (ap + kpb)x, + kpkr

Recall that we define 6* and k* as the fixed values of 6(t) and k(t), respectively, such
that the closed-loop plant matches the reference model. This is known as the matching
condition. That is, we compare the plant to the reference model and solve the following
expressions for 8* and k*.

ap + k0" = ap,

kpk™ =k,
Solving, we obtain
g = b
kp
* am — Qp
8 —
kp

We define the parameter error as the difference between the actual parameter value, and the
“ideal” parameter value

60— 0"
k— k"

T D™
Il

Using 6 = 0* + 0 and k = k* + k and substituting we get
ip = (ap + kpd* + kpf)xy + (k™ + k)r
Using a, + k0" = ap, and k,k* = k;,, we get
Tp = QmTp + kpéa:p + ko + kpl%r

Define the parameter 6 as the column vector which contains both parameters 6 and k.
From this point forward we may drop the explicit time dependence on some terms for ease
of exposition.

0T =[0 K
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and the error

0 =16 k=10 k] -[0r k]
orf =0 — 6*. The regressor
¢" = [z, 7]
The plant equation can then be expressed as
Tp = amTp + kpr + kp§T¢

Defining tracking error as

and differentiating
€=1Tp—Tm
= amTp + kmr + kp§T¢ — AT — kmT
= ame + kp9:T¢

which we again recognize as error model 3 as shown in the block diagram below.

CL‘p =~ 1 €
QT S—am

We propose the following candidate Lyapunov function in order to prove stability of this
adaptive system

= ]_ 1 =
V(e,0) = 5e2 + 5\1@,\9%

Differentiating along system trajectories we get
Ve, 9:) =eé+ \kp\GZTHi
— e(ame+ k0T ) + |k,|070
= ane’(t) + ek:péTgb + |k’p|§T5

We propose now the following adaptive parameter update law

0 = —sgn(ly)ed

Substituting this into V we get
V (e, 5) = ame? + ekpéTqﬁ - |k:p|sgn(kp)e§Tq§
= ame? + ekpequb — ekp§T¢
= a,e?

And since a,, < 0, 1% < 0, i.e. is negative semi-definite.
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Error Convergence

In the direct adaptive control example in this section and the previous section we have proposed stable
update laws, and used a Lyapunov function with V < 0 to show stability of the adaptive system. However,
in these two examples, we have said nothing about whether our control goal of e(t) — 0 as t — oo was
actually achieved. In this section, some additional tools are provided to allow us to show the convergence of
the error to zero.

Considering Example , we left off with V' < 0. We now need to use Barbalat’s lemma to show that
lim;_, e(t) = 0, and to do that, we need to find some various signal norms, described in what follows.
Since V' > 0 and V < 0, we have V (t) < V(0) < co. Thus V(¢) is bounded, and so its arguments e and 0
must be bounded also. Since 7 is bounded and the reference model is stable, x,, is bounded, and so we get

that x;, is bounded. This can be compactly stated as e, ), 0 Loo-
To apply Barbalat’s lemma, all we have left to do is show e € L5. To do this, note that

tKVﬁMr:Wﬂ—V@

Since V' is non increasing and positive definite, V' (0) — V' (¢) < V/(0). This gives

- /t V(r)dr < V(0)
0

2

Substituting in our expression for V = ame?, remembering that a,, < 0

|am]/0 e(r)dr < V(0)

which is equivalent to
t
anl [ le(r)Pdr < V(0) < 0
0

which simplifies to
t
/mem<m
0

Recognize that this is just ||e(t)||r, < oo we write e € Lo. Finally, we need to show the boundedness of
¢ so we can apply Barbalat’s lemma. In addition to the boundedness of the signals shown above, we also
assume the reference input is bounded: r € L. So, looking at the error dynamics with ¢, 8 € Lo, we see
that ¢ € L, and so the conditions to apply Barbalat’s lemma are met, so lim;_,, e(t) = 0.

27.2.2 Indirect Adaptive Control

In indirect adaptive control, we will now create an identifier which we use to estimate the plant param-
eters. From these estimates of the plant parameters we determine the desired control gain. The structure
of the identifier is motivated by the standard linear observer below. Assuming the plant parameters were
known, the observer equation would be written as

A ~

Tp = apdp + kpu + kp(x, — Zp)
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where k; is the observer gain that is selected to give stable observer dynamics. However, if we knew the
plant parameters we could pick the appropriate control gains to place the closed-loop poles as desired. The
observer equation is modified to use instead the plant parameter estimates, and we call the following the
identifier.

ép = apTp + ]%pu +ky(zp — 2p)

= (ap — kf)@p + kpap + ]%pu

We then choose k so the identifier is stable. Choose ky = a, — a, giving

%p = ami‘p + (&p — am)l‘p + ]%pu

So now the plant, identifier, and reference model are the following. Note that we won’t actually use the
reference model for control, but maintain it as a model as to where we would ultimately like to place the
closed-loop poles of the plant.

ip(t) = apzp(t) + kpu(t)

ipl0) = A1) + (@p(0) — am)zp(6) + By(B)u(t)
T (t) = am@m () + kpr(t)

We now define the estimation error
ei(t) = xp(t) — 2p(2)

and use the control law
u(t) = 0(t)zp(t) + k()r(t)

So now the identifier is used to determine parameter estimates a, and I%p, and the problem becomes how to
use these parameter estimates to use in for finding 6(¢) and k() to use in the control law.

Algebraic Parameter Adjustment The first method to determine the control parameters is algebraic.
Substituting the control law into the plant equation above, we recall that the matching condition is the
existence of the “ideal” adaptive gains such that the closed-loop plant matches the reference model. If we
knew what the plant parameters were, we could calculate § and % in the control law using the matching
condition. In indirect adaptive control, we take the same approach, but use instead the parameter estimates.

k= k’”
kp
0 Am - ap
kp

Dynamic Parameter Adjustment Talk about dynamic adjustment of the control parameters here, and
refer to page 121. Use the following matching-like errors.

eezdp—l—l;:p@—am
e = kpk — km
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Identifier errors

€ = Tp — Tp

élp = €iTp — €9

l;p = e;u — Oeg — key,
The plant and identifier equation are

Tp = apwy + kpbxy, + kpkr

Tp = amTp + (ap — am)zp + kpu
Parameter errors

ap = ap — Qp

kp:l%p_kp

Propose the following candidate Lyapunov function

. - 1 S -
Vien b, kyays k) = 5 [ + [ky (62 4+ F) + a3 + K

time differentiating

V = eiéi—f—

27.2.3 Appendix

Previously, we have discussed only methods to identify unknown parameters in certain systems. As
control engineers, our primary goal is to stabilize and control a given system in some desirable way, even if
we are never able to determine exactly the values of the unknown parameters within the plant. To be more
specific about our control goal, and to guide stability analysis, we separate the goal of stability into two
portions.

1. Stability refers to the boundedness of tracking and parameter errors. That is, e, 0 € Lo
2. Asymptotic stability refers to the tracking and parameter errors approaching zero asymptotically.
Thatis: e, = 0ast — oo

However, again, as control engineers, we may not be interested in the entirety of (2). That is, we are
primarily interested in driving e — 0. Convergence of the parameter error to zero is also good, and the
conditions required for & — 0 will be discussed more later.
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Chapter 28

Stability Theory

28.1 Lyapunov Stability

There are several ways in which the stability of equilibria can be defined which are outlined in these
notes. Only autonomous systems are covered, looking at both continuous and discrete time cases.

Lyapunov Stability Analysis gives two approaches can be taken to analyze a system and see what type
stability an equilibrium point satisfies. Lyapunov’s first, or indirect method can be used to prove whether a
system is stable, unstable, or draw no conclusion about stability. Lyapunov’s second, or direct method can
only prove system stability.

28.1.1 Stability of Autonomous Systems

When talking about the stability of autonomous systems, it is always done relative to an equilibrium
point. Equilibrium points must first be found, and it is the stability of these points which must be studied. For
linear systems there exists only one equilibrium, so the stability of this equilibrium point can be equivalently
described by saying the stability of the system.

28.1.2 Equilibrium Points

Given the following autonomous system, the system’s equilibrium points must first be found. (DDV
13.2)

The point xq is an equilibrium point of the continuous system if f(xeq(t),t) = 0,V¢ > 0. If the system
is started in the state T¢q at time £o, it will remain there for all time. Nonlinear systems can have multiple
equilibrium points (or equilibria). For a linear time-invariant system

&(t) = Az

there is one equilibrium point (the origin) if A is nonsingular, otherwise there are an infinity of equilibrium
points, which are contained in the nullspace of A.

The key here is that for linear systems with multiple equilibrium points, these points are not isolated. But
for non-linear systems with multiple equilibrium points, there can be infinitely many isolated equilibrium
points, for example consider a pendulum.
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28.1.3 Stability Definitions

Consider the following dynamical system

(1) = f(z(t),1)
.Z‘(t()) = X9
Denote the equilibrium point as Zeq.

Definition 31 Stability The equilibrium is stable if for all ¢ > 0 there exists a §(e,tg) > 0 such that
lxol| < 6 implies ||z(t)|] < €forallt > t.

Stability is often referred to as stable in the sense of Lyapunov (ISL). A system that is stable is one
which the system trajectory can be kept close to an equilibrium point by starting sufficiently close to the
equilibrium. This is the weakest form of stability, and is also known as marginally stable. It is important to
make the point that this must hold for any € that can be picked, not just one particular and carefully selected
special case. An equilibrium point that is not stable ISL is termed unstable. (DDV 13.2)

Definition 32 Attractive

Attractivity implies that all trajectories starting in a neighborhood of the equilibrium point eventually
approach the equilibrium point.

Remark 6 Attractivity does not imply stability.

1. Local asymptotic stability A system which is stable ISL, and satisfies the additional constraint below
is called locally asymptotically stable.

e Jr such that if ||z(t)| < 7, then z(t) — T ast — oo

This statement says that if the starting point z:(¢) is inside the circle centered about Z with radius 7,
that the system trajectories will actually converge to Z. It is important to note that there exist systems
which satisfy only this additional constraint without satisfying the first constraint of being stable ISL.
Such systems are not asymptotically stable.

2. Global asymptotic stability A system which is globally asymptotically stable extends the definition
of local asymptotic stability from a circle of radius 7 to the entire state space. In other words, begin-
ning from any initial conditions x(¢y) then x(t) — Z as t — oo. This is discussed in further detail
using Lyapunov’s second method.

28.2 Lyapunov Stability Analysis

Using these three definitions of stability, tools are now needed which will allow a system to be analyzed
to determine if an equilibrium is stable, and if so, which type of stability the equilibrium point satisfies.

28.2.1 Lyapunov’s First (Indirect) Method

This method involves linearizing the nonlinear system about an equilibrium point Z in order to develop
a local conclusion about the stability of the nonlinear system. If the linearized system has poles that are all
strictly in the left-half complex plane, the equilibrium point is locally asymptotically stable. If the linearized
system has any poles that are strictly in the right-half complex plane, equilibrium point is unstable. If the
linearized system as any eigenvalues which are zero, no conclusion can be drawn about the stability of
the equilibrium point. In this case, essentially the higher order terms that were lost in linearization will
determine whether or not the equilibrium is stable or not. (DDV 14.3)
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28.2.2 Lyapunov’s Second (Direct) Method

Lyapunov’s second method requires the construction of a scalar, energy like Lyapunov function of the
state which satisfies the properties which follow. This function V' (z(t)) is proposed as a “candidate Lya-
punov function”, and if the properties are satisfied, it becomes a Lyapunov function.

* V is locally positive definite

( 0
- V(z(t)) > 0,0 < ||x(t)|| < r for some r
)

« Viz(t) = diV(:L‘(t)) = %V(m(t))% is locally negative semidefinite

0
- V(z(t)) <0,0 < ||z(t)|| < r for some r
Chain rule:

V(o = V) 9T v

dz(z(t),y(t)) Ozdx 0Ozdy
dt “ordt Oy dt
The Lyapunov function which satisfies these three conditions proves the equilibrium point is locally
stable ISL.
The condition of stability can be further improved if V (z(t)) is negative definite, i.e. V(z(t)) < 0,
0 < ||x(t)|| < r for some r. Satisfying this condition results in asymptotic stability. (DDV 13.4) Lyapunov’s
second method can be extended to prove global stability if the function |V (z)| — oo as ||z|| — oo (i.e.
V/(x(t)) is radially unbounded) and V (z(t)) is negative definite on the entire state space. If a Lyapunov
function cannot be found, this does not necessarily mean that the system is unstable, but only that a suitable
Lyapunov function could not be found. Therefore, Lyapunov’s direct method cannot be used to prove a
system is unstable. In the stability proof for the adaptive controllers presented in these notes, we get V<o,
so from this alone all we have is stability ISL. However, we will show other tools we have to show that the
system is asymptotically stable without requiring V <0.

28.2.3 The Lyapunov Equation

To prove stability of the following continuous time, linear, autonomous system, a quadratic Lyapunov
function will suffice.

(t) = Ax(t)

Propose the following quadratic Lyapunov function, where P must be chosen such that it is positive definite
(.e. 2" Pz > 0Vz #0).

V(z(t)) =z Pz, z€R"

As long as P is positive definite V' (z(t)) will be a suitable Lyapunov function. Taking the time derivative
of the Lyapunov function, and substituting & = Ax gives:
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V(z)=i' Pz +ax' Pi
= (Az)" Pz + 2" PAx
=xz'A"Px 42" PAx
=z (ATP+ PA)x

=—z'Qx

The resulting matrix Q = —(ATP 4 PA) is symmetric as well. By picking P such that it is not only
symmetric and positive definite, but such that () is negative definite, the quadratic Lyapunov function will
prove the linear system is globally asymptotically stable. However, we cannot guarantee for any given
positive definite matrix P that when we solve for @) it will be positive definite. However, if we specify
Q > 0 and A is stable, there always exists P = P > 0.

28.3 Barbalat’s Lemma
1. V is positive definite

2. Vis negative semi-definite

» With V positive definite and 1% negative semi-definite, V' is bounded. That is, at the initial time
t = 0 we have V(z(t = 0),6(t = 0)) and from here (since V' is negative semidefinite) the
value of V' can only decrease. V' is bounded below by zero since it is positive definite. Finally,
we say that since V' is bounded from above by V(¢ = 0) and bounded from below by 0, that
it is bounded. And because V' is bounded and positive definite (actually probably some other
condition, but it is true for a quadratic function) then the arguments of V' are bounded

3. Vis uniformly continuous, which follows from 1% being bounded

* We evaluate V and since now we know the arguments of V' are bounded, we use this to bound
V', thus showing uniform continuity of V'

With these three conditions met Barbalat’s Lemma states that V' — 0 as ¢ — co. We then look at V and
since it is tending to zero, its arguments must go to zero. Since V at this point is probably a function of the
state error only, we say the state error tends to zero, although we can’t necessarily say anything about the
parameter error (unless the parameters are in V also... it is easiest to show this with examples).

Thus far, we have shown that e € L, is bounded. Now the goal is to use Barbalat’s Lemma to prove
e — 0. That is, show the system is asymptotically stable?

Lemma 1 Slotine pg 122  [f the differentiable function g(t) = fg f(7)dT has a finite limit as t — oo, and
if g(t) = f(t) is uniformly continuous, then §(t) = f(t) - 0ast — oc.

Lemma 2 Lemma 2.12 Annaswamy pg 85 If f : Rt — R is uniformly continuous for t > 0, and if the
limit of the integral

lim /Ot F(7)dr

t—o0
exists and is finite, then

lim f(t) =0

t—o00
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Comparing these two lemmas, f(¢) = ¢(¢). We want to use Barbalat’s lemma to show that e — 0. The
steps are given in the next section.

Using Barbalat’s Lemma
» Show that e is uniformly continuous for ¢ > 0.
— To do this need to show that é is bounded, which we did.
e Then show lim;_,«, fg le(T)|dT exists and is finite
— To do this... 77?

* Then we will have shown that lim;_, . e(t) = 0
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Chapter 29

Adaptive Parameter Identification

Section 3.2.1 from book.

29.1 Parameter Identification: Scalar Algebraic Systems

29.1.1 Non-Recursive Schemes
Method 1

Consider the scalar algebraic system with input « (), unknown scalar parameter 6, and output y(¢). We
want to identify 6.

ut) N v
\/

Want to identify 6 using measurements {u(t), y(t)}. One method

i) — Y0
0(t) = u(t)
provided 6 is not zero, 6 — 6.
Method 2
Another method
i Y(Bu(t)
0=y

Denote the estimated value as 6, and compute the estimated parameter as

o(t) = y(®)

u(t)
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which can be written as follows. But why?

provided u(t) # 0.

Method 3

Now want to set it up using the cost function approach described above. Put v into 8 and é, take outputs

y and ¢ and difference them. Define this difference as the error e = y — .

Becomes
(D)—
u N €
O—
N
N ]
N
Then
J =é?
And the goal is to find 0 by minimizing J
6 = arg mgin J
Expanding J
J=[y—9
= [y — 0uf?
Evaluating the gradient
aJ p
~ = 2[0u — ylu
00
= 20u® — 2yu
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Setting this equal to zero and solving for the parameter estimate

which is the same estimate achieved above.

e=9y—y
=fu—vy
= Gu — bu
= fu

Method 4

To accommodate noise, define a cost function as an integral of the error squared over some interval of
time. Then find the estimate 6 as the value where the gradient of the cost function is zero. That is, the
gradient will be zero when the cost function is at a minimum. The error is given by

e=y—4y

this is shown in the following figure The cost function

t+T
J:/ e(r)%dr
ttJrT
— / (y(T) — Q(T))QdT
T X
= /t (y(r) — 9(7‘)u(7’))2d7'

The goal is to minimize the cost .J, and so at this minimum we have
oJ
- = O
00

t+T X )

Z‘g _ /t ;é(y(f) —i(r)u(r)) dr
t+T R

_ /t 2(y(7) — O(r)u(r))u(r)dr

and then setting 8.J /80 = 0 we have

and with

t+T )

/t 2(y(7‘) — G(T)u(T))u(T)dT =0
4T X

/t y(F)u(r) — 6(r)u(r)2dr = 0



Finish this explanation. Why pull out 0 like that?

Method 5

The estimate é(t) can be obtained by solving the differential equation obtained by setting 6 equal to the
negative gradient of the cost function. Using the following cost function

and evaluating the gradient

O(t) =0(t) — 0
The gradient can be expressed
oJ 95
o5 — B0
and make the estimate update
o(t) = _9J
90

giving

29.1.2 Recursive Schemes

Becomes
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&)

N
N ]
N
Use quadratic cost function in error J = e = [éu — y]?. Recursive scheme: Identify é(t) at every
instant. Set 6 o g—b]. 0 = —[0u — ylu = —u20 + uy
wt) N el

29.2 Parameter Identification: Vector Algebraic Systems

29.2.1 Non-Recursive Schemes
Method 1

u(t) @ y(t)

So identify as

If » ! exists, 0=0.

Method 2 and 3

Same as before with scalar case
o=[UTU]!
alternatively

J=|Ué - Y|P

and % =0=0=[U'U|"'UTY miny J that implies

6=[U'U\UTY
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29.2.2 Recursive Schemes

Set

0 = A(t)0 where A(t) = u(t)u' (t), where A(t) is a symmetric n x n matrix of rank 1.

[uw' ]z = Az

un v = (uu)u
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r =ut uu'ut = (O)ut ut n — 1 such vectors w is said to be persistently exciting if it has the full rank
property.

1 t+T
T/ ’U,(T)UT(T)dT > alyxn
t

For some T"and o > 0. This property is sometimes called uniform observability. Sinusoids are best vector
for convergence.

Example 45 Identification of a parameter in a vector algebraic system Vector § € R”.
Again input v output y.
u' (th) y(t1)
T
u (¢ t
v v () 6. — [V(t2)
where the output vector is Y
vo=Y
a)
0=U"'Y
and then
U'uo=U"Yy
b)
o=[UTU]!
alternatively R
J=|Uf-Y|?
and % = 0= 0 = [UTU]"'UTY Recursive scheme: Identify f(t) at every instant. Set
5 0J
0 x 90

29.2.3 Overview of Persistent Excitation

sufficient condition to determine the parameter is

t+T
J:/ wldr > ¢
t

this is persistent excitation!

29.3 Introduction to Error Models

Error models are covered in detail in Chapter 7 of the book, and we will introduce them a little bit here.
In the adaptive control problems we will consider, we are adjusting some parameter, either as part of an
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estimator or controller. As this parameter is adjusted, we monitor an error signal. The goal is then to adjust
our parameter in a way that drives the error to zero. Error models allow us to determine a set up update laws
for the parameter which are applicable to many different problems by reducing the problem to a known error
model form. These error models are introduced here and will be covered in detail later.

29.3.1 Error Model 1

Error model 1 is an algebraic error model. That is, the relationship between the input and error is an
algebraic relationship with parameter error. Consider the following estimator block diagram

Defining the parameter error as 6 = 0 — 6 the block diagram can be expressed

u(t) @ e(t)

The relationship between the output error e and parameter error 0 is written as

Now, given this error model, we want to adjust 6 in some way to make e — 0.

29.3.2 Error Model 3

29.4 Parameter Identification: Dynamic Systems

Cannot use MIT rule for dynamic systems.

29.4.1 Scalar Systems: Single Parameter Identification

The following examples show how to identify a single parameter in a first-order systems. To identify
multiple parameters in a scalar systems is also possible, and done in a following example.
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Error Model 3

Example 46 DC motor: Identification of a single parameter in a scalar system (Error
Model 3) Consider the following transfer function representation of a DC motor, where
the input is terminal voltage V' and the output is the angular velocity of the motor shaft w.

K
w K T

V:Js+B:s+g

where B is the friction J the inertia, and K is the DC gain of the system. This transfer
function can be represented by the following block diagram

% K w
Js+B

We can simplify the representation by parameterizing the transfer function as

w aq

V_8+91

where a; = % and 6; = % For this problem we assume that the sign of the parameters
B, J,and K are all known and furthermore that

a1 known

6; > 0 unknown

where 6; is the unknown constant quantity which we would like to identify, where its
positivity in this example is due to the physical parameters which it represents. Note that
it is hard to identify unstable systems, and to do so we would need a stabilizing controller
and perform closed-loop identification. More on this later. Using this parameterization, the
block diagram can be written

1% al w
s5+601

We can pull the known constant a; out of the transfer function as shown in the following
block diagram

14 fal\u —&9 w
\_/ s+61

We can then look at the transfer function from u to w

w 1

U_S'f‘@l
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In state space, this plant can be represented as follows. The second equation is the estima-
tion equation to identify 6.

w=—-bw+u
w= —éui) +u
Define the tracking error as
e=Ww—w
Differentiate the tracking error
E=w—w

=010+ u+b0w—u
= —91w+91w

Add and subtract 6w from both sides

6= 01w — 0100 + O — 01
= 01 (& —w)— (6, — )&

and with ; = él — 01 this gives the following error dynamics

e = —916 — 91(1)

Which we call error model 3. The transfer function for these error dynamics is

6_ 91

~

w__8+91

with the following block diagram representation

1 e

() _
) s+01

w

In order to determine a stable identification scheme, we propose the following Lyapunov
function.

1 -
V(@, 6) = 5(9% + 62)
Time differentiating
V = 0,0, +ec
= élél + 6(—916 — éld})
= —9162 + 5151 — eéldj
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Noting that 61 = 0, select the following parameter estimation law

This gives )
V =—06¢

with V < 0= eand 6 are bounded. More on this later.

Error Model 1

Example 47 DC motor: Identification of a single parameter in a scalar system (Error
Model 1) Consider again the DC motor example of example 6] In that example, we
parameterized the first order plant as

14 /al\u —&9 w
SO

with transfer function from u to w given by

w 1
u s+ 6;

We again assume

a1 known

6; > 0 unknown

Write the transfer function as

w 1

5284—91
1 s+ 6,
T s+0, s+,
1 1
_$+9m'%
1 1
et Bt
1 1
_s+9mll—%
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where 6,,, > 0 is a known, positive parameter that the control designer picks, which should
be a reasonable time constant for the DC motor in this case. Define § = 6; — 6,, and
simplify this transfer function as

w 1 1

and realize this in the following block diagram representation, where we are using two
states to represent a first order system.

U 1 o1+ N w
5+0'm U
+
0 T

The only unknown entity is the parameter 6. Note that ¢; and ¢4 are synthesizable signals
that can be had online. So, we can express w and its estimate w as

w = ¢1 + O¢p2
& = ¢1+ by

Define the tracking error as follows, and simplify

e=w—w
:(9—9)%

This gives the following relationship between input ¢ and error, error model 1.

€:é¢2

where the parameter estimation error is defined as
0=0-0
Define the following Lyapunov function candidate
~ 1~
V(0)==6°
0) =5
Differentiating '
V =00

Select the following parameter estimation law, noting that 6=60

é = —epo
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Which simplifies to

6= 663

Substituting this into the time derivative of V'
V=063

Essentially converted the problem of identifying a single parameter in a first order dynam-
ical system from error model 3 as shown in example 6| to error model 1.

29.4.2 Vector Systems: Multiple Parameter Identification

The following examples are for vector systems, that is systems with more than one unknown parameter.
These examples are of a scalar system with multiple parameters, using two approaches: error model 1 and
error model 3.

Error Model 3

Example 48 DC motor: identification of multiple parameters in a scalar system (Error
model 3) Same system as in the first DC motor example, only this time two unknown

parameters.
w . aq
\%4 - s+ 91
Block diagram
u aj w
5401

This time we assume

a, unknown
61 > 0 unknown

The differential equation describing the plant is given by
w=—6iw+aV

Generate an estimate of the plant output as follows, using parameter estimates in place of
the unknown parameters
w=—-0w+aV
Define the following output error and parameter errors
e=w—w
él = él — 91

ay = a; — ap
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The output error dynamics are given by
e = —éld) + a1V 4+ 0w — a1V
Add and subtract 67w
e = —él(.:) + 91(1) — 91(1) + d1V + (9100 — CL1V
= (91 — él)d} — 91((2) — w) + d1V
= —be— 1+ a1V
= —916 + éT(lS

where

0= [91] and ¢ = [~

Error Model 1

Example 49 DC motor: identification of multiple parameters in a scalar system (Error
model 1) Same system as in the first DC motor example, only this time two unknown

parameters.
w . aq
u s+ 91
Block diagram
U ay w
s+01

This time we assume

a1 unknown

6, > 0 unknown
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As last time in example 47| Write the transfer function as

w aq
u N S+ 91
al s+ 9m
 s+6, s+06,
aq 1
- " 5401
s+ 0, o
al 1
- " 66 5140,
s+ 0 ;n+9mm + 5+0m
aq 1
"1 Om—01
§ + em 1 5+0m

where 60,, > 0 is a known, positive parameter that the control designer picks, which should
be a reasonable time constant for the DC motor in this case. Define § £ #; — 6,,, and
simplify this transfer function as

w a 1
U

and realize this in the following block diagram representation, where we are using two
states to represent a first order system.

u | S w
5+0m N
T

U ¢)2 s+0m

w = a1¢1 + ¢z
=0"¢
where ~ - -
0 = [al 9} ¢ = [¢1 ¢2]
Define the estimated parameter
O=0"¢
with error e = W — w given by
e= éT(b
Where the parameter error is .
0=0-0

This is again error model 1, but now the unknown parameter is a vector. This error model
has the following block diagram representation
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¢ @ e(t)
=

Problem cast as output... For more on this, see page 275 of text.
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Chapter 30

Adaptive PI, PID, Phase-Lead Control

Goal: velocity control of a DC motor: have x — x4 where the state x is the angular velocity, and x4
is the desired angular velocity. Newton’s second law can be adapted to angular acceleration to give the
following first order description of the motor, where the input is the motor torque directly (we assume motor
torque is directly proportional to voltage, and neglect fast electrical dynamics).

Ji+ Bt =1
And because this is a motor, J > 0 and B > 0, and the transfer function is given by

x 1

@) == s+ B)

We can see that the plant has a stable pole at —B/.J, and no zeros. The controller will be connected with
the plant as shown by the following block diagram

Controller Plant
r N Er a T 1 z
U/ c (3) s(Js+B)

The input to the controller is the error e, = r — .

30.1 Adaptive Pl Control

30.1.1 Adaptive PI Controller: Original Design
Algebraic Part

1
s(Js+B)
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/

r + 6 Adaptive T 1

N Controller s(Js+B)

A standard PI controller is written in transfer function form as

T I(z
GC(S):Z:KP‘F?
SKp + Kl
- S

S

where K, > 0 and K; > 0. From this transfer function representation, we can see that this controller has a
pole at the origin and a zero in the LHP at —K; / K,,. This control law can also be expressed as

() = K, ()en(t) + Ki(t) ( /0 t er(T)dT)

The first step in the design of the adaptive PI controller is to first design the nominal PI controller: the PI
controller we would pick if J and B were known. This step is called the algebraic part. Then we consider
J and B are unknown and develop the adaptive version. This step is called the analytic part. This procedure
is called the certainty equivalence principle: develop solution when parameters are known, then replace

parameters by estimates.

In order to design the nominal PI controller, we find the closed-loop transfer function W (,), as shown

in the block diagram below.

. 1 S
l Controller Plant
ro t\er Kp(s+K:/Kp) T 1
I \TJ s Js+B
This closed-loop transfer function is
x G.G
Wcl(S) _z __ ¢ p
r  1+G.Gp
Kps + Kz

s(Js+ B) + K,s + K;

Next, reparameterize the control law as




where K > 0, A > 0. We explain the reason behind this reparameterization later. Writing the controller

transfer function using this reparameteriaztion gives

K(s+ A
Go(s) = Bl +A
S
The closed-loop transfer function when using the controller reparameterization is
T K(s+ )
r s(Js+B)+K(s+\)

Inserting this reparameterization into the block diagram is shown below

We(s) =

The characteristic polynomial is given by

s(Js+B)+ K(s+ ) =0
Js*+ (B+ K)s+K\=0

Using the Routh-Hurwitz criterion for this system, the second order system is stable if all of the polynomial

coefficients are positive, which is satisfied given J > 0, B > 0,and V K, A > 0.

The idea now is to, assuming the plant parameters are known exactly, figure out what reference command
r we would have to give to ensure perfect tracking. If the closed loop system is given by W(s), we can
determine 7 by inverting the closed-loop system, so the transfer function from z4 to z would be unity, giving

perfect tracking. See block diagram below.

Zq

cl

_ T 1+ G.G
WCll(S) — ;d e 4G0Gp p
= 1

G.c, "

= (Js+B)G(s) ' +1
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and then

= W (9)] wa

[(Js+ B)G.(s) + 1]zg

= (Js + B)G. ' (s)a + 2

= JG Y (s)ig + BG (s)xq + 24

define
wa = [GZ 1 (s)]za
where X s
G, (s) = CE))
gives

r=Jwg+ Bwg + x4

and wg, wq, and z4 are known signals. So assuming we knew the plant parameters exactly, and knew the
desired trajectory and its derivative, this is how we would determine the reference command 7 such that we
would achieve perfect tracking. This can be represented by the following block diagram.

Ge
_|_
_ r Cr s T T
BG;! \) ? b s+/\) 757 B
Zq
This can be rearranged as
b ()
T (5
4 Plant
td e K(s+)) TN T 1 x
\T/ s _/ Js+B
where
€=2q— X

So the total control input is
T =Jig+ Bxg+ G.(s)e
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where the PI controller transfer function is written

Guls) = K + 22
S

and we have

G.(s)e = K6+K)\/edt

and so the total control input is
T=Jiq+ Brg+ Ke + K)\/e(T)dT
— Jig+ B+ K<e + A/e(T)dT>

Defining the following errors

e1 = Tq+ Xe
egze—i-)\/e(T)dT

Giving

T=Jitg+ Bxrg+ Kes

Analytic Part

In the analytic part we take the control law that we had before when we assumed the plant parameters
where completely known, and replace the values of the plant parameters in the control law with estimates of
their values.

T = ji’d—i-Bxd—f—KeQ

The plant is given by
Jr+Bxr=rT1

substituting in the adaptive control law
Ji = —Bx + Jig+ Brg+ Kes

1 - .
T = j(JId +B.’L’d — BZ‘+K€2)

eE=2q— &

1 . .
:id—j(Jid+Bxd—Bx+K€2)
J J

=gt
1 -
= —j'd— j(Ba:d—Bx—i—Keg)

1 .
Eq — j(Bxd—B:U+K€2>
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where

é2:é+/\€
_ 7 l(1%’ Bz + Keg) + A
= de i Tq €T €9 (&

Summary

—{ Adaptive PI: Original Design%

Plant: Jr+Bx=rT1
Control: T = ja’sd + Bazd + Keg
Error: e=Tq—T

e2 =€+ )\/e(T)dT
Parameterization: K, =K

K, =K\

30.1.2 Adaptive Pl Controller: Better Design

Say some stuff here about exactly what the idea is behind using positive damping feedback, and how
this will help with the adaptive part of the design to follow, as compared to the adaptive design when the
damping feedback is not used. This can be represented using the following block diagram

Controller Plant
er
r_tM Gols) T
— +

1
Js+B

Algebraic Part

The block diagram above is the same as the following block diagram. Again, we complete the algebraic
part first. Closing the inner loop with B feedback

1 1 1
Js+B __ Js+B __

B Js
l- 535 748 U8
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Controller Plant
er
TN Guls) 1 x

_Hﬁ

where again the PI control law is given by

SKp + Kl
S

Ge(s) =

Using this new structure with the proposed positive rate feedback, we must check the stability of the closed
loop system W;.

Wa(s) = t GC(S);)SI

o 14+ Ge( P
Ge(s)

 Js+ G.(s)
Kps-‘rKi
_ S
Js? 4 KpstKi

S S

. Kps—i-KZ-
N J82+KpS+Ki

We can then check stability of the closed-loop system using the Routh-Hurwitz criterion. For a second order
system this states that the closed-loop system will be stable if the characteristic polynomial has no sign
changes. Thus, the closed-loop system is stable for all J > 0, K, > 0, K; > 0.

We now proceed in the same way as before: figure out what  should be based on x4 to give us perfect
tracking. This is how we find the feed-forward part shown in the block diagram below.

Controller Plant
Td _ r + e + T T
S W) (O Gls) O T
— +

&)

Using the expression for W,; above and inverting it, the reference signal r can be found in terms of z4 as

r=[Wg'(s)]za

= [1 + JsG. (s)]zg
= zq + [JGZ ' (3)]24

The block diagram above can then be represented as
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Controller Plant

_|_
Ld + + er +
OO0~ auo

1
Js+B

—O
(=)

which can be again redrawn as

Tq

Controller Plant

G.(s)

Td +

1
Js+B

BN

=)

Again we reparameterize the control law, with a different reparameterization this time. Let

K, =K+ JA
K = K\

We can also see from the above block diagram that the control input to the plant is given by

T = Jig+ Bx + Ge(s)e

where
e=Tq— X
the control law can be written
Ge(s)e = (K + J\)e+ K)\/edt

and so the total control input is

T:Ja';d+Bm+(K+J)\)e+K)\/edt
:Jid+Ba:+Ke+J)\e+K>\/edt

:J(i:d+)\e)+B$+K<e+)\/edt>
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Defining the following errors
e1 = g+ Xe

62:€+)\/6dt

T:J€1+B$+K€2

allows the total control input to be expressed as
T = 0 wo(t)

where

bo=[J B K]'

and .
wo(t) = [er(t) x(t) ea(t)]
Again looking at the closed-loop transfer function using the PI controller with positive damping feedback

Kps + Kz

W. =
(s) = 727 Kys+ K;

Using the parameterization from before, the characteristic polynomial is
Js? + (K + J\)s + K\

which, using Routh-Hurwitz criterion is stable if all of the coefficients have the same sign. So stable for
J>0 K>0 A>0

and then
r=W.Ys)ry = 2z — x4

C

Completes algebraic part. Now go to analytic part.

Analytic Part

In the analytic part we take the control law that we had before when we assumed the plant parameters
where completely known, and replace the values of the plant parameters in the control law with estimates of
their values.

A~

T = J(t)e1(t) + B(t)x(t) + Key(t)

The plant is given by
Jr+Bx =T

Jt=—-Bx+T1
substituting in the adaptive control law
Ji = —Bx + Bx + Je; + Keg
=Bz +J e1+ Keg

299



where the parameter error on B is

A

B=B-B
SO L A
T = 7 (Bac—i— Jeq +K62>
Time differentiating the error e we get
E=1Tqg— 2

= Tq— }] (Bm+jel +K€2)
Time differentiating eo
és =€+ Ae
:a'cd—§ (B:U+j61+K62) + Xe
:@m+A@_%(Bm+ﬂq+K@>

:el—%(Bx—Fjel-I—Keg)

J Bx J Key

J g J J
_ (L Bz Key
—\T T T g
__Ze__éf_fﬁ2
I A J
K 1/~ -
= —762 — j (BfE + J€1>

and parameter vector N
~ B
6= "

7

The error dynamics for €5 can be expressed in the following block diagram.

w €2

1
Js+K

Since the plant is a DC motor we know sgn(.JJ) > 0. Goal now is to drive e — 0. We attempt to find
stable update laws using the following proposed Lyapunov function

V:%(L£+J?+Bﬂ
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Time differentiating

V:J€2é2+jj+é_§
V=Jer (~Ser— % (Bat Jer) )+ + BB
= Jeéo J€2 7 x €1

= —Ke% —Bzeg — jelez—i—jj—kéé

And we can see that if we choose the following adaptive laws

j = €2€1
B = €e2%
and substitute them into the V/ equation
V =—Ke2

Summary

—{ Adaptive PI: Better Design %

Plant: Ji+Bx =171
Control: T = jel + Bx + Kes
Error: e=2q—T

e1 = Tq—+ e

e =e+ )\/e(T)dT

Parameterization: K,=K+ J\
K; =K\

Update laws: J= Yi€2€1
B = Y2€2X

Example 50 Adaptive PI Control of a DC Motor This example applies the better adaptive
controller to a DC motor with unknown moment of inertia J = 2 and damping B = 0.5.
The reparameterized controller gains are K = 1 and A = 1. For the nonadaptive controller,
where constant estimates of the motor parameters are used, the values are J = 0.5 and

B=1.
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Figure 30.1: Nonadaptive PI control of DC motor when J and B are fixed.

1.5 —Zd
1
0.5
8
00
N
—0.5¢
_] -
—1.5F
0 10 20 30 40 50 60

Time [s]

Figure 30.2: Adaptive PI control of DC motor.

30.1.3 More on the Parameterization of G.(s)

K(s+X)  (K+J)\s+ k)

Gels) = S - s
reparameterization gives damping ratio which is less dependent on J.
_ Vk
‘T
Versus bt T
RN/

30.2 Adaptive PID Control

The goal of this section is to design an adaptive PID controller for the following second order plant.

1

Gpls) = s(Js+ B)
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where J, B, A, and k are all positive. This is the same motor control problem that we used for the adaptive
PI controller, but we note now that the output x is the motor position instead of velocity. This control
architecture is represented by the following block diagram. The tracking error is

e=xqg—

In addition, we again assume both = and & are available for measurement.

Controller Plant
r + e T 1 T
O—— Gels) S

Again we begin with the algebraic part: the solution for J, B known. This time we use a PID controller,
given in general by

K;
GC(S) = Kp + ? + Kys

_ Kps+ K + K s?
s

30.2.1 Adaptive PID Controller: Original Design

We can reduce number of control parameters from three to two by requiring both of the controller zeros
lie at the same place
K(s+\)?
Ge(s) = Bls )
s
We find the closed-loop transfer function W,; from r to x to see under what conditions the system will be
stable.

r GGy
1+ GGy
K(s+))? 1
s s(Js+B)
1+ K(S:)\)Q s(Jsl-i-B)
K(s+\)?

s2(Js+ B) + K(s+ \)?

Looking at the closed-loop characteristic equation, and using the Routh-Hurwitz stability criterion, the sys-
tem will be stable for
JA
K< —-B
2
A>0

Now that stability can be met, we want to figure out what r should be based on =4 so that  — x4. This is
the goal of tracking. In the same way as with the PI controller, we consider a feed-forward controller which
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will, assuming all of the plant parameters are known exactly, cancel out the plant dynamics, allowing z to
perfectly track x4 after transients.

Controller Plant
Tq _ + €r
— Wi '(s) - Q Ge(s) a s(.]lerB) 7
where
_ 1+G.G
W 1 — p
Cl (S) Gpo
= ! +1
a G.Gp
=1+s(Js+ B)G.!
and r is given by
r=W;(s)zq

=24+ [s(Js + B)Ge(s) Ny
= xq + BG.(s) " sxq + JGo(s) tsPng
using
wqg = Ge(s) Ly

the reference can be written as
r=uxq+ Bwg+ Ky

30.2.2 Adaptive PID Controller: Better Design

Before we proceed with the PID control design, we again want to improve our design as we did in the
case of the PI controller by using positive rate feedback, as shown in the following block diagram.

Controller Plant
Er
r + N G, (s) + ™ T 1 x

s(Js+B)

()

Controller Plant
r + €r T
O Ge(s) 7
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Algebraic Part

Now if we call the transfer function from r to = as W,;(s), we have

Wa(s) = —GC(S)ﬁ
) 1+ Ge(s) 7z
— GC
- Js2+ G,

So now we put the feed-forward control on the block diagram above as

Controller Plant
Td _ r + er + T 1
—— Wi(s) O Gi(s) O STEE
- +
(5
\_/ i

where

Js*+ G
-1
Wy (s) = ch
=1+ Js*G.?
characteristic polynomial stable V5B, J SHOW THIS HERE WITH ROUTH-HURWITZ

r= chl(s)ﬂcd

= xq+ JG.(s)iyg

which is represented in the block diagram below

i Controller Plant
ZTq + N r N er a L 1 z
U ) () ), ST B)
+
(B )—o
N i

which can be again redrawn as
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Controller 4 Plant
Td + e + T 1 T
O GC(S) C) s(Js+B)

Reparameterize the controller as

(K +2)\J)s? + (20K + A2J)s + K\?

G.(s) =

S

1
= (K +2)\J)s + (2AK + M2J) + KX\*~
S

and then
Gee = (K +2M\J)é + (2AK + A2 J)e + K\? / edt

With structure of G.(s)
T=Bit+ Jiq+ Gee
= Bi+ Jig+ (K 4+ 2\J)é + (2AK + A\2J)e + K\? / edt
= Bi+ Jig+ Ké+ 2 \Jé + 2 \Ke + N2 Je + K)\? / edt

= J(iq+2Xé+ N%) + Bi + K <é+2)\e+>\2/edt>

using the following errors
e1 = iq+2Xé + N
€ :é+2)\e+)\2/edt
the total control input is
T=Jey+ Bz + Key

This completes the nominal PID design, or algebraic part.

Analytic Part

We now proceed with the analytic part by first replacing the plant parameter values in the control law
with their estimates.

T:jel—f—Bi-f—KEQ
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closed-loop

1
i =< (~Bi+7)

1 - .
= —(—Bi+ Jes + Bt + Key)

J
1 - R
:j((B—B)x—l—Jel—i—Keg)
1 - R
:j(Bi—f—J@l-i-Keg)
K 1 /. .
= 762 + 7 <J61 +Bm)
where
B=B—-B
and
E=2Tg— T
. K 1 /. ~ .
—xd—jeg—j<Jel+Bx)

use definition of ey

¢y = €+ 2)\é + Ne
K

; 1 /- -
:md—jeg—j(J€1+B$>
K 1. -
:el—jeg—j<Jel+Bx)
K N J J B .
=——e€ ——=]e1— —=x
JE2T\NT g ) T T
I A A
where
J=J—-J

and then some stuff don’t really know why this is here

[z

and

Propose the following

V=2 (Je+ 2+ B

1
2
307
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Time differentiating

V:J€2é2—|—jj—|—éé
: K J B s
- e~ L — 2 BB
Vv J62< Jeg J€1 J.%’>+JJ+
= —Ke% — j€1€2 —B:ic62+jj+éé

And we can see that if we choose the following adaptive laws

j = €2€1
B = €2X
and substitute them into the V equation
V = -Keé3

3rd order error model

Summary

PI was velocity control, PID was position control.

4{ Adaptive PID: Better Design }—

Plant: Jr+Bi =T
Control: T = jel + Bi + Key
Error: e=Tqg—T

e1 = iq+ 2Xe + Ne
62:é+2)\e+/\2/6d7

t
Update laws: J = 71/ ez(T)er(T)dr
0

B = /Ot eo(T)x(T)dT

30.3 Adaptive Phase-Lead Control

The goal of this section is to design an adaptive phase-lead controller for the following second order

plant.
1

" s(Js+ B)
where J, B, are the motor inertia and damping, respectively, so we know they are positive. This is the same
motor control problem that we used for the adaptive PID controller, where the output « is the motor position.
This control architecture is represented by the following block diagram, where the controller is given by
k(s + zc)

5+ Pe

Gm(9)

Ge(s) =
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where 0 < z. < p.. In addition, we again assume both x and & are available for measurement.

Gels) Gm(s)
r k(s+2c) T 1 T, T
s+pe s(Js+B)

Because we assumed that  and & are measurable, we can take as the output
Yy=2z+ax

where a > 0 and express the system block diagram as follows, where we define G, (s) as

s+a
G =
o(5) s(Js+ B)
giving the following block diagram
Gc(s) GP(S)
r k(s+zc) T st+a Y
s+pe s(Js+B)

Now put a gain in the feedback path, to allow us to have additional control over the closed-loop system.

Ge(s) Gp(s)
TN k(s+2c) s+a Y
N s5+pe s(Js+B)

(%)
\&)

ROOT LOCUS

CLP locations depend on B and J

stableVJ >0B >0k >00 < 2. < pc 0y > 0 phase margin depend on J, B.
For desired pole-locations 6 depends on J, B

Ek>00<z.<peca>0

Tracking: Goal: y — y4. The closed-loop transfer function from 7 to y is

Ge(5)Gp(s)

Wcl(s) = 1+ QOGC(S)Gp(S)

Assuming all the plant parameters are known, we want to design a feed-forward controller Wcjl(s) to
give the appropriate reference signal 7 so that the transfer function from y, to ¥ is unity. In block diagram
this is
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Ge(s) Gp(s)

yd _ + S+2ze s+a
> Wcl 1(S> r ? k‘(S:-pc ) T S(J;|-+B)
©
we want
Y _ry_,
Ya  YdT
" 1+ 80Go(5)C
chl(s) _ + 00Ge(5)Gp(s)
Ge(s)Gp(s)
and then
7 14 60Ge(s)Gp(s)
Yd Ge(s)Gp(s)
! + 6
=S~ T 0o
Ge(s)Gp(s)
Js+ B
= [(S( s )>G;1(s)] + 6o
s+ta
giving
s(Js+ B)\ .1
=||———— |G )
r K sta ) c (5)]yd+ 0Yd
defining
G (s)ya = @a
and
1
Wy =W
s+ta d d
the reference signal  becomes
r = 6oyq + [s(Js + B)lwa
= Ooyq + Jq + Buwg
Fixed phase-lead design will be:
n Ge(s) Gyp(s)
@a SN AN ey e [ ke |7 s+a
U N N/ s+pe s(Js+B)
: ()
0
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To get the reference model, we assume the plant parameters are known, and replace 6y with a nominal
value 6 such that the resulting closed-loop system as shown below is SPR, and when 6y = 6 then we have

Y = Yd.

Wd

(O — o Wl
. Gels) Gy (5
= @ O 0 et st B) T
s+pe s(Js
{ {

6§ desired control parameter which produces desired closed-loop pole locations. If B and J are unknown
this implies 6 is unknown. So the output y; from the reference model is given as

Yq = Wm(s)H*TwD

where
o-=[J B 63"

and

. T
wp = [a W4 Y
So the transfer function W, (s) from r to y is given by

Ge(5)Gp(s)
1+ 03Go(5)Gy(5)
k(s+zc)  s+a

s+pe.  s(Js+B)

- ch(sT20) st
1+90 S5+pe s(js—fB)

k(s+zc)(s+a)
(s+pc)(s(Js+B)
(s+pc)s(Js+B) + 04 k(s+zc)(s+a)
(s+pc)s(Js+B) (s+pc)s(Js+B)
k(s+zc)(s+a)
_ (s+pc)(s(Js+B)
- (s+pc)s(Js+B)+05k(s+2:)(s+a)
(s+pc)s(Js+B)
k(s+ z.)(s+a)

(s +pe)s(Js+ B) + 05k(s + z.)(s + a)

Win(s) =

To get the adaptive phase-lead block diagram, instead of using known and nominal values, we have to
use estimates of the plant parameters (since they are not known) and a time varying parameter 6.
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@a fj\
R N Ge(s) Gp(s)
Wq N + €r k(s+zc) T s+a Y
@ p s e
Ya + e
0
Wa fj\
R N G.(s) Gp(s)
Wy . + €r Stze T sta Y
Op e E
e feo\
NG

Using the following parameter error definitions, we split the parameter estimates into the actual and
error

This gives the following block diagram representation
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Ba_ (N
N
. +
(50O
NG
e @ . Gels) Gy(s)
<> E(s+zc) T (j—TB) Y
S+pe s(Js >
@a_ (TN +
N
. +
Qo N N
NN 4
e=Yq—Y @
NG

Also, recognizing that e = y4; — y, we can re-absorb a portion of the signal e which goes through 67,
giving the following block diagram

a3
NG
. +
wq - +
(2)—0
- Win(s)
¢ @ L Guls) Cy(s) |
(\ | +/\ k(s+2c) T sta Y !
. J A / s+pe s(Js+B) !
Ga_ 7N - |
’ T ) 1
— | ) |
. + 1 |
A W v N i
NG
LN
NG

So at this point, we can simplify the above plant representation as the following.
y = Wpn(s) (éTw + G*TwD)

where



and
W = [(I}d d}d 6]
Defining the error as
€y =Y —Yd

and evaluating this error we get

ey = Win(s) (0w + 0" Twp) — Wp(s)0* Twp

= Wn(s)0 w

use nominal phase-lead controlled nominal plant model to use as reference model.

|phaseW,,(s)| < 90deg

positive correlation of u and y where u is input to y... if you were to take an integral (parsevals theorem)
integrate uy from O to t will be lower bounded by some number...
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Chapter 31

States Accessible Identification and Control

31.1 Preliminaries

In the adaptive control examples shown so far, a Lyapunov function has been used to prove stability
when an appropriate update law has been proposed. The cancellation of terms in the stability proof relied
on the fact that the terms were all scalar, and scalar multiplication is commutative, allowing the terms to
be rearranged and cancelled. In the case where the terms are vectors and matrices, the commutativity of
multiplication does not hold. Because of this, the trace operator must be used to allow us a way of still being
able to rearrange terms.

31.1.1 The Trace Operator

Trace is linear operator which operates on square matrices. The trace operator sums the diagonal entries
of its argument. Trace has the following properties for square matrices A, B, and scalars c.

s tr(A+ B) =tr(A) + tr(B)
o tr(cA) = c-tr(A)
» tr(AB) = tr(BA)
o tr(AT) = tr(A)
For an n x m matrix C' and an m X n matrix D, the following also holds.
* tr(CD) = tr(DC)
This allows more generally for the following to hold, where none of the matrices need be square, as long as
their product is square.
s trf(WXYZ) =tu(XYZW)
These are called cyclic permutations, and follows exactly from the fifth property above. A final “property”

that is a consequence of this, is that the inner product of two n X 1 vectors a and b is the trace of the outer
product of ¢ and b. That is

s tr(ab’) =b"a

This is because we use the rule that allows the two quantities to be switched, after which the n X n quantity
ab' becomes the scalar quantity b a, and the trace of a scalar is just itself. This is essential for use in the
adaptive control of multi-input systems, as it allows vectors to be rearranged to facilitate coming up with
update laws. We will see examples of this in the following sections.
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31.2 Identification
Sec 3.4

Tp = Apxp + Bpu
where z, € R", u € R, A, € R"*", B,, € R"*"™. For identification assume:

1. wbounded u € L
2. A, Hurwitz

The identifier equation is written
Tp = Aty + (4p — Ap)xp + Bpu

where z,, € R". The estimation and parameter errors are

e=2ITp,—Tp
Ap:Ap—Ap
BP:BP_BP

Note that the order of the terms in the error e is different when doing estimation versus control. That is, for
identification the error is e = 7}, — x,, and for control the error is € = x;,, — x,. In general, on the right hand
side is the “target”. In the case of estimating we say target to mean that we want the estimation to follow
plant itself, versus in control x,, is on the right because we want the plant x,, to follow the reference model.
We then evaluate the error dynamics
€=1Tp—Tp

= Anp + (A — Ap)xp, + Bpu — Apzy, — Bpu

= Ant, + Apzy — Ay, + Byu — Apz, — Bpu

= Am(&p — zp) + (Ap — Ap)ap + (Bp — Bp)u

= Ane+ Ayx, + Bpu

Choose the following update laws

with transpose

AT T
A, = —zpe P
B; = —ue' P

and propose the following Lyapunov function
Vie. 4y B,) = ¢ Pe -t (AT A, + B] B,)
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Time differentiating the Lyapunov function we get the following, where the trace operator allows cyclic
permutations of the operands and then we can remove the trace operator

. T Tp- AT AT A 5T 7 5T 5
V=éTPet el Pt (AL A, + A] Ay + By By + B B,)
= ¢ " Pe+e Pé+ 2tr (Zl;flp + é;Bp)

=¢"Ped e Pé+ 2 (fi;/ip) T <Z§T’TB”>

(Ape + Az, + Byu) ' Pe 4 e P(Ape + Ay, + Byu) + 2tr (ﬁ;ﬁ» +tr (é;ép)
=e (A} P+ PA,)e+2e¢" PAyx, + 2¢" PByu + 2tr (—xpeTPflp> + 2tr (—ueTPBp>
=e'" (AL P+ PA,)e+2e" PAyx, +2¢" PByu + 2tr (—eTPflpmp) + 2tr (—eTPBpu>
=e' (A} P+ PA,)e+2e' PAyx, +2¢' PByu—2¢' PAyx, — 2¢' PByu

= —¢' Qe

31.3 Direct Control

31.3.1 Single Input States Accessible

(sI — Ap)~ b, ==

Lyapunov function
V(e,0) =e Pe+0'0

Time differentiating
V=¢"Pete Petr070+0"0
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31.3.2 States Accessible

H@“—» X, = A, X, + byu ———>
T

Case (a): A, is unknown B, is known
Ty = Apry + Bpu
T = AT + Bmr
Control law
u=0(t)x, +kr
&p = Apxp + By (0, + k™)
= (Ap + Bpb)z, + Bpk™r
Matching conditions
A, + By0" = A,
B,k* = By,

Apand A,, have n? degrees of freedom. * has nm degrees of freedom. Matching condition harder than
controllability... more than just matching the eigenvalues... have to match eigenvectors too... The tracking
and parameter errors are

€e=1xTp,— Ty
0=0-0"
plant equation becomes
Iy = Apxp + Bpbxy, + Bpk™r
= Apxy + Bpb*x, + B0z, + Byk*r
= (A, + By0")x), + B0z, + Byk*r
= Apz, + Bpéxp + B,,r

Error dynamics

€= Anx, + Bpézvp + Byr — Ay — B
=A,e+ Bpéa:p
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X
:>‘—»” @ (sI — App) b, ==>

Error Model 2

Lyapunov function
V(e,0) =e Pe+1tr (§T§>

Time differentiating
V=¢"Pete Pédtr (éTé + éTé)
=¢'Pete Pétur <§Té) + tr (§T5>
= ¢ Pe+e' Pé+ 2tr (éTé)
= (Ape + Byz,) " Pe + e P(Ane + By0x,) + 2tr (éTé)
= e (A} P+ PA,)e+ (By0x,) " Pe + e P(B,fz,) + 2tr <§T§>
= —e'Qe+ QeTPBpéxp + 2tr <5T§>
Propose the following update law
5 =0 = —B;Pem;

with transpose

6" = —xpeTPBp
Plugging into 1%
V = —¢" Qe +2¢T PB,fx, + 2t (~z,e PB,J)
= —¢' Qe+ 2eTPBp9~xp + 2tr (—eTPBpéxp)
= —¢'Qe

FINISH ME: All signals bounded

—/Ooov - —/—eTQe — V(0) — V(o) = /eTQe < V(0)
and then
/eTAmin(Q)e = /eTQe < V(0)

note e Qe > e A\nin(Q)e
V(0)
)\min(Q)
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ORM: Case (b) A, unknown B, = BA where B is known Plant and reference model

&y = Apxy + Bpu

Tm = AmTm + Bmr

Control law
u="0(t)x, + k(t)r

the plant equation becomes

iy = Apzp + By (O + k1)
= (Ap + Byf) xp, + Bpkr

Matching conditions

A, + BAO* = A,

BAk* = B,
Update laws
0 = —BTPeac;)r
k=—-B'"Per'’
errors
e=Tp— Tm
0=0—06
k=k—k*

plant equation becomes

x, = Apzy + Bz, + Bpkr
= Apx, + Bp*x, + Bpbx, + Bpk™r + Bykr
= (A, + BA0*)z, + BAOx, + BAK*r + BAkr
= Az, + BAéx,p + Byur + BAkr

error

e = Apnx, + BAél'p + Byt + BAkr — Appyy — B
= Ape + BA0z, + BAkr

Lyapunov
V(e 0,k) =e  Pe+tr (éTAé) +tr (l;:TAl;:>
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Time differentiating
V=¢"Pete Pé+tr <0~TA0~> +tr <9~TA0~) +tr (IETAI%) +tr (]ZJTAif)
= ¢TPet el Pé+ 2t (éTAé) + o (ETA/Z;)
— (Ame + BAOx, + BAkr) " Pe + T P(Ape + BAOz, + BAkr) + 2tr (éTAé) o (Z;TAI%)
= —¢"Qe + 2¢" P(BAz, + BAkr) + 2ur (éTAé) +otr (léTAz%)

= —e'Qe+ 2€TPBAé$p +2¢" PBAkr + 2tr (éTAé) + 2tr (];:TAff)

Use the following update laws

5 = —BTPGLL’;

]Lf = —B' Per'
with transpose

éT = —xpeTPB

ZJT = —re' PB

Plugging these into the V we get

V= —e' Qe + 2€TPBA9~.I'Z, +2¢" PBAkr — 2tr (a:peTPBAé) — 2tr (reTPBAl;:)
= —¢'Qe+ ZeTPBAémp + 2¢ PBAkr — 2tr (eTPBAémp) — 2tr (eTPBAl;:r)
= —¢'Qe+ ZeTPBAéxp +2e" PBAkr — 2eTPBA§xp — 2¢ PBAkr

= —¢'Qe

31.4 Tuning Gains and Closed-Loop Reference Model

From this point forward, all control will be assumed to be direct, unless stated otherwise.

31.4.1 Addition of Tuning Gain to Update Law

Briefly revisit the two adaptive control examples from last lecture: control of a scalar plant with one,
and two unknowns. It is worth mention here that in both cases the parameter updated laws that were selected
could have been modified to include a tuning gain, usually denoted by ~. The inclusion of this term requires
the Lyapunov function to be modified, but provides the control engineer a degree of freedom which can be
used to vary the learning rate of the system, allowing the time response of the adaptive system to be tuned.
The following example shows the changes that must be made to the update law and Lyapunov function for
the control of the scalar plant with two unknowns.
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Example 51 Addition of adaptive tuning gain to update law Consider the example of
adaptive control of the scalar plant with two unknowns. We now propose the following
candidate Lyapunov function, which contains the v~ term, where v > 0

=~ 1 1 ~ -~
Ve, 0) = 562 + §’yfl|kp|9T9

Differentiating along system trajectories we get

Ve, 0) =eé+~y |k, |00
= e(ame + k0" ¢) + 7 ky|0 0
= ane’ + ek:pé—r(b + 'y_l|k‘p|9:T§

We then propose the following parameter update law

0= —sgn(kp)ed

Substituting this into V we get

V(e,0) = ame® + ekpéTgb - |]<;p|sgn(k;p)60:T¢
= ape’ + ekp§T¢ — ekp§T¢

= a,e’

As in the previous examples V <0, and the stability proof follows previous direct adaptive
control examples, but now we have added the additional flexibility of a tuning parameter.

This tuning gain changes the learning rate and thus the time response of the system, as shown in the
following simulation examples.

Example 52 Adaptive control of a scalar plant when changing v Consider the following
transfer function representations of a plant and reference model below where a, = 1,
kpy=2,am=—-1,k, =1

Tp k, T km

U 5 —ayp T4 S — G

The following plots show the time response of this adaptive system for three different values
of -y, showing the rapid oscillations associated with a large learning rate.
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State

State

0 10 20 30 0 10 20 30
time [s] i
2.5
2
1.5
s
=
n 1
0.5
0
0 10 20 30 0 10 20 30

time [s] time [s]

Transient Performance

In finding a stable adaptive controller, we have only just introduced the first method by which the control
engineer has been able to exercise any design freedom. In all of our adaptive controllers thus far, we have
only proved boundedness and convergence of some signals to zero. In other words, we have shown only that
the error will go to zero in the limit as ¢ — oo, but we have said nothing about what the system response
will do between now and infinity. This section will introduce a method which provides additional flexibility
to tune the adaptive controller to provide a desirable transient response.
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31.4.2 Closed-Loop Reference Model Adaptive Control

The reference model used before is modified with the addition of an observer-like gain, £ < 0, and is
called closed-loop reference model, as opposed to the reference model we have seen before, which we call
open-loop reference models. The addition of this term allows the reference model response to deviate from
what was originally determined to be the desired response. Examples to follow will help make this more
clear. Note, however, that the tracking error is now denoted e, where e = x,, — x},. This is to differentiate
it from the “real”, or open-loop reference model error €° = x,, — x},.

Ty, = amaxy, + by — lef

Additionally, note that if ¢ = 0, the open-loop reference model is recovered.

Example 53 Direct adaptive control of a scalar system with two unknowns: Closed-
Loop Reference Model We again consider the scalar plant and reference model below,
where a,, and b,, are unknown, but the sign of b,, is known.

Tp = apxy + kpu

Ty, = am@y, + kpyr — le€

Propose the following controller

u =0z, + kr
Block
(0
I Reference Model
+. ki T
N S—Qm _

r am < 0 : e
Plant (

Substituting in the control law, the plant equation can then be expressed as
Tp = amTp + kpbz, + kpkr

or B
iy = amy + k0 ¢
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where the parameter and regressor are
0" = [9 k:] and o' = [a:p r]

The tracking error is

o . e
- =1z, — Ty,

= amTp + by + bpéTqﬁ — Ay, — by + Le°
= (am + 0)e + bpé—rd)

We now propose the following candidate Lyapunov function in order to prove stability of

this adaptive system

= 1 1 = jd
V(e 0) = 5602 + 57—1|bp\9T9

Differentiating along system trajectories we get
V(eS,0) = e+~ [b,|0 70
— ¢ ((am F e + bp§T¢> b, |07 0
= (@ + 0)e? + ecbp§T¢ + fy*l\bp|9:T0:

We propose now the following adaptive parameter update law

0 = —~ysgn(by)e‘o

Substituting this into V we get

V(ec, 0) = (am + 6)662

And so we have V < 0.

Example 54 CRM control of a scalar plant Consider the following transfer function
representations of a plant and reference model below where a, = 1, k, = 2, a,,, = —1,
km = 1.

Zp kp

u S — ap
Tm km

T4 S — G
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25

[ —0
—_, 1 —k
2 —,

1.5

State
Parameter
IS
(=} [9)]

05 -0.5
0 -1
0 10 20 30 0 10 20 30
time [s] time [s]
~ =100, £ =-100
25 .
==Ly, —
R 1 —_k
2 -=-Ty
15 5 0.5
] £ 0
o 1 o> g
s k \
05 -0.5
0 -1
0 10 20 30
time [s]
~v =100, ¢ =-1000
—0
1 —k

e
W

State

~——————

|
o
W

Parameter
(=]
?

|
—_

0 10 20 30 10 20 30
time [s] time [s]

e

Analyzing the Transient Performance of CRM Adaptive Control

In this section we will compute some analytical bounds on several quantities when using CRM adaptive
control on a scalar plant as shown in the example above.

L., norm of e°
Since V is positive definite and 1% negative semi-definite, along system trajectories we have
V(e (0).6(1)) < V(e(0),6(0)) < o0
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Expanding the left hand side we have

1 1 5TS )
5¢° 377 1Bl070 < V(e°(0),6(0))

and since 37~ ]bp\GZTé > 0 we can simplify this inequality to
5e < V(E(0),00)
which shows that () is bounded, with bound given by
(e°(1))? < 2V(e“(0),0(0))

which is

‘()] <2V(0)

L, norm of e

Integrating the Lyapunov time derivative

I
=
g

|
<
e

0 . =
| e
0
Substituting in the expression for V we get

/0 "l + 0)(e5(7))2dr = V(00) — V(0)

Pulling out a negative, and with V' (c0) > 0 we get

[ D@2 = VO - V() < VO

Pulling the constant terms out of the integral

~(am +0) / T (n)? < V(o)

Recalling that a,,, < 0 and £ < 0 this can be written

~(an 1) [ T (1) = am + 0 / T2 < V(o)

/Oo ey < VO

<
|am + £

SO We can write

Substituting in the expression for V' (0) from the Lyapunov function proposed above

o Le(0)? + BaT(0)0(0)
/0 )" < (a4 4]
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which is the Lo norm of e¢().

le“@)lz, <

and we can evaluate the initial condition of the Lyapunov function V' (0) as

V(0) = Se(0)’ + ‘;’:'&T(O)ém)

L, norm of k
From the update law, taking 6 apart into the 6 and k entries, the update law for & is
k= —ysgn(by,)er
squaring both sides this becomes

‘k|2 — "}/26027“2

|l = [ e
0 0

Next, we can write an inequality by replacing the value of r(¢) at every instant in time with its supremum
over all time. Thus the r term is no longer time dependent, and can be pulled out of the integral with
giving

integrating both sides

[e.e]

oo o0
|l < [T sl Peerar =2l [ e
0 0 t 0
e 2 2
/0 [k[7dr < 7 llr@lz. e @]z,
We then recognize several terms as £, norms, and the inequality becomes

Ik@OIZ, <A*llr@)1Z.. e,

2 2
- Yl @)1z, v (0)
RO, < T

L, norm of 0
Lo, norm of x,,(t) The solution to the reference model ODE ¢, = a,,,z¢, + by, — Le€ is
t t
2 (6) = xp(ant)n(0) + [ Fmexplan(t ~ 7)r(r)dr + (~0) [ explan(t = r)e(r)dr
0 0

where the first two terms are
< [lzp L
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Use Cauchy-Schwarz inequality for second term

JECE \//m |fr2\//0°° g1

1fgllzy < W fllz. llgllz,

which can also be written

so second term is

(—0)oohexp(am(t — 7))e(r)dr < \//0 (exp(2am,(t — T))dT\//OOO e2dr

4]
[m)] Lo < ll27 )20 +
vV [2amllle]

£2
lzm N7 < 202507 + —llel,
am

2 V()

)% <2282 + ——"
eI, < 2l + g

L, norm of & From the update law, taking 0 apart into the # and k entries, the update law for 6 is
0 = —ysgn(k,)ex,
= —sgn(ky)e(e + )

squaring both sides '
017 = 7% (e + wm)”

We have the following inequality
(a+b)? < 2a% + 20°

which we can see by expanding the following non-negative expression
0 < (a—b)? =a® — 2ab + b
adding a? + 2ab + b? to both sides we get
a® + 2ab + b? < 24 + 2b?

(a+b)? < 2a% + 20

Using this inequality
(e + x,)% < 2% + 222

we can write
16]* < y%€*(2¢* + 227,)

< 2726262 + 2’}/262133n
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look at first part of expression on right hand side

/ 0)2dr < 272/ e2edr
0 0

o
< 272/ | sup e(t)|?e*dr
0 t

o0
<2t | dr
0
< 29%)le(t)? || L lle()? || 2,
can say
V(t) <V(0)
and so we also have

~e(t)* < V(0)

e(t)? < 2V(0)

V(0)

2

< N7

H€HL2 = ‘am +£‘

V(0)

< 2722V (0)————

< 27°2V( )yam+£y
: 492V (0)?
9|, < L7
1602, < 7=

PART ONE ONLY. Now part 2:
o
1], < 242 / €222 dt
0

[ee]
smw%mw/ 2
0

combining parts 1 and 2
2

14
<22 |2latlE + el el

A3 ||lzg, 17 V(0)2 2 V(0)?
|am + | |am] |am + £]?

The following example shows the effect that £ has on the time response of a CRM-adaptive controlled scalar
system.
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Chapter 32

Output Feedback Adaptive Control

* rational

* analytic

* PR/SPR transfer functions
* KY Lemma

* Control of n* = 1 systems

— Unknown high frequency gain only

— Unknown high frequency gain and zeros

32.1 Definitions

rational function H(s)
P(s)
Q(s)

where P(s) and Q(s) are polynomials, where a polynomial is

H(s) =

P(s)=po+pi1s+ -+ pps"

Let H(s) : C — Cis analytic V s € 2 means that H (s) has a derivative V s € (0.

T Q(s)’

tiating in Laplace domain is multiplication by s.

Example 55 Analytic Transfer Function Let H(s) = Pl g (s) is analyticV s ¢
means all poles are in 3. Analytic basically means where the poles are. Because differen-

Definition 33 2.6.1 A rational function H(s) of the complex variable s = o + jw is positive real (PR) if

1. H(s)isreal V¥ real s
2. Re[H(s)] > 0V Re[s] >0
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Put some examples here

Definition 34 2.7 A rational function is SPR (strictly positive real) if H (s — €) is PR for some € € R > 0.
Put some examples here

Definition 35 2.8 A rational function is SPR if and only if

1. H(s) is analytic in RE[s] > 0. ie. H(s) is a stable transfer function.. poles in LHP.
2. Re[H(jw)] > 0V w € (—o0,infty)
3. Ifn* = 1limy2_,o w?Re[H (jw)] > 0

relative degree:
P(s) -+ pps™

Q(S) co - Qns”

n*=n—-—m
Lemma 3 2.4 - MKY Giveny > 0, vectors b, ¢, A stable, L = LT

z = Az + Bu
Y=ca+d

Re[H (jw)] = Re[} + ¢ (jwl — A)7'b] > 0V w € (—00,00) then 3¢ > 0 a vector g and P = P > 0
s+

1. ATP+PA=—qq" —¢L
2. Pb—c= V4
Lemma 4 KY

T = Az + bu

y=c'z

Ifc"(sI — A)"'bis SPR, thendIP =PT >0,Q=Q" >0

1. ATP+PA=—-Q
2. Pb=c

32.2 Output Feedback Control of Plants with Relative Degree 1

Relative degree of the plant W, (s) is n* = 1

_ Zp(s)
WP(S) - kpRp(S)

where k), is the HFG (high frequency gain) and Z,(s) and R,(s) are monic polynomials. A monic polyno-
mial is one that is represented z,,s™ + Zm—18""1 + ... where z,,, = 1.
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32.2.1 Case 1: k, Unknown Only

(page 186) We assume the sign of k,, is known, but the value is unknown.

pai:!

k, unknown, known sign. Assume W), (s) is stable, and W(s) is SPR, where

W (s) = kpWy(s)

_ Zp(s)
B kpRp(S)

The reference model is

The plant and reference model outputs are

and

Ym = W) (8)kmr

And the matching condition is the value of k(t) called £* such that

.
kp
The output tracking error is
€1 =Yp — Ym
=W, (s)kpk, — W),
=W, (s)kp [k _ Fm r
kp

=Wy, (s)kp(k — k%)
= W), (s)kpkr
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where the parameter error is

where W/ (s) is SPR.

€1

Error Model 3
— k= —sign(kp)eir

W (s) must be strictly positive real. =—>

* Z(s) must have roots in C~.
* Poles and Zeros of ¥ (s) must be interlaced.

Time domain equivalent

e = Anne + bmnl;:r(t)

_ T
€y = Cpyn€
e1 = kpey

Which matches Lemma 5.1 on page 185, giving an update law of
k= —sgn(ky)err

kple)nlsT — Apmn] ™ o) kr

where this is equal to 3
kyW, (s)kr(t)

Show stability using Lyapunov function

1 -~
V =¢'Pe+ —Kk?
|yl

Time differentiating

V=e"A}, Pe+e' PAyne + krb), Pe+ e’ Pby,kr(t) + )
P
~ 2 2
= —¢' Qe+ 2e,kr(t) + —kk
[Fp|
. 9
= —e' Qe+ QMkzr(t) — —ksgn(kp)err
K| K|
= —e' Qe
1. ATP+PA=-Q

2. Pbyn, = Con,
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32.2.2 Case 2: k, Unknown, Z,(s) Unknown

(page 187)
plant of TF

yp(t) =k

Zp(s)
pRp(S)

u(t)

where sgn(k;,) was known, Z,(s) unknown, but with stable roots, and R,(s) known, stable roots. We
choose R,,(s) = Rp(s) to make our lives easier.

Zm (3 ) ym
M R (s)
Reference Model (j—e{
+
u Zp(s) o
WC(S) km R:L(S)
Plant

This is an adaptive controller in the forward loop. Don’t need feedback to change zero locations. (check

k, unknown, but with known sign. Z,(s) unknown, minimum phase (stable zeros). R,(s) is known and

this).

stable.
Goal: k, IZ%Z ((z)) — ko, gz%z;
Pick R, (s) = Rp(s)

Realization of W_(s)

realized as dynamics

where (A, ¢) controllable

O

Plant



Zp(s) — Zm(s) — ti(s)
B 1
o t3(s)
1 - Z:n(s)
b K
Ky
_ Zm(s) — Zp(s)
0] (sI — A" ="" P
16(8 ) Zm S)
matching conditions
K* =K,
07 = 01
Realization of ¢,(s)/Z,.(s)
T u fo Zp(s)
™ Ry (s)
Plant
t
Algebraic part: Z;(?s)) = 91Tc(sl — Fn_l)_lgn_l
tl(s) = tT(S) — 910 = HTC
Win(s)
k*
ko 22
k*
Zm
kpRim

32.1)

(32.2)

(32.3)

(32.4)



Reference

Ym = kmwi, (8)r = kpyw), (s)k™r

€1 =Yp — Unm
e1 = kyw),(s)[0] @]

51 = 51 = —sgn(k:p)elwl

Everything is in the book. Remark, book doesn’t use prime notation, so in the error equation they have

er = 1 wn(s) (0] o]
Writing out in state-space form
&y = Apzp + bpuy, = pc;x
where the book calls h;,r = pc;
G =1 L] (] [ e 1]
yp = Kp [C; 0]

Reference Model

s % * 1 * ~
i1 (A b0 1Tan] L[] en . 0] 5
{w} [0 A eoT] wt] T ) FTT ]

ym = K [C;1 0] T

*
mn w*
1

where the m means reference model and n means non-minimal

. *
Tmn = Amnxmn + bmnk r

-
Yy — Can?mn
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and in book h,),,, = K,[C,0]"

Ym = KpOF (8T — Apn) " opnk™r
= Kyw!, — (s)k*r

where w],, is SPR by design

ERRORS
e=I— Tm
. T
é = Apne + bpnby wy
e; = KpCﬂTme
Stability

1 ==
V=e'Pet+t—0'60
LA

From KY Lemma we have

Al P+ PApn, =—-Q

and

Pbmn = Cmn

. ) 2:5
V =—¢'Qe+2e" Pby,0 w + ‘:9‘
P

V=—e'Qe

extra work was to show internal states of system stable.
Output Feedback Control of Plants with Relative Degree 1 (Continued)
Last time plant of TF

lt) = by 22

pRp(S)U(t)

where sgn(k,) was known, Z,(s) unknown, but with stable roots, and R,(s) known, stable roots. We
chose last time R,,(s) = R,(s) to make our lives easier.

32.2.3 Case 3: k, Unknown, R,(s) Unknown

(page 190) As before, we assume the sign of &, is known.
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5) Ym

W,(s) O—

The controller is covered in detail in Narendra, Annaswamy on page 190, and the important equations
are repeated here. The goal is to find a controller transfer function W,.(s), which has constant parameters
and 07,and feedforward gain k such that the closed-loop transfer function W, (s) from r to y, is Wi, (s). If
these parameters take the constant values k = k*, 0y = 0., and 02 = 5. then W, () is given by

K kep Zon (5)

By(s) |1~ by (5 Wels)

W,(s) =

The controller is defined by

Wy = Awg + Ly,
U= kr+90yp+9;w2

When 6y and 65 are the constants 6. and 5. respectively, the controller can be written as

u=kr+We(s)yp

where
We(s) = 0o + O9,(sI — A)~1¢
_ D)
G
_ D(s)
0
giving
k*kpZpm(s)

If the following matching conditions are satisfied
E*ky, =k,

and
Ry(s) — kpD*(s) = Run(s)

339



then W, (s) = Wi (s).
The block diagram below is another representation which shows the architecture for which the controller
and update laws will be found.

Using the following parameter errors, this block diagram is further simplified.

k= +k*
92:¢2+9;
90:¢)0+95

By manipulating the inputs, and using the matching conditions, the following block diagram is obtained.

32.2.4 Case 4: General n* = 1 Case

(page 192)
Assumptions

1. sign k, known
2. plant zeros of Z,(s) are stable (because we are doing pole-zero cancellation)

3.n*=1
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GOAL: As before, want system to look like (follow this:)

= knWy,(s) = Wi(s)

where W/ (s) is SPR. The differential equations that completely describe the controller are given on page
194. If we express the control input to the plant using these equations, we get the following block diagram.

Wiy(s)
X (O] ke |
) P
(o)
—(n}
ws @

The signals w; and w9 are given by the following differential equations, where A is a stable (n — 1) x
(n — 1) matrix.
le = A’LU1 + lu
Wy = Awg + Eyp
We would like to show that if we replace time-varying adaptive values with fixed, nominal values, that such

values exist such that the closed-loop plant equation from r to ¥, can be made to be the same as the reference
model. The transfer functions for the blocks which represent the differential equations for w; and wo are

wi = (s — A)"Hu

wy = (sI — A) "y,

And we can represent the inverse of the matrix (s — A) as

-1 _ C'(s)
det(sI — A)

where com(sI — A) = C’(s) is the matrix of cofactors. We not also that each element of the matrix
C’(s) is a polynomial of degree n — 2. If we define A(s) = det(sI — A) we can write

(s]—A)"' = i((ss))

(sI —A)

and so
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_e),
w1 = )\(S) 4

wp = (sI —A)"")ey,

Assume for now that the parameters in the block diagram above are fixed. Using these transfer functions
the block diagram can be represented as

Wy (s)
r U Z,(s) Yp
u C'(s w1
)\((s))g o7
Y
'p 0,
Y
2 (sT—A)e “’24»
Wrapping some of the signals into the block diagram
0
r ! u | Z,(s) Yp
@ O ~ R
| C'(s |
| 01 )\((s))g !

we get
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Wh(s)

A(s) U Zp(s) Yp

@ @ A(s) =01 C(s) PRy (s)

Writing the closed-loop transfer function from r to y we have

A(s) kpZp(s)
Yo Ns) 07 O'(s) Fn(s)
A(s) kpZp(s) D(s)

" 1- A(s)—0] C'(s) Rp(s) A(s)
A(8)kpZp(s)
_ (A(5)=0, C"(5))Rp(s)
1— A(8)kpZp(s)D(s)

(A(s)=0] C"(3))Rp()A(s)
o )‘(S)kpr(S)
(A(s) = 0] C"(s))Rp(s) — kpZy(s)D(s)

Recall that we can pick A to be any stable matrix we want.

C'(s) has n — 1 degrees of freedom, but its a polynomial of order n — 2 but a polynomial of order 5 for
example, has 6 coefficients. D(s) has n degrees of freedom, and its polynomial order is n — 1. Z,,(s) is
monic, so its highest power of s has a coefficient of unity, and it has n — 1 DOF, and its polynomial order is
n — 1. Because in a monic polynomial one of its coefficients is fixed.

Using the assumption that Z,,(s) is a stable polynomial, we pick A such that A(s) = Z,,(s). We also
know by looking at the degrees of freedom in the polynomials that there is a particular fixed value of 64,
which we call ] such that

A(s) = 017 C'(s) = Zy(s)

and we call

0;TC'(s) = C*(s)

and we know C*(s) is order n — 2, since it is taking a linear combination of elements of the cofactor matrix,
each of which has order n — 2 (or less?). So the output is expressed

Yp _ Zm(8)kpZp(s)
v Zp(s)Rp(s) — kpZy(s)D(s)
Zm(8)kyp

Ry(s) = kpD(s)

And finally, the degrees of freedom are available in 6 and 5 such that ideal values exist such that R,(s) —
kpD*(s) = Ry(s).
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and

Wy(s) = l;((j)) = Ooc + 00 (sT — A)~ ¢
KeKpZp(s)A(s)

T N(s) = C(9)Ry(s) = Ky Zy()D(s)

Choose A(s) = Z,,(s) which comes through choosing A

- KKy Zy(8) Zn(5)
T Znls) = C5)Ryls) — K Zy(5)D(5)

C'(s) has n — 1 degrees of freedom, but its a polynomial of order n — 2 but a polynomial of order 5 for

example, has 6 coefficients. D(s) has n degrees of freedom, and its polynomial order is n — 1. Z,,,(s) is
monic, so its highest power of s has a coefficient of unity, and it has n — 1 DOF, and its polynomial order is
n — 1. Because in a monic polynomial one of its coefficients is fixed.

AC*(s), D*(s)
Matching conditions:
so we know the follow is true because of polynomial orders and stuff

Zm(s) — C%(s) = Zp(s)

similarly for R,(s)

Ry(s) = KpD*(s) = R (s)

third matching condition is

substitute C*(s), D*(s), and K*(s)

Yp =




FOR GENERAL n* = 1 CASE:

T /k\{ @ U kmza’”ﬁig Yp
) ,)
o
=0
pe,

Using the following parameter errors, this block diagram can be expressed as

k=vy+k*
01 = ¢1+ 0]
o = ¢o + 6
02 = ¢ + 05
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Zp(s)
ko R s)
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(s)
ko B )

w2

fo

Yp

w2

(sI — A~

D (s)

w1
Yp

w2
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Y i, X0 ) P Fp(5) :
w1 I :
! A(s) |

32.3 Output Feedback of Plants with n* > 2

Finish this section
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Chapter 33

Robustness Modifications

33.1 Introduction

This chapter: robust adaptive control - with disturbances - first-order

uncertainties: non-parametric such as disturbances (constant, time-varying, input- disturbances, output-
disturbances) time-varying parameters unmodeled dynamics

This material is covered in Chapter 8 of the text.

33.1.1 Adaptive Control Without Disturbance

Consider the following plant, reference model, and control law as we have seen before at the beginning
of the class.

Plant: Tp = apTy +u (33.1)
Reference model: T = Ty, + T (33.2)
Control input: u=0x,+r (33.3)

where a,, < 0. With tracking error e = x;,, — ,, matching condition a,, + 6* = a,, and parameter error
6 =0— 0" we get the error dynamics é = a,,e + éxp and use the Lyapunov function V' = %(62 + 52)
to show that choosing an update law = —ex,, results in V= —ame? and ultimately lim; o e(¢) = 0.
Together the differential equations that describe the system are

Tracking error: é = —ame+ 0(e+ ) (33.4)

Update law: §— —e(e+ ) (33.5)

The origin of these error dynamics is a stable equilibrium. The following example gives a numerical example
of the above stable error dynamics.

Example 56 No Disturbance: Numerical Simulation Consider the dynamics with dis-
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turbance in equations (33.4) and (33.5)) above, with the following values.

:1:: =2
e(0) =
6(0) =5

Tracking Error
T

I I I I
10 15 20 25
t

WT T T T T

Parameter Error
T

\\\\\\\

6
<r15\\\\\\\\\\\\
[ -

B
&
|
& y
IS
®
[ T

oo

30

33.1.2 Adaptive Control With Disturbance

Consider again the same plant with bounded time-varying disturbance v/(¢) < vpax, and same reference

model and control law

Plant with disturbance: Tp = pTp +Uu+V (33.6)
Reference model: T = QT + T (33.7)
Control input: u=0x,+r (33.8)
where a,,, < 0, tracking error e = x, — x,,, matching condition a, 4+ 0* = a,, and parameter error
0 = 0 — 0*. Together the differential equations that describe this system with the disturbance d are
Tracking error: é=ame+0(e+xm)+v (33.9)
Update Law 0 = —ele+ z,,) (33.10)

And proposing the same candidate Lyapunov function we attempt to prove stability

1 -
Vzi( 2+ 6%
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Time differentiating we get

V =eé+ éé
= am62 + eéscp +ev — 5exp

= ame2 + ev

14
< alel(—el + 1)

m

So V is sign indefinite, and V < 0in a set which is not compact. = e, 0 need not be bounded. We can see
the unboundedness of the parameters using the following numerical example.

Example 57 Constant Disturbance: Numerical Simulation Consider the dynamics with
disturbance in equations (33.9) above, with the following values. The plot shows un-

bounded behavior of 6.
am = —1
Ty =
v=-5
e(0) =1
6(0) =5
= AR — Tracking Error

LI A A A A S B |

I I I I I
0 5 10 15 20 25 30
t

Parameter Error
T

LI N A A R R A A |

Clearly this is undesirable, but it is not unreasonable to have input disturbances present in real system.
So, what do we do?

33.2 Exact Cancellation of Disturbances

Before we talk about how to cancel disturbances in adaptive control, let us first recall how input distur-
bances are dealt with in classical control.
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33.2.1 Disturbances in Classical Control

Consider the following plant and controller block diagram with disturbance v.

12
Controller Plant
+
r + €r u + Yp
O Ge(s) O Gip(s)

Recall: system type with respect to reference is the number of free integrators in the loop. System type
with respect to disturbance is the number of free integrators in the controller. Depending on what the type
of the system is will tell us what kind of input disturbances we can reject. To reject a constant disturbance,
need to have system type 1 with respect to disturbance.

Goal design G so that closed-loop |y — | — 0. G must have an integrator of some kind. Closed-loop
TF:

33.2.2 Exact Cancellation of a Constant Disturbance

We will use the idea of system type with respect to disturbance to design an adaptive controller for
a plant with an unknown constant disturbance as shown in the following block diagram. Take v to be a
constant disturbance.

v
Plant
+ y
u_ by b
_/ s+tap

The objective is to have the output of this plant track the output of a strictly positive real reference model
with transfer function
Kk

Wm(s) - S+ a

In order to design a control system that can reject this constant disturbance v, we propose putting a proper
transfer function in the forward loop that contains an integrator. We can use a PI controller as shown in the
following block diagram, where the zero location is arbitrary.

14
21 541 u AT kp Yp
s / stap

Note that this PI controller can be realized as shown in the following block diagram
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—

With this integrator in the controller, we could use classical control methods to close the loop and have
a controller which would reject the constant disturbance v. However, we need to consider that the plant
parameters are unknown, and come up with a way to match the closed loop system to the reference model.
Consider closing the loop as shown in the following block diagram

v
ro o+ z + A Y
Lt s+1 U TN kp P
s NG s+ap
+
H(s)

Looking at the closed-loop transfer function 7'(s) we have

kp(s+1)
s(s+ap)

1 o kp(s+1)NH
s(s+ap)Du

_ DH]{Zp(S + 1)

"~ Dy (s?+aps) — kp(s+1)Ny

T(s) =

and we need to make this look like the reference model, with the exception of the DC gain, which we can
handle by putting a feed-forward gain in front of r at the end. So, to make this look like our reference
model, H(s) must allow us the degrees of freedom to do a pole-zero cancellation leaving just k, in the
numerator. If H(s) was a constant, we wouldn’t have enough degrees of freedom. So H(s) should have
two parameters in the numerator since we need to match two coefficients, and to keep the transfer function
proper, the denominator of H (s) should have a pole. Use

O(s+1)+d

H(s) = s+1

This can be realized as shown in the following block diagram

Yp + z2
N

+

(o)
N

Putting everything together we get the following block diagram
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e
\

kp Yp
s+tap

The total control input is

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Control:

u = kr +w + dwy + 0y,

(33.11)

Using this control, by writing down the closed-loop transfer function 7'(s) we can show that ideal parameters
k*, d*, and 8* exist which will match this system to the SPR reference model. The problem is that this
approach only works for constant disturbances (recall system type with respect to disturbance from classical
control). This idea can be extended to other types of disturbances (see page 299 in the text) but the drawback
of this approach is that the precise nature of the disturbance must be known a priori. In the following sections
we will look at alternatives to direct cancellation in order to ensure boundedness of errors while maintaining

a desired level of performance.

What to make G'? Assume k,, known. Closed-loop TF is See Chapter 8. (8.1 or 8.2)

Example 58 Constant Disturbance Case (i) page 303. Assume r = 0 and x,,,(0) = 0,
and so we have z,, = 0, giving ¢ = x,, and let v = —v,. With these values equations

(33.9) become

If z, ¢ £ then 0 will be unbou

é = ame + e — Vmax

e
Il

—X

N

nded.
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Example 59 Constant Disturbance Case (ii) page 303. Consider r = 79, T,, = g > 0
and v(t) = —Vmax Where vpax > 0.

é = ame + 0(e 4+ 20) — Vmax
§— —e(e+ o)
two cases:
() 2 >06— oo
(i) & < 086, e bounded

am

Want to prevent wind-up/drift in 6

source of wind-up

Equilibrium Points Consider equations (33.9) with the derivatives set to zero, and consider the case when
T = 0 and v = —vpux. This gives

0= ame+§e — Vmax

0=—¢?

Which we can see there are no equilibrium points.

33.3 Modifications for Bounded Disturbances

The following subsection showed what can happen when there is a (INPUT) disturbance present in the
plant. In this section we outline some modifications to the adaptive law that will be better...

1. o-modification

2. Deadzone

3. ep-modification

4. Projection

make sure V/ is not sign indefinite in an infinite channel. We will consider bounded disturbances |v/(t)| <

Vmax .
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33.3.1 o-Modification

See page 310. Consider again the same plant with disturbance, reference model, and control law

Plant with disturbance: Tp = apTp +u+v (33.12)
Reference model: T = AT + T (33.13)
Control input: u=0x,+r (33.14)
Error dynamics: e =ame + éa:p + v (33.15)

where again a,, < 0, e = T, — Ty, ap +0* = a,, and 6 = 0 — 6*. We now propose the following modified
update law where o > 0, which is known as o-modification.

o-Modification update law: 0 = —ex, — o0 (33.16)

Proposing the candidate Lyapunov function V' = (e + 92) and time differentiating we get the following
V = am62 + ev — 0672

However, we can’t implement this proposed scheme, as we do not know what 6 is, so we have to modify
this update law as

0 =—ex, — o

= —ex, —o(0 +0%)

The differential equations the describe the system now are

4{ o-Modification Error Dynamics ’7

Tracking error: é=ame+0(e+zm)+v (33.17)

Update law: 8= —elet+am) —a(f+6% (33.18)

Plugging the error dynamics and update law into V we get

V = apme® + ev — o* — 500

From this expression, since a,, < 0, and o > 0, if |e| and |9| are large enough, V will be negative, even
if the sign of e, 6 are unknown. We wish to find the region where |e| and |6| are sufficiently large so that
V is guaranteed to be negative. We create the inequality below by assuming some known upper bound
‘V‘ < Vmax-
V = ape’ +ev —o0? — 000
< ape’ + €| Vmax — o0? — 50%0
< ame® + |e|Vmax — 06 + o167 ||0)]
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Bound Method 1: Box Since a,, < 0 we have a,, = —|a,,| and from the inequality above can write

‘ € ’ max

V < —lam| <62 — ) — 0 (62 — 0%0)

|am|

Looking at the two terms of V' separately we have the following inequality for the first term

_,am|<€2 B Ie\dmax> _ —Iaml(;e2 Ll |e|dimax L1 2, 1 dgndx>

[ 2 |am| 2|am|* 2 |am/|?
1, 1< s - |e|dmax <dmax>2> 1 dgm>
=—la —e“ 4+ —(le|"—2 +
| "‘|<2 A% RN 2 Jam|?
™ 2 2 || 2\ |am]
il 3))
‘am‘

o 1 2 dmax
- MMQOd (,am|

and the following inequality for the second term

N

1oy 1z o 1o o 1.
— (92— 4]0 |) S_— <292+292— 61167 + 167> — 516 |2>

1~2 1 012 011 o* *12 1 *12
= o= - —9 _
o (30 + 50 20|+ 6°F) - 510"
1 - 1, - o 1
——a {21612+ = (18] — 16*)° = =|g*|2
7 (5187 + 5001~ 1) = 1)
1 - 1
<o (5108 - 510°P)
2 2
. 1 012 * |2
= —o5 (167 = 10°P)

From these two inequalities, we have

. 1 dmx 2 1 N *
v < ol (1eP- (722 ) - o3 (198 - 10°F)

dmax
|am|

We can see that if we have both |e| > and |A| > |6*| then V < 0. This gives the following region D

inside of which V is sign indefinite.

Dz&aMMsﬁmwﬂsw@
a

m|
Bound Method 2: Ellipse We again consider the inequality for V above, which is repeated here

V < —am€2 + le‘dmax - 052 + U‘Q*HHN‘
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Noticing the presence of the quadratic and linear terms in both e and 0, this inequality resembles an elliptical
region. Motivated by this and using

dmax \ > a2
— <|€’ _ mdx) _ —am|e\2 + |€‘dmax _ ’max

20, 4a,,
and
—o (Iél - |02*|)2 — —[6]2 + o(67]16] - ”'T'Q
the inequality for V becomes
V < —ame® + |eldmas — 002 + 016710
— —ane® + [€] dmax — ﬁl: _ 0?4+ o|0*||6] - a!z*\? . Zil: . 0‘6:'2
() o (- ) e 2

We can now see from this inequality for V that if the combined magnitude of the first two terms (which are
negative) is greater than the combined magnitude of the second two terms (which are both positive) V' < 0.
That is, if the following inequality holds

am(|e] — ]431)2 + U(‘é‘ — k2)2 > k’3

where
dmax
-
! 2am,
9*
by s Tl
4am, 4

then V < 0. We recognize the following set D

D ={(e.0) | am(le] = k1)* + (0] — k2)* < ks}

as an ellipse in the (e, #) space.

Example 60 Constant Disturbance: Numerical Simulation Consider now the dif-
ferential equations for tracking and parameter error in (33.17) with disturbance and o-
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modification. The following plots show the system response for different numerical values.

Tm —
, o-Modification =1
T
6 i
5 i
4 i
3 i
2
s i
. . . . .
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t
4 i
\ N v . 2 4
] N =
SN 7 o ]
\\\\\\ 7
-8 - -2 1
_10\ L “ AAAAAA -4 : ; ; ‘ :
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o-Modification o=1 o-Modification o=1
— -

Equilibrium Points  Consider equations (33.17) with the derivatives set to zero, and consider x,,, = 0 and
d = —dmax

0= —ame—I—ée — dmax

0= —€2—0f — ob*

On Vector Systems

Ay unknown, B, known.

9900000000000 0900000000000000000000000000090000000000000000000000000000000000000000000
I 5558558555855 55555555555 85558555555 5555%5555555%5555%5555555%55%%555%55%%5%5%%5%5%5%%
2 % Daniel Wiese
3 % 2.153 - Adaptive Control
4 % Monday 14-April-2014
5 % example_sigmamod_vl.m
6 T
7 % This script simulates and plots the response of an adaptive system with input
8 % disturbance. We can plot the response of the nominal system without sigmamod or
9 % disturbance (stable), turn the disturbance on without sigmamod and show
10 % unboundedness of error (unstable) and then use sigmamod to make stable.
’ g
0000000000000000000000000000000000000000000000000000000000000000000000000000000000

12 clear all;

13 clc;

14 close all;

15 restoredefaultpath;

16 thismfile=dbstack ('-completenames');
17 thisdir=fileparts(thismfile.file);

18 cd(thisdir);
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20
21
22
23
24
25
26
27
28
29
30
31
kY
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

7
73
74

addpath (fullfile (fileparts (pwd)));
plotdir='Z:\Dropbox\Dan\DOCUMENTS\School\MIT\Dan_Latex\FIGURES\Adaptive_Class\Lecl2_}
addpath ('Z:\Dropbox\Dan\DOCUMENTS\School\MIT\Codes\tools") ;

sigma=1;
thetastar=-5; S%$=am-ap
$Initial conditions
ym=1;

e0=5;

thetatilde0=5;

$Plotting parameters
AxesLineWidth=2;
PlotLineWidth=2;
PlotFontSizeTitle=16;
PlotFontSizelLab=16;
PlotFontSizeLegend=16;
AxesLineColor=[0.3,0.3,0.31;
AxesLineStyle='—-";
emin=-10;

emax=10;

eplotmin=-10;
eplotmax=10;
ThetaTildePlotmin=-10;
ThetaTildePlotmax=10;

OT THE VECTOR FIELD
fine the error differential equations
f = @(t,Y) [amxY (1)+Y(2)*(Y(1l)+ym)+nu;
=Y (1) % (Y (1l)+ym)-sigmax* (Y (2)+thetastar)];
%$Set up a linspace grid over which to determine the direction of the vector Ydot
yl = linspace (emin, emax,21);
y2 = linspace (emin,emax,21);
[x,vy] = meshgrid(yl,y2);
$Preallocate the derivatives
edot=zeros (size (x));
phidot=zeros (size(x));
$Solve for the derivatives
t=0;
for ii = l:1length(yl)
for jj=l:length(y2)
Yprime = f(t, [yl(ii); y2(33)1);
edot (i1, 33) = Yprime(1l);
phidot (ii, 3j) = Yprime(2);
end

(O

end
%$Normalize length of vectors
L=2*sqgrt (edot . 2+phidot."2);
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75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
9%
97
98
99

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128

$SIMULAT THE ERROR DYNAMICS IN TIME
sim('model_sigmamod_vl"')

%% PLOT THE RESULTS

cd(plotdir)

figure (1)

quiver (x,y,edot'./L',phidot'./L',0, 'color',[0.5,0.5,0.5]);

hold on

plot ([0,0], [ThetaTildePlotmin, ThetaTildePlotmax], "color', [0 O 0])

plot ([eplotmin,eplotmax], [0,0], 'color', [0 O 0])

plot (eout.signals.values,thetatildeout.signals.values, 'linestyle','-", 'color',
[0,0,0], " '"linewidth',PlotLineWidth) ;

plot (eout.signals.values (1), thetatildeout.signals.values(l), 'linestyle','o’,
'LineWidth', 2, "MarkerEdgeColor', 'k', '"MarkerFaceColor', [0.5 1 0.6],
'MarkerSize',10);

plot (eout.signals.values (end),thetatildeout.signals.values (end), 'linestyle', 's"',

'LineWidth', 2, '"MarkerEdgeColor', 'k', '"MarkerFaceColor',[1 0.49 0.63],
'MarkerSize',10);

xlim([eplotmin, eplotmax])

ylim([ThetaTildePlotmin, ThetaTildePlotmax])

daspect ([1 1 1])

plot_titlel=strcat ('$x_{m}=$",sprintf('$0.0f",ym),", S\nu=$',sprintf ('$0.0f",nu));

title(plot_titlel, '"interpreter', 'latex', '"FontSize',PlotFontSizeTitle)

xlabel ('Se$', "interpreter', 'latex', 'FontSize',PlotFontSizelab, 'interpreter', "latex')

ylabel ('S$S\tilde{\theta}s$', "interpreter', 'latex', 'FontSize',PlotFontSizelab,
'interpreter', 'latex')

set (gcf, 'Units', 'pixels'");

set (gcf, 'PaperUnits', "inches', "PaperPosition', [0 0 10 6]);

set (gcf, 'PaperPositionMode', 'manual')

set (gcf, 'InvertHardCopy', 'off');

set (gcf, 'color', [1 1 117)

box on

print ('-depsc', '-r600', 'sim_rlnuS5sigmal_phase.eps');

figure (2)

subplot (2,1,1)

plot (eout.time,eout.signals.values, 'linewidth',PlotLineWidth, 'color', [0 O 0])

% plot_titlel=strcat ('Tracking Error');

plot_titlel=strcat ('Tracking Error: ',' S$x_{m}=$',sprintf('$0.0f"',ym), "',
S\nu=$"',sprintf ('%0.0f",nu));

title(plot_titlel, '"interpreter', 'latex', '"FontSize',PlotFontSizeTitle)

xlabel ('$t$', "interpreter', 'latex', '"FontSize',PlotFontSizelab, 'interpreter', 'latex")

ylabel ('$e$', "interpreter', 'latex', '"FontSize',PlotFontSizelab, 'interpreter', 'latex")

x1im ([0 tsim]);

ylim([-4 6]);

box on

subplot (2,1, 2)

plot (thetatildeout.time,thetatildeout.signals.values, 'linewidth',PlotLineWidth,
'color', [0 O 01)

plot_titlel=strcat ('Parameter Error');

title(plot_titlel, "interpreter', 'latex', 'FontSize',PlotFontSizeTitle)

xlabel ('$St$', "interpreter', "latex', 'FontSize',PlotFontSizelab, 'interpreter', "latex')

ylabel ('S$S\tilde{\theta}s$', 'interpreter', 'latex', 'FontSize',PlotFontSizelLlab,
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129 'interpreter', 'latex"')

130 x1im ([0 tsim]);

131 ylim([-40 51);

132 box on

133 set (gcf, 'Units', 'pixels'");

134 set (gcf, 'PaperUnits', "inches', 'PaperPosition', [0 O 10 61]);
135 set (gcf, 'PaperPositionMode’', 'manual')

136 set (gcf, '"InvertHardCopy', 'off'");

137 set(gcf, 'color',[1 1 11);

138 print ('-depsc', '-r600', 'sim_rlnubsigmal_tres.eps');
139

140 cd(thisdir)

141

o )
142 6565660060000 0000000000000060606060606060CGCGCGCGCG6606060 0000000000006 0606060606060606G6GCG6GCG6G6G6060 0000000006000

33.3.2 Dead-zone Modification

Consider the following plant with time-varying disturbance d(t) with |d(t)| < dpmax, reference model
and control law

Tp = apTp +u + d(t)
T = QmTm + T

u = 0z,
where a,, < 0. With tracking error e = x;,, — ', matching condition a,, + 6* = a,, and parameter error

6=0-—0*we get the error dynamics € = a,,e + éxp + d and use the Lyapunov function V' = %(62 + 92).
Time differentiating V' we get

V = ame? + ed(t) + 00 + ez,

rewrite as

V< —|am\|e|<|e| - d”“‘“) + 00 + fex,

[

Propose the following update law with dead-zone modification

where the region D is

There are two cases
(i) Y(e,0) € DS then V < 0
(i) V(e,0) € Dy then § = 0

33.3.3 e; Modification

Finish this section

363




33.3.4 Projection
See Eugene’s book starting on page 348.

The Gradient Operator

0 0 0
VU@ = ple+ e+ Jhe,

Define gradient of a function f to always be a column vector? Or define the orientation of gradient
vector on the orientation of the input to function f : R¥ — R?

Vi)=& & .. L]

V@) = (VU@ = 2 2L .. 2]

Write VT f = VT (f(2)) and Vf = V(f(z))
Lemma 5 11.1 Let f(z) : R™ — R be a convex function. Then for any constant § > 0 the following set
is convex:

Q5 = {0 € R"[f(0) < 0}

Basically what this says is that the set 5 of all inputs 6 to the convex function f(x) such that f(6) < §
is convex.

Proof of Lemma 11.1 First define Q5 = {6 € R"|f(#) < 0} which we want to prove is convex. Let
01, 65 € Q5. Then f(01) < ¢ and f(f2) < 0 by definition in order to belong to {25.

Because the function f(x) is convex, for 01 < 6 < 0, thatis: 6§ = X0y + (1 — X\)f2 YA € [0,1] =
F(0) < A1) + (1 — N (0:).

Because f(61) < 0 and f(f2) < 4, then we can substitute into the inequality giving f(0) < A\J + (1 —
A)d, giving f(0) < 4. Since f(0) < 6 then 0 € Q5.

Figure 33.1: Lemma 11.1
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Lemma 6 11.2 Let f(x) : R™ — R be a differentiable function. Choose a constant § > 0 and consider
the set Qs = {0 € R"|f(0) < 0} C R™ Let 0%, 6, € Q5. Assume 0* is an interior point of s, and 0y is a
boundary point of Q)s. That is

Then the following inequality holds

(0" —60,)TVF(6) <0

This basically says that the gradient vector of a function f(z), evaluated at the boundary of a convex
level set generated by this function, always points away from the set.

Proof of Lemma 11.2  From the figure below, 0, + m = 6*, giving m = 6* — 6. Since f(x) is a convex
function, for = A\0* + (1 — \)&y, f(0) < Af(0*) + (1 — X\) f(6p). That is

G+ (1= N)b) < AF(07) + (1= A)f(6h)

rearranging
FO™ + 0y — A0y) < Af(07) + f(6) — AS(6h)
f(O + A0 —0)) < f(0s) + A(f(67) — f(6b))
FOp + AO0" = 6,)) — f(0p) < A(F(07) — [(6h))
Dividing both sides by A € (0, 1]

Since f(0*) < 6 and f(6;) = ¢, the inequality can be rewritten

O ID =IO  f54) - f8) <0
(O + XO* —6y)) — f(Oy)
X\

Following the definition in Rudin page 217, and taking the following limit as A — 0, usually called the
directional derivative and denoted D,,, f gives

lim f(0y + Am) — f(6y)
A—0 A

<0

where the inequality is no longer strict after taking the limit and we have

mIVf(6) <0

and substituting back in for m

(0* —0,)TV f(6) <0
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Figure 33.2: Lemma 11.2

Convex Sets

For a convex function f(z) : R” — R, by lemma 11.1 the following sets are convex. For § € R"
belonging to the convex set 2

Qo = {0 e R"[f(0) < 0}
For 6 € R™ belonging to the convex set {24
Q1 = {0 € RY£(6) < 1}

Then it is obvious that 25 C ;.

The Projection Operator

The idea behind the projection operator is to subtract off the component of the vector y which is perpen-
dicular to the surface of the ball made by f(€), and only keep the component which parallel to the surface,
thus enforcing the vector y will never leave the ball. The perpendicular component of y is found by using
the gradient at the ball’s surface: V f(6). However, in order to ...

the vector y in the figure below by subtracting off the component of y which is normal to the surface of
the ball made by f(6). We know the direction of this normal vector, V f(#), but do not know the length.
Therefore the component which must be subtracted off of y is a scalar multiple of V f(6). We denote this
projection Proj(6, y).
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A A
\\ y
Proj(6, y)
aV (o)
V()
m=0* — 0, Op

Figure 33.3: Projection

The projection operator is defined as
Proj(0,y) =y — aVf(0)

where « is a scalar that multiplies the gradient vector so as to exactly subtract off the component of ¢y which
is perpendicular to the surface of the ball. Left multiplying both sides by VT f(6)

VT f(0)Proj(0,y) = V' f(0)ly — aV f(0)]

with VT £(0)Proj(0,y) = 0
0=VT7(0)y—V"[()aVf#)
aVTf(0)Vf(0) =V f(0)y
The quantity V' f(0)V f(6) = ||V.f(8)||? is scalar, and so « can be solved for

VT f)y

V(O]
Since « is scalar, we can write Proj(0,y) = y — V f(#)« and substitute « in to get
Vf(O)VT(0)
IVf(©)I7

So the projection operator is given below in terms of 6 and y, where the first condition requires that § > 0
is not within the inner ball, and that the vector y is pointing outwardly. Otherwise, the projection operator
does nothing. Note the addition of the extra f(6) term in the projection operator. This term is to dial the

Proj(0,y) =y —
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projection on gradually from when it first comes on until it is fully on. This extra term varies from O to 1,
turning up the projection in the annulus of the convex function f.

T .
y— HGELDY1(0), it £(0) > 0 AyTV(0) >0

Y, otherwise

it =

Example

Assumption: have an a-priori upper-bound for ||6*||.
Projection in the scalar case.

é=—ame+0(e+z,)+d (33.19)
8 = Proj(8, —e(e + m)) (33.20)

Need a convex function to use projection. Use the following quadratic function
f(0) =ab?—h
where h > 0 and @ > 0. The projection operator becomes the following for the scalar case

y(1 = f(0)), if f(6) >0Ayf(0)>0

Y, otherwise

Proj(0,y) = {

where f'(0) = 4.

Example 61 Constant Disturbance: Numerical Simulation Consider the dynamics with
disturbance in equations (33.19) above, with the following values. The plot shows the
projection operator bounding 6.

am =1
ap =
Ty = 2
d=-5
e(0) =1
0(0) =5
0" =—5
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Equilibrium Points Solve equation (33.19) with the time derivatives set to zero. Let x,,, = 0 and let
d = —dmax

0=—ane+ ée — dmax
0 = Proj(#, —e?)

Considering first the case when projection is not active, there are no equilibrium solutions. Considering the
case when projection is active, we have

0=—ane+ Oe — dmax
0=—e%(1—ab®+h)

The only equilibrium solutions that exist are when

1—ab®>+h=0
giving
~ 14+h
fog = £/ " g7
a
and
e — dmax
“ — Ay + Ocq
I'-Projection

In adaptive control, the vector y which is projected onto the # ball may sometimes need to scaled by a
factor I'. It may seem intuitive to implement this as ['Proj(#, y) or as follows

Projp(0,I'y) =Ty — aV f(6)

which does not work. The idea behind I'-projection is the same as that for the standard projection, with
the inclusion of the scaling gain I" in the algorithm in order to facilitate its use in an adaptive control law.
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Iy
Projp (0, Fy)\
: TaVf(6)
m=0* — 0, O,
0*

B i) =0)
= N {017(0) = 1)

Figure 33.4: I'-Projection

The I'—projection operator is defined as
Proj(6,I'y) = T'y — TaV f(0)

And we note the conditions under which we want to consider the projection to be “active”. When the vector
0 is inside the inner ball, that is 6 is such that f(#) < 0 we want projection to be off. Then, when € is in the
annulus such that 0 < f(#) < 1 we want projection to only be active when the vector I'y is pointing in an
outwards sense. The outward pointing of I'y is given by when the following dot product is is positive

Iy-VfH) >0

that is
(Ty)'Vf(6) >0

y TV () >0
Again left multiplying both sides by VT f(6)
V' f(8)Projp(6,Ty) = VT f(6)(Ty — TaV f(6))

VT f(0)Projp(6, Ty) = VT f(B)Ly — VT f(O)TaV f(6)

with VT £(0)Projp-(0,y) = 0
0=VTf(O)Ty -V f(OTaV/(0)

aVTf(O)LVf(6) = VT f(6)Ty
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The quantity V' f(0)I'V £(8) is scalar, and so is invertible, and « can be expressed
__V'OTy
~ VTHOTV(0)
Since « is scalar, we can write Proj (0, I'y) = I'y — I'V f(6)« and substitute in « to get
vIOVTI0) |
VIOV f(6)

And finally, the projection operator can expressed as follows, where we again note the addition of the extra
£(0) to “dial on” projection smoothly within the annulus of the f(6) ball.

I'—Projection

Projp(0,I'y) =Ty — T

[ bbbl
Ty — D HLOV IO 1 if £() >0 Ay TV f(0) >0
PrOjF(e,Fy) — { Yy — VTf(Q)FVf(O yf( )7 1 f( ) Y f( )
Ty, otherwise

Prove the following, where 6 = 6 — 0* and where the convex function f is selected such that 8* € {0 €
R™|f(#) < 0}. In implementation, this can be easily enforced by selecting the inner radius to be an order
of magnitude larger than the the largest expected uncertainty.

0" (T~"Projp-(0,Ty) —y) <0

There are two cases that 6 can take: either in the inner ball, or in the annulus. If 0 is in the inner ball, that is
0 is such that f(#) < 0 then Proj(6, I'y) = I'y and we have

o7 (F_le — y) =0
If 0 is in the annulus, that is 6 is such that 0 < f(6) < 1 then we look at the quantity
o7 (F_lProjF(O, Ly) —y) = 07 (y — I~ Projp (6, I'y))

Substituting the definition of projection in

0T |y—T! (Fy—F

VIOVTf()
VTV f(6)

Tyf (9)>:

and simplifying

—0" |y —T"'Ty —I7'T

VO)VT1)
VIOV f(6)

;T ( VIOVT0)
VTFO)LVf(6)

VT f(0)Tyf(0)

VIOV (6)

And using Lemma 11.2 we have that TV f(#) < 0, the denominator is positive since I is positive defi-
nite, and the numerator is a positive scalar, as defined for projection to be “on” (the vector I'y must point
outwardly)

Tyf (9)

more

Ty f(0)

more

0TV f(6)

VT (O)Tyf(0)
VIOV f(0)

o7 (T~ 'Projp (0, Ty) — y) = 0TV f(6) <0

371



Implementation of Projection in Adaptive Control

The projection operator is used in the adaptive control gain update law shown below to bound the
adaptive gain 6 and prevent it from becoming too large.

0 = Proj(#, —T'ze' PBysign(A))

0 = Projp(0, —T'ze" PBsign(A))

éT[F_lProjF(Q, I'y)—y] <0

Convex Function in Adaptive Law

In order to use the projection operator, a convex function f(z) is needed. Every norm is a convex
function. The basic convex function that will be used with the projection operator is the norm-squared. Two
representations of the convex function f(6; Opmax, ) = f(0) are shown below.

Function 1: Inner and Outer Radius

(L+ )01 — Omax”

3 Function 1

f(0; Omax, €) = f(0) =

€6max

The value of €y« is such that f(0 : ||0]] = Oimax) = 1. This is the outer radius of 24 which 6 can never
exceed. ¢ sets the radius of Qg as Omax /(1 + €).

(1 + 6)H9H2 - emax2

=1
6‘emax2

f(0) =
(14 )]|10]|* = Omax> = €Omax>
(1+2)[10]> = (1 + €)Omax”
||9|| = Omax

(1 +)101I* ~ Oman”
56max2

7(6) = =0

(14 )0]> ~ b = 0

emax 2
ol = T2

Hm X
o] =

V14e
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2o S0 = 0)
2 S~ {017(0) = 1)

>
Figure 33.5: Eugene’s convex function
Function 2: Inner Radius and Annulus
161> — 60® .
f(e, 90, A) = f(@) = m Function 2

The value of 6 is the radius of the inner radius of €}, and A is the width of the annulus €2 4. The value
of 6y + A thus gives the outer radius of 4 such that f(6 : ||0|| = 6y + A) = 1. This is value which 6 can
never exceed.

116 — 60
206y + A2

101 — 60% = 2A6 + A2

f(0)

10]1? = 60* + 246, + A?
16]1* = (60 + A)?
101l = 6o + A

2 _p2
0= 2%
161> — 60 = 0
161l = o
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Q S (950 =
= S {01£(0) =

0}

1)

Figure 33.6: Convex function 2

Gradient of a Convex Function

L
>

For a convex function of the form f(z) = a|z||*> — b where 0 < a,b € R the gradient is computed as

follows:
Vi) =aV (|z|?) = aV(z )

T 2 2 2
rr=x1" 42"

0 - 0 -
V(v + 222 4+ 4+ 2,%) = ——21%k1 + ——22%ka + - -

8271 8902
V(aTz)=2[z1 22 ... xn]T
Vf(z)=2ax
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Chapter 34

Uniform Asymptotic Stability and
Parameter Convergence and Error Models

(Chapter 2): stability (asymptotic) not just error e but also parameter error to zero Stability Uniform
asymptotic stability Parameter convergence Persistent excitation Linear systems Linear Time Invariant (LTT)

T = Ax

where A is a matrix. Solution

z(t) = A1)z (tg)
A=VAVH

eAt — VeAtvfl
stability determined by A solutions determined by A Linear Time Varying (LTV)
T =A(t)x
Still a transition matrix (¢, to) where

x(t) = ®(t,t0)x(to)

t
Remember: ®(¢,ty) exists, and it is not always equal to efto AT and so eigenvalues do not mean any-

thing. Eigenvalues of A(¢) do not provide clues for stability. (example: time varying matrix with constant
eigenvalues in LHP but LTV system is unstable. z(t) — o) in scalar case © = a(t)x then z(t) =
exp{ ftz a(7)dr}z(to) aside: Almost time-invariant systems

i =[A+ B(t)|z
basically B(t) is small. Three cases
A ||B(t)|| = 0ast — o0
(i) B(t) € £
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(i) B(t) € £?

If A is Hurwitz z(t) — 0 as t — oo.

34.1 Error Models

Return to adaptive systems had two error models we discussed

(i) Error model 1

(i1) Error model 3

34.1.1 Error model 1

In the case where the input w is related to the output e through algebra alone, the result is error model 1.
In this case, there is no differential equation representation for e, and so the only error equation is for 6. In
error model 1, e is thus not a state, and so we don’t need it in the Lyapunov function when proving stability.

Scalar Case

Consider the following scalar algebraic system. We wish to identify the parameter # in the following
diagram, where the input is © and the output . An estimator is proposed, which, when given input u will
generate the output 4.

[OWO

The better the estimate of the parameter is, the closer the output ¢ will be to y. It is this difference that
will be used to drive the parameter estimate, as shown in the following figure.

The output from the parameter and estimate can be represented
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with tracking error and parameter error

Tracking Error: e=9y—y 34.1)
Estimation Error: 0=0-0 (34.2)

the equations above are subtracted, giving
Error Model 1: e(t) = 0(t)u(t) (34.3)

Which is represented with the following block diagram

If we multiply both sides by u(t) we get

e(t)u(t) = 0(t)u(t)?

which will indicate the sign of the error 6 since the signs of e(t) and u(t) are known. So, a natural choice
is to pick the adaptive law as follows. This gives an expression for the estimation error dynamics which
depends explicitly on the input u. This expression is important, as it will allow us to see how any given
input will influence the convergence of the estimation error, and thus our ability to correctly estimate the
unknown parameter.

Update Law/Estimation Error Dynamics: 0 = —u*(t)0 (34.4)

Using the expression for e from the error model 1 above we have

Parameter Update Law: g = —e(t)u(t) (34.5)

This is a recursive law? Gradient

?@Z o [—uf + ylu = [—u(f — 0)]u
= —(ub)u
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Check stability with the proposed update law by using following candidate Lyapunov function
~ 1 -
V()= -6°
0) =5
We want § — 0 as ¢ — co. Time differentiating V' we have
V=00
= —feu

= —e(Ou)
=—e2<0

Thus V is non-increasing. Stable, 6 bounded.

(i) wu is constant, not equal to zero, then é(t) — 0 as t — oo convergence is uniform in ¢ = uniformly
asymptotically stable.

~ t ~
() u(t) = 00(t) =e Jio "Q(T)dTH(tO) so for this to go to zero then the integral needs to go to zero. If
this integral tends to infinity as t tends to infinity then ¢ (t) goes to zero. If the integral is finite, then
0(t) = ch(ty). If finite, don’t have UAS, if infinite, have UAS.

(iii) The following property is defined as persistent excitation

t
/ w?(r)dr > ct

to

A(t) = ¢ Jo DG4
100)]| < e |0(to)] =0 as t— oo

Vector case

The output from the parameter and estimate can be represented



As in the scalar case, the tracking error and parameter error are given by

Tracking Error: e=9y—y (34.6)
Estimation Error: 6=0-06 34.7)
The equations above are subtracted, giving
Error Model 1: e(t) =0" (t)u(t) (34.8)
Which is represented by the following block diagram
u @ e
Propose
0=~y
= — (0" (t)u(t) = 0 u(t))u(t)
= 0" (t)u(t)u(t)
But
Estimation Error Dynamics: 0 = —u(t)u' (t)0 (34.9)

Check stability using following candidate Lyapunov function
~ 1-rx
V(0) = 59 6

want 0 — 0 as t — oc. Taking the time derivative of V we have

V=6T6
= —(0Tu)(u'0)
= —(0Tu)?

g —62

V is non-increasing. Look back at the estimation error dynamics. We can write this expression by using a
matrix as



where A(t) = u(t)u'(t). Like eigenvalues and eigenvectors... rank 1. Regressor is u that determines
direction of adaptation. If A(t) satisfies (persistent excitation of w) ftt+T A(7)dT > ol for some «, I and
Vt > to then O(t) — 0 as t — == [U " U] being non-singular.

PN

0 x 2[y — fulu = —eu

Goal A(t) — 0 (Parameter convergence)

= uniform asymptotic stability of § = A(t)f is needed
(i) u(t) is constant. Assume u(t) € R? 0 =c(—c'0)
0(t) does not go to 0 as t — oo

We say that u(t) € R™ is persistently exciting if...

34.1.2 Persistent Excitation

In this subsection, we will consider error model 1, with the estimation error dynamics given by (34.9).
We will look at how the properties of w affect the convergence of this error.

The equilibrium of the estimation error dynamics (34.9) are uniformly asymptotically stable if and only
if the input u : RT — R" satisfies the following inequality for positive constants tq, Ty, and «v. This is

equation (6.8) in the book on page 246.
1 t+To
T uw(t)u' (r)dr >al Yt >t
0

An equivalent definition is that of (6.9) on page 247 that states that the equilibrium of the estimation
error dynamics ([34.9) are uniformly asymptotically stable if and only if for every unit vector w € R" the
following inequality is satisfied

1
= [ @l 2050 w1
To
for positive constants tg, 1, and €g.
u(t) =cyfortyg <t <tog+Tiu(t) =cofortg+Ty <t <tyg+ Ty

Recall that when usmg the update law in (xx) the proposed Lyapunov function had time derivative
V(t)=— (uT(t)H(t)) If we integrate V from some initial time to some later time +7j we get

to+To |
/ V(r)dr = V(to +T) — V(1)
’ to+To 5 9
:/ (uT(T)Q(T)) dr

to

to+To -
= [ T i
to
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If this integral is > €Vt > ¢, then the error dynamics (34.9) are uniformly asymptotically stable. Next we
need to use the Cauchy-Schwarz inequality, given below.

2
Cauchy-Schwarz Inequality: </b f(r)g(7)d7> < /b (f(T))2dT /b (9(7_))2d7_ (34.10)

Let f(7) = ||u"(1)0(7)||, g(7) = 1, a = t, and b = t 4 Ty. Substituting this into this inequality we get

</tt+TO HUT(T)é(T)HdTY : /tHTO ™ (7)6(r) 2 /t S

Integrating part of the right hand side and dividing since 7j > 0 won’t flip the direction of the inequality we

have
= HuT(T)é(T)HdT>2 < [T TP

Putting the pieces so far together we have

2

t+To ~
Vit +T) — V(1) > }( / HuT(T)9(T)HdT>

Now we can multiply through by 7Tj and take the square root of both sides to get

t+To ~
[ I @l < VIt + T - VD

Now we will use a special form of the Minkowski inequality for p = 1. This inequality is

Minkoski Inequality: / | f(T)+ g(T)]|dT < / | f(T)||dT + / llg(T)||dT (34.11)

Now notice that the integrand of the above can be written as
lu" ()8 = |lu" (1) (8(t0) — O(to) + 6(7)) |
Also note that || — h(7)|| = ||h(7)|| for any h(7), and to use the Minkowski inequality define

f(r) =u" (1)0(7)
g(r) =" (1) (8(to) — b(7))

with

Plugging this into the Minkowski inequality we have

/ T (1)(ko) |dr < / lu™ (7)) dr + / lu™ (7) (@to) — B(r)) lldr



Rearranging

ST @itoldr — [ 1T () Et0) - 8 ldr < [ T (ko) far

Now look at the terms on the left hand side. Finish this reasoning later.

60 Toes < [ 1" ()it dr

and

t1+71o5 .
umﬂbl |wu7>/wu ) ((to) — 6(r)) dr

With this we get
_ ti+To . t+To T ~
|6t Toes — umas [ dllar < [ T ()60
t1 t
If we substitute our expression for §(7) = —u(7)u (7)0(7) into the second term on the left hand side
t1+70 . t1+To T -
unaTo [ 18 =Ty [ | = T ()60

t1 t1

And since u " (7)(7) is a scalar, using the property of norms that for scalars ¢ and vectors v that ||c||[|v]| =
lev]] we can write the integrand as || — u(r)u" (T)8(r)| = u(r)u (N)O(r)| = [[u(r)|[lu’ (T)8(7)].
Putting this into the integral

t1+To . t1+To T -
um%j ww:mm%[ lu(o) [l (1)) | dr
1 1

And we can write the inequality that ||u(7)]||||u" (7)0(7)|| < umax||u" (7)0(7)|| Putting this into the integral
we have

ti+70 . t1+To T -
umn/ nmhymm/ luT (D))l
t1

t1

Finally
~ t1+To T _ t+To T B
10(to) (| Toes — maxTo/t Ju (T)G(T)IIdTS/t |w’ (7)0(7)||dr
1
which we can write

~ t+To ~
I6t0)|Toes <(1+ ) [ T (6()]dr
t

rearranging

It Toes [P 5
< [ T (i) ar

max
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Combining this with what we had way above

M \/»\/VtoJrTo —V(t)

14 u2

max

Squaring both sides

~ to+To - B
> e To|0(t0) | — w2 / T (7)d(r) | dr
to

eolo
2V (¢
TO ( 0)

>7
14 u2

max

= Vit +T) — Vit < —

for0<y<1=V(t) > 0ast — oo.

34.1.3 Error Model 3

¢=Ae+bw'h
€1 = hT
é = —e1w

e=x10 =29
L T T
V= 5(331 Pz + 249 Pxs)
) 1
V= —§x1 Qx1 <0
& = A(t)x is UAS if Ty, €, and dy exist so that
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1 ta+do
TO to

forallt > t, [tQ, to + (5()] C [t, t+ T()]
Error model 3

w' (T)wdr|| > g

- —ew = —wW(s)[w' 0]

Conditions on w so that 6(t) — 0.
Error model 2 is the same as error model 3, but when all the states are accessible.

34.2 Persistent Excitation
34.2.1 Introduction

Summary of last class: looked at two error models.
Properties of persistently exciting signals (chapter 6)
three figures in R2

sin(Qot)
w(t) =] cos(Qot)
sin(Qot + @)

Not PE in R since the third component z-direction is a linear combination of the first two components,
and y-directions.

Q; # Q; then PE in R?" need n distinct frequencies.
Inw € Q, then Tw € €, where T nonsingular.
Suppose reference input (¢) = > " | a;sin(Q;t), ; # Q;

Then ~ -
r Sin(Qlt)
; cos(24t)
R=| . | €Q,=" s
(2n-1) :
" | cos(2t) |

where 7' nonsingular.

where ¢(s) is a Hurwitz polynomial. If u € Q; = y € {2y. Linear system same frequency comes
through, so input PE means output PE.

another block diagram, same thing can be said about the output p(s) Hurwitz. Problem if zero was on
imaginary axis, that frequency component wouldn’t show up in output. u € 21 = y €

another block diagram input r output Z,,. &m = Axy, +br. If r = 37 a;sinQit 2., (t) € Qap.
A € R?2" A Hurwitz, (A, b) controllable.
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x(t) = xp(t) + e(t) and z,, (t) € Qp, e(t) = 0ast — oo = x(t) € Q.

Return to Control Problem

1. Scalar

2. States accessible

34.2.2 Case (1) Scalar

Plant: T = aprp + bu
Control: u =0z, + kr
Model: Tm = AmTm + by
Tracking error: € =1y — Ty
Tracking error dynamics: é = ame + b(kr + 0z,
Parameter error: 0=0+06
k=k+k*
Matching condition: ap, + b0 = ap,
bk™ = by,
Update laws: - —sgn(b)ex,
k= —sgn(b)er

Proposing the following candidate Lyapunov function
1 I
V= S+ b8+ )

Time differentiating

V = ame2

Andso e, 0,k € £ and e(t) — 0 ast — oo and sgn(b) = +1

so w PE in R? <:>9:—>0!w:w*+Cew*PEinR2:>9:—>O.
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34.2.3 Case (2) States Accessible

Plant: T = Apx, +bu
Control: u=0"z,+r
Model: T, = AT + b1
Tracking error: €=Tp— Ty
Tracking error dynamics: é=Ane+ éTxp
Parameter error: 0=0+0"
k=k+Fk
Matching condition: a+ b0* = a,,
bk* = by,
Update laws: 0— —(e" Pb)z,
k= —sgn(b)er

Q>0AlP+PA, =—Q ]
1, PE<=>0(t) = 0ast — coxp = &y +exy € Qy, = 0(t) — 0ast — oo r must have
frequencies

34.3 Parameter Convergence in Adaptive Control

goal: want y to track y,, and choose v,, something that we can indeed track. Pick reference model that
has enough degree of smoothness. y can at best follow a signal which has derivatives well defined up to the
relative degree of plant. Relative degree of reference model must be at least that of plant or greater.

goal: Choose u so e goes to zero.

first assume n* = 1 and also assume W, (s) is SPR. Also assume k,, and k, are known, with k,, =
k, = 1 for simplicity (for now).

Pick filters like in representation 2, except without dealing with the constant (for now) since k,,, = k, =
1.

v1(s) = ——=u
f(s)
where f(s) Hurwitz, monic, n — 1th degree.
C'(s) is not monic, and n — 2th degree
d(s)
'UQ(S) = mu

d(s) is not monic, and n — 1th degree

Transfer function from r to y

zeros can only be canceled out, and poles shifted.

01 should be 61 = f(s) — c(s) = Z,(s) so degrees of freedom are available to solve for c(s) leaving
us with polynomial n — 2th degree, which need not be monic. So ¢*(s) exists, and 67 is the parameter that
leads to ¢*(s). This allows the forward loop to be simplified as
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This was all pretty much review of output feedback control for the general n* = 1 case, with only the
simplification that k, = k,,, = 1.

NewpanisifwPE:>§—> 0.

Tmn 1S Non minimal state.

Tm
Tmn = | W1

W2 13,9

*
wZ’n—l - men

Tmn = Amnxmn + bmnr

Properties of PS

if (A,b) controllable and A is Hurwitz, then u being a sum of n/2 sinusoids, then x is persistently
exciting in R™.

If (A, b) is not controllable, = will be persistently exciting in a lower dimension.

Say z(t) PE in R" denote that as = € Q,,

If we have rectangular matrix P, ,, then z = Px, z(t) € R". Then if z is PE in R", then x € 2],

Example 62

then x € Q. If

thenz € Q). If

and so x not PE. If

then z € Q3.

Nonminimal representation of the plant

Tpn = ApnTpn + bmn(éTw +7)
w1 = Fy_qw1 + gn—1ue

wo = F_1wa + gn—1y
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w=w*+Ce

34.4 Summary

we introduced recursive schemes - adaptive laws for adjusting parameter. We introduced two error
models. Error models relate something we can actually measure that tells how system behaves and responds
to uncertainty e called tracking error and parameter error 6. The analogy was turning a single knob without
any markings on it. Hope is that e — 0 means that 6—0

Error model 1: was when the relationship between parameter and tracking error was algebraic. 6 = —eu.
One example of this is y = 6w where § unknown, and 0 is estimate. Error model 3 was when the
relationship between parameter and tracking error has some dynamics in between it. For example a first
order system. An example of this is is the motor from last lecture, which can be cast in terms of error model
1.

In both cases assume w is smooth. That is |w| < M is finite.

Persistent excitation of w € R"

1 t+To

.
— w' (Twldr > ¢
w | e @uldrz e

V unit vectors w € R™ Vit > #g
t+To
/ W) (F)dr > al > 0
t

vt >t )
wPE <=>0(t) > 0ast — o0
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Chapter 35

Adaptive Observers

35.1 Introduction

Last Class: Persistent Excitation

Today: Adaptive Observers and Parameter Convergence
Observers (Ch 4)

non-minimal representation characterized by 2n parameters.

T1 = —Ar1+u
w1 = Awy + fu
Wy = Aws + Ly,

u = 0] wi + 0oy, + 09 wo
error models (1) and (2)

35.1.1 Nonadaptive Observers

State not available for measurement. Must estimate state as 2.
Before adaptive observer, first look at “regular” observer.
Plant where x is not measurable but y is

T = Az +bu
y=h'z

Standard solution is Luenberger observer

AT +bu+ Ly — )
h'd

z

a3
Il

Proof is fairly simple. e = & — .

e = Ae +€hT(1’ — )
= (A—th"e
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And if (A, h) is observable then (A — ¢h ") is Hurwitz. so e(t) — 0 as t — oo.
Parameterization of A, b, h.

35.1.2 Adaptive Observers

only n unknown values to estimate in A

And same with b, where b is the estimate of b.
Also don’t know what to pick as £ since A is unknown, so can’t guarantee to pick the right £ so A — ¢h"

is Hurwitz.

Ax = Apx + (a — am)y

Adaptive Observer (assume for now that ¢ = ()
i’:Ami+(&—am)y+l§u
rewrite plant
&= Anx+ (a —ap)y + bu
Error

é = Ame+ (a—an)y+ (b—bu
¢ = Apme + ay + bu

Pick candidate Lyapunov function

V=e¢ Pet+a'a+b'b

V =—e'Qe+2(e"Pa)y+2(e" Pb)u+2i"a+ 2" b

— ¢TQe+2(ye P+ a )a+2ue P+b7)b
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The problem with using the following update laws (which would otherwise give V <0)
a = —Peyb = —Peu

is that we do not have the signal e. B
Go back through and change A,, to A,,, where

A=A, —(hT

é=Ape+ (@ —amn)y+ (b—bu—rth'e
é:/ime+dy—|—l~)u

35.2 Minimal Representations

From Ben: Minimal representations have more restrictive applications, harder to implement (synthesiz-
ing v signal), are same order as plant, easier to look at (estimated states are states).

35.3 Nonminimal Representations

From Ben: easier to implement.

35.3.1 Nonminimal Representation 2

The problem is to design an adaptive observer for the following plant for W,,(s) below, where R,(s) is
monic and degree n, and Zp(s) is degree m, (need not be monic), where m < n — 1.

An example might help to show what is going on, so consider the given W,,(s) below, where the goal is to

determine a in this transfer function.
1

S+ agp

Wp(s) =

Given an n—th order plant, a minimal observer is one that is of order n; there are as many integrators in the
observer as in the plant. The non-minimal observers have more integrations than the plant. Given the plant
W,, above, we will try to see and understand representation 2, where we will use twice as many integrations
in the observer as in the plant. Consider the following block diagram.

U Ni(s) U1+ N Yp
D(s) N
+
Na(s)
V2 D(s)
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Look at the the transfer function from u to y,, and we get

N1 (8)

Wols) = B~ Mals)

Now, we can can pick D(s) to be any stable monic polynomial which is the same order as the plant
denominator polynomial, pick Ni(s) to be the zero polynomial of Wp(s), and then pick N2(s) so that
D(s) — Na(s) = Rp(s). If we do that for our simple example above, we get

Ni(s) =1 D(s)=s+p

where 5 > 0. Now evaluate D(s) — Na(s) = s + 8 — Na(s) = s + ag which gives Na(s) = [ — ay.
Putting these values into the block diagram

u 1 ’Ul—‘,—/\ Yp

s+
:(
B=ao

V9 s+8

which is equivalent to the given W)(s). In this example W),(s) was first order, but we could have done
exactly the same process for an n-th order system. Essentially, we can pick D(s) to be any stable monic
polynomial that we want, and then use the degrees of freedom in the two zero polynomials to place the poles
and zeros of W,(s).

Let’s now look at how this structure can be used to build an observer. To do this, we consider the transfer
function blocks above represented in state space as shown in the block diagram below.

Yp

We have two filters shown using the dotted lines. The filters are defined in state-space form by the
matrices (F,g,c') and (F,g,d"). We showed above in our example how to pick these filters as transfer
functions, but we need to see how to do this using the state-space representation. The representation of a
transfer function in state-space is not unique. Control canonical form is a good choice.

T=—-0r+u
1)1:1

and
vg = 8 — ap
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Sowehave F = 3,g=1,¢" =1landd' = 3 — ap. For the scalar plant examples, these parameters are
also scalars, but they will be vectors when designing an observer for a higher order plant. Now we change
the block diagram so we can try to use this idea to make our adaptive observer. Consider the equivalent
block diagram

u F g W @ U1 4~ Yp
+
Yp F g w2 @ Vg
Yp = clw +d wo
=0'w
where
0= [CT dT]T and w = [wlT wﬂT

So our parameters are all contained in 6, and w is a known signal. Now replace the parameters ¢ and d with
estimates, and note also that w; and w9 need to be replaced with estimates as well. The w’s are estimated
values and not the true values only because of errors in initial conditions. These errors will decay with a
speed based on how F' is picked. In block diagram this becomes

U w1 + Yp
e P
+
Yp o
= @
The output can be expressed
Up = 'O +d D
=0
where -
~ T A T ~TqT
HZ[CT &‘r} and w:[wir ;—]

Now look at the error

Define errors



So 6 = 6 + 6 then we can rewrite error as

5-0"@—-)

G—-0'0+0"w
0" -0 +0"w
0"

€1

=

—~

O+0'w

And the term £(¢) = 0 & tends to zero as t — 0. So we are essentially left with error model 1.

€1 = éTa
Start by representing the plant this way
Zp(s) | [ Bm(s)
o ={z2) |
g Rin(s)] | Ry(s)

_ bis+bo
24 ais+as

Time Domain
Frequency Domain
R, (s) is monic, degree n Z,(s) is degree m, and need not be monic, where m < n — 1

O™+ 0125™ 1 + - 4 Oy )

Wy(s) = 8" + Oy s" L+ -+ O,
o =| 2o )

So write each of the terms with bunch of unknown parameters. Pick (F,, g,) where F, :

gn : 1 X 1. Control canonical form

02)1 = anl + gnu

v = 9?&)1

Now second term

n X n and



block diagram here
Ry(s) = Rn(s) = Ry(s)

n — 1th degree polynomial, non-monic

wo = Fhwa + gny

Vo = 9/2Tw2

y= Qle + 9'2Tw2

Adaptive Observer (Non-Minimal)

(j-}l — anl + gn
Wy = Fylp + gny
§=0] 1+ 0]y

For parameter convergence: If w is PE then 0 (t) = 0ast — oo.
note w is not the same as w!

T ~ N1~
91W1+92(,UQ
T T
:01w1+9’2 wWo

= 9;@1 + 9;@2 + 61T(w1 — (Z)l) + 9;((,02 — @2)

y
y

—0ast — o0 ~
If  is PE then 0(t) — O as t — oo
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35.3.2 Nonminimal Representation 1

Here is another method of representing the plant for which an adaptive observer is designed (method 1)
uses one less integrator (2n — 1). The method above was method 2. (pretty sure, check book, might be other
way around)

More Stuff on Adaptive Observers

started with luenberger and showed that the error model 2 type structure required e' P and e is not
available for measurement. Only a subset of e is available which is not enough to construct e " P.

Went to non minimal representation.

Consider only SISO system.

Representation (1)

P is nth order plant, observable and controllable. Thats what transfer function is. Do all pole zero
cancellations and result is controllable observable representation of dynamic system. Since numerator and
denominator polynomial do not share any factors, they are called co-prime.

Add extra poles and zeros to get a non minimal representation of plant.

The non-minimal state is

w1
X

Name of game: build a way of getting state estimate and plant estimate.
only reason w and w are different is due to initial conditions.

G=0"%
ey=0"0—0Tw+ (-0
0T +07T (0 —w)

=0"% after finite time

0= —e,w

0 is bounded, and 6 — 0 iff & PE. And w PE = & PE
Structure of w
Assume (F},, gy, in control canonical form. det(sI — F},) = f(s) and f(s) is nth degree, Hurwitz, and

monic.

-1 -
) [ Ry(s) ]
f(.s) sRy(s)
sn.—l :
w1 () s"IR,(s) 1
= = Zp(s) U = U
[W] R (5)1(5) Zp(s) | f(s)Rp(s)
s2p(s) $Zy(s)
(5 F(5) _
s Z,(s) SnilZp(S)
L Bp(s)f(s)
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And we have in the denominator a 2nth degree polynomial, Hurwitz, monic.

1
$ U

=T TR
5271—1

w is nonsingular transformation of this vector which is persistently exciting in dimension 2n — 1.
T is nonsingular because Rp Zp coprime so each time you take a derivative ... ?

u’ = ! u
f(s)Ry(s)
u/
u/
U= :
u/(Q;Lfl)

n
u = E a; sin ;t
i=1
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Chapter 36

Closed-Loop Reference Model Based
Output Feedback Adaptive Control

36.1 Introduction

to show separation principle.

: 0
nominal system use 7" = [ 7 —I]

36.1.1 CRM States Accessible
CRM: Case (b) A, unknown B, = BA where B is known Plant and reference model

Ty = Apry + Bpu
T = AmTm + Bmr — L(x — z,)
Control law
u=0(t)x, + k(t)r

the plant equation becomes

error dynamics B ~
é¢ = (A, + L)e + BAzx, + BAkr

update laws
0 = -TyB' Pex,
k=-TI4B Per'"

Lyapunov
(Ap+ L)' P+ P(Ap + L) = —Q
G=A,+1L
G'"P+PG=-Q
Lyapunov

V =eTPetur (07T;'A0) +ur (KT AR)
Pick L such that G = gl,,«,, where g < 0.
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Q= ’gunxn

1
P = §|9’Inxn

Tuning laws

. 1
0= —§FQBTex;

. 1
k= —§FkBTerT

Lyapunov
V= %eTe + e (07T;A0) +u (RTT AR

= [ < 7

ORM: Case (c¢) A, and B, unknown Only going to be local stability. Matching conditions will change
because structure is different.
T, = Apxp + Bpu

Tm = AmTm + Bmr
Matching condition has B,,, inside instead of B,

Ay + B = A,

B,K* = K,
input

u= K0z, + Kr

substitute control law into plant equation

&p = Apxy + Bp(KOx), + Kr)
= Apz, + BpK0zx, + ByKr
= Ayr, + B,K*0z, + B,K0z, + B,Kr
= (A, + B,K*0)z, + B,K0z, + B,Kr
= Apzy + Bpffb’mp + B,Kr
= Az, + ByK0x, + ByKr + Az, — Az,
= Apxp + Apry + Bp(K* + K — K*)0z, — Ay + BpKr
= Ay + (A + By(K*+ K — K*)0 — Ay,) xp + BpKr
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Evaluating the error dynamics
é=Ape+ (Ay + By(K* + K — K*)0 — A,,) 7y + By(K — K*)r
= Ame + B0 — 0")xy + By (K* 'K — 10z, + By (K* 'K — I)r
= Ame + Bz, + B (K — K) K0z, + B(K* — K~HKr
= Ape + Bz, + B (K — K"Y)K (0x, 4 1)
= Ape+ Bz, + Bn(K* ' — K M
= A,e+ Bméxp + Bmtﬁu

where
0=0—0"
,J) — K*fl . K*l
Lyapunov
V=e'Pe+tr (§T9~> + tr (&T@)
update

(ZuﬁP—szzrle'%:—Bumﬁ

K = —KB,,Peu' K

example 3.4. V not radially unbounded.

V= e? 4 4)?
-1 1
VIR T
k=k—k*
];2
V — 62 + —
(k—i— k‘*)2]€*2

36.2 Squaring up Output Feedback

Showing that if the squared up system satisfies P By, = (SC ) that the non-augmented system satisfies
an equivalent relationship: PB = (S1C)".

(A-LC)'P+P(A-LC) <0
P[BBi]=(SC)"

P[BBy|=C'S"
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36.3 Eugene Visit Notes

Given

&p = Apty + ByA(u+ 0 d(x))
Yp = Cpxp
2 = Cpxp + Dpsu

where (A,, By) is controllable, det A # 0, (A, C}) is observable.
€I = Yref — Yemd

Yreg = CpregTp + DpregA(u + @Tq)($))

Goal: given emax, T, find u such that ||yreg — Yemd|| < €max forallt > Ty < oo. This is known as UUB,
see Khalil. Define the following extended open-loop dynamics.

T =Ax + BA(U + @Tq)($)) + chdycmd

&= Az + BA(u+ 0" ®(x))

Khalil feedback linearization. Isidori (Alberto) Burns. Feedback linearizable systems can handle un-
matched uncertainty reference model - command prefilted goal find u to asymptotically track z,, reference
model z,,, follows r with some error add and subtract trick Buy;

T = Ax + BA(U + @Tq)(l‘)) + Bub1 — Bub1
= Az 4 Buy + BA(u — A tuy + 07 ®(2))

U = Up] + Uad
& = Ax + Bup + BA(ubl + Uag — A_lubl + @Tq)(l‘))

— Az + Bup + BA(tag + (I — A Hup + 07 0(2))
= Ax + Buy + BA(Uad + (:)T&)(ubl, x))
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where

s0 now we pick uyq as

Uad — —é—r(i)

The baseline part provides nominal system with desired performance and the adaptive part fights uncer-
tainty.

= A + Buy + BA(uga + 07®) + Ly — 9)
= A% + Buy + L(y — §)

The output and state are

up = — K2+ K,pr
i =(A— BK — LO)i + BK,r + Ly

these are stable:

A = A— BK, A-LC

But the reference model must be stable as well! Challenge: Find conditions such that A— BK — LC'is
Hurwitz. This is for practical purposes. The idea being if an airplane is sitting on the ground and is powered
on the estimator state should be zero, measurements zero, and reference zero. If we were to hit the plane we
would be essentially resetting the initial conditions of the estimator through its input y. If it were not stable,
the estimator state would blow up causing actuators to go crazy and we would not be a happy goose.

Rosenbrock matrix y = 0 no matter what u is

& = Az + Bu
0=Cz+ Du

Laplace transform (no IC)

sX =AX + BU
0=CX+DU

(A—s)X +BU =0
CX + DU =0

el i
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When this matrix loses rank: transmission zeros
Example: Consider the system

SRS
I
SIS

So we have

Then the Rosenbrock matrix is

-s 1 0
0 —-s 1
1 0 O

Eat a banana and sit in Hawaii.

Back to the tracking problem.

Note that our input choice u = up; + Uu,q is not unique.
Bellman - Dynamic programming

36.4 LMI Based Approach to Adaptive Output Feedback

36.5 Some Stuff

Corollary to KYP Lemma says thata P = P" > 0 satisfies PB = C'" ifand only if CB = (CB)" >
0. So C'B must be full rank. Proof?
Left multiply both sides of PB = C'" by BT

B'PB=(CB)"

36.6 Adaptive Control of a Pendulum

This document will explain the process of linearizing a simple pendulum, and using this linearized
system to design a full state feedback LQR-PI controller. With the controller gain in the feedback loop
to control the nonlinear system, the required reference torque input 7, which gives a desired pendulum
deflection angle 84 can be found. This is known as the feed-forward gain. In this way, a reference torque can
be commanded to the system resulting in a quick and accurate rotation of the pendulum to the desired angle,
within some range around which the linearization is valid. Integrating the pendulum error removes the need
to calculate necessary reference input and apply a feed-forward gain. Instead, a reference command can be
given to the system, and the controller will apply control effort until the system reaches this reference value.
At this point, the error will be zero.

Model reference adaptive control, or MRAC, is also explained and applied to the pendulum model.
MRAC requires a reference model to be specified, against which the actual system will be compared. This
is used if the actual plant had uncertain parameters. This controller would simply compare the response of
the actual plant against the reference model, and adjust the gain to make the system behave as desired. With
the adaptive controller complete, it can be added around the existing LQR-PI controller.
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36.6.1 Pendulum Equations of Motion

The governing equations for a pendulum with a viscous damper and torsional restoring spring are shown
below, where J = ml? is the moment of inertia of the pendulum, m is the mass of the pendulum, g is
gravitational acceleration, [ is the length of the pendulum, £y is a torsional spring constant, £ is viscous
damping coefficient, and 7 is an external torque input provided by a motor or similar actuator. # = 0 when

the pendulum is hanging vertically downward.

S S S S

5 9. 9 4
0= -7 sin(f) — ml29 - lee + T
Using the following state variables
X1=90
X2 =W

and input U = 7, the second order governing equation can be written using two first order equations

X1 =X
; g .. ko kg 1
Xo=—= X)) ——FX1 — —5Xo+—7=U
2= —psin(X) = X et e
The state vector X is then:
X=[X X
And the state equations take the form of:
X = f(X.U)
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36.6.2 Equilibrium Points and Linearization
Equilibrium Points

Equilibrium points for the pendulum must be found.
Equilibrium points are defined to be states where the state derivative is zero:

X* = f(X*,U") =0 (36.1)

Linearization

Define perturbations about the equlibrium point:

X=X"+z (36.2)
U=U"+u (36.3)
Differentiating (36.2):
X=X"+i
but, using (36.1):
X =0
giving:
X =i

&= f(X,U) = f(X*+2,U" +u)

Performing a Taylor series expansion, neglecting second order terms and higher:

ey e OF(XU) df(X,U)
= f(X*,U") + ax . 50 *u—f—e
with:
f(X*,U") =0
giving:
. 0f(X,U) 9f(X,U)
T x|, au |,

where the subscript (- ), indicates these matrices be evaluated at the equilibrium point found in the preceding
section.
When the equations of motion are linearized this way, the resulting equations can be expressed:

Ty = Apzp + Bpu

Linearizing the Pendulum

There are two cases of equilibrium points that will occur for this system: equilibrium points for which
the input is zero, and equilibrium points for which there is a non-zero input.
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Case: U* # 0

0= X,

9. o ke o Ky
LS

_ 1 _
Xo+—7=U

mi2 ml?

For the above case, there will be infinitely many trim points. These trim points correspond to some non-zero
torque input U that will maintain the pendulum stationary at some corresponding value ox X; = 6 # 0.
However, it is usually desired to trim a system around a point which requires zero input, so this case will not
be focused on any further. Instead, case II will be examined instead.

Case II: U* = 0 Finding the equilibrium points which require zero input will result in the following
equations:
0=X
g . o ko ky o
0=—= X)) —FX1— %X
(S = e e

From these equations, there are again infinitely many trim points, although this time they are periodic,
corresponding to the pendulum hanging vertically downward or balancing vertically upward.

5 _ [rmbu{@En+1)

T}
0 ,neZ

where the first set of X correspond to stable equilibrium points, and the second set of X corresponds to
unstable equilibrium points.

Linearizing Pendulum

ofi Ofi d
d |71 80X, 0Xs (a1 n T{}
- — U
dt 9 Ofs  Of2 9 9fs
X1 9X2 4 AU d «

Using the pendulum example provided, and evaluating the partial derivatives results in:

d |*1 0 1 1 0
dt LZ] B [—?cos(Xl) — o _n’jlej* Lo + 1 *u
and substituting the equilibrium values:
d |71 0 1 I 0
dt LJ B [_?_nﬁ% —:32] . + 1 u (36.4)

Or, more compactly:



36.6.3 LQR-PI Control Desgin

The following sections have described how to apply LQR control to a nonlinear system, and command
the system to some desired equilibrium state. However, this required an analytical expression relating the
closed loop input torque to deflection angle be found. Using this expression, the torque required to command
the pendulum to 6, had to be found for each desired rotation angle, and implemented using a feed-forward
gain N. An LQR-PI controller will not require such a procedure. Instead, a reference will be given to the
system, and the error between actual system output and reference input will be measured. This error will be
integrated over time, and the controller will seek to reduce this, resulting in zero steady-state error.

The system is the same as above. Define error the difference between a particular single perturbation
state variable of interest and the reference value r = x), cmd:

G =1 —1, (36.5)

7

Using the error description in (36.5), the state vector z,, can be augmented to include z., the integration of
T, as a state variable:

d |z,| [4p, 0] |z, B, 0

dt[xj_[H O] [l’e + 0 u + 1 r (36.6)

i = Ax + Biu+ Bor 36.7)

Or, more compactly:

A and B are the matrices for the augmented linearized system, and, the selection matrix H € R™*" is
chosen according to the definition in (36.5). For the pendulum n = 2, and m = 1, so H is the 1 x 2
selection matrix below:

H=[-1 0

Expanding the state vectors, and inserting some numerical values:

d T 0 1 0 I 0 0
% To| = -1 0 0 To| + 1w+ |0 r
e -1 0 0] [z 0 1

Using this augmented state-space representation, the following control law will be used:
u=K'z (36.8)

Note here that the control law does not depend on the commanded reference input . This is because the
reference input is coming into the system through the error term, ., thus ensuring the system will go to the
commanded value. The gain K will be found using LQR, minimizing the quadratic cost function using A
and B;. By is not used since it is constant for a given reference r. Substituting the control law (36.8)) into
136.7)):

i = Az + B K"z + Byr
i=(A+ B K")x+ Bor

The gain K is selected using LQR, and ensures the closed loop matrix (A + B1K T) is Hurwitz. This new
resulting state-space form for the pendulum will have zero error at steady-state.
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36.6.4 MRAC Control Design
Motivation for Adaptive Control

The linear full state feedback LQR-PI controller can be used to stabilize the pendulum around a com-
manded reference angle. The LQR-PI controller guarantees zero steady state error by inclusion of an error
term in an augmented state-space representation.

The motivation for the adaptive control design lies behind the presence of uncertainties in system pa-
rameters. The linear controller that was designed for the nominal system should work well within some
neighborhood of the equilibrium point, and without uncertainties.

In designing a MRAC, a linear reference model is created, which is stable and known. Essentially, its
behavior is that which the original pendulum should mimic. The adaptive controller attempts to adjust the
gain parameters so the actual system behaves like the reference model.

The Adaptive Controller

When the nominal equation X =f (X, U) is linearized about a trim point, it takes the form &, =
Apz, + Bpu as shown previously. With the presence of input uncertainties, the nonlinear equation can be
represented as

X = f(X,AU)

When this equation is linearized about the same flight condition, it takes the form
Ty = Apaxp + Bpau
where the uncertainty can be incorporated as B,y = B,A giving
&y = Apxxp + BpAu
When this uncertain linear plant is augmented with an integral error state, it can be represented
b =L o [ = (e [

Or, more compactly, the overall plant to be controlled is given by:

T = Ayx + B1Au + Bar (36.9)

Selection of the Reference Model The reference model is selected by designing a nominal full state
feedback controller upom = K Ta where the gain was calculated to optimize control of the nominal plant.
The reference model is of the form

T = AmTm + Bmr (36.10)
Using the augmented nominal state and input matrices
A, O B
A:[Hp 0] Blz[op] By, = By (36.11)
the reference model is given by
im = (A+ B K"z, + Byr (36.12)

In other words, the reference model is simply the nominal linear plant, closed using a controller which
guarantees stability of the system.
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Adaptive Law With the form of the plant known, and a reference system available to compare it with, the
adaptive law must be determined to stabilize the uncertain plant. First, the error between actual performance
and desired performance must be quantified. Define the adaptive state error

e=T— Iy (36.13)

to be the difference between actual state and desired state. Propose a control law of the following form,
where 6(t) € R™*™ is the adjustable control parameter

u= (0" + K"z (36.14)

Substituting the control law (36.14) into (36.9):

&= Ayz + BiAOT + K")a + Bor
&= [Ay + BIAOT + K]z + Bor
i = [A\ + BiA0" + BiAK |z + Bor

Comparing this expression to the reference model, it is assumed that a constant, ideal feedback gain matrix
0* exists that results in perfect reference model tracking such that

Ay +BAOT+ KT =4, (36.15)

which is known as the matching condition. Using the definition for A,, this can be written
Ay +BAOT+ KT = A+ B K"

Assuming there is no uncertainty in the A matrix, that is Ay = A, this expression can be simplified to:

BAO*T + KT = B KT

BiA9*T + BIAKT = BiK"

BiA*T = B KT — BiAKT

BiAO*T = B{(I — A)KT
T =A"NT - ANKT

which is true since everything on the RHS ...
Adaptive control parameter gain error is defined as

0=0—06*

Differentiating the error (36.13):
E=1T— Ty (36.16)

Substituting (36.9) and (36.10) into (36.16)):
¢ = Axz + BiAu + Bor — (Ap@m + Bmr)

410



substituting the control law equation (36.14) and since B,,, = Bs
e =Ayx + BlA(GT + KT)J; + Bor — ATy — Bar

é= Az + BA0" + KNz — Az,
Rearranging the matching condition equation (36.13))
Ay = A, — BIAOT + KT)
and substituting
é=[Apm — BIANOT + KNz + BIA0T + KDz — Az,
é¢=Apx — BINOT + KNz + BIA(0T + KDz — Az,
é=Apn(x — ) — BINOT + KNz + BIAOT + KTa
é=Ap(x —x) — BIAOT2 — BIAK "z + BiA0 "z + BAK
é = Ap(x —xp) — BIAO 2 + BN 2
e=A,e+ BlA(GT — G*T)x

¢ = Apme + B1A0Tx (36.17)

The goal of the adaptive controller is to drive the error e(t) to zero: lim; ;o e(t) = 0. This will be
accomplished by adjusting the parameter 6. The following candidate Lyapunov equation is proposed where
P is symmetric positive definite, ! e Rv*njg a symmetric, invertible, positive definite user selected
tuning gain matrix, and the operation | - | takes the absolute value of the entries of the argument.

V =e"Pe+ttr (éTF_1§]A|>

Differentiating . .
V =¢"Pe + e"Pé + (AT 10|A|) 4 (0T 1H|A])

Substituting equation ((36.17)) and simplifying
V = (Ame + BiAG )T Pe + €T P(Ape + BiAGTZ) + tr(6TT14|A]) + w(§TT 6] A|)
V = (Ane)TPe+ (BiA"2) " Pe + ¢"PA, e + €' PBIAO z + tr(HLTI’*lé\A\) + tr(HNTFAHL]A\)
V =¢e"A,,TPe + 2"0AB,"Pe + ¢"PAe + " PBi A0z + tr(éTF_lé|A|) + tr(éTF_lé|A|)

V = eT(AnTP + PAy)e + 2TGAB,TPe + " PBAGTz + w(@TT 16 A|) + (67T 10| A])

Because the quantity 2TOA B, Pe is a scalar, 2TOAB, T Pe = (xTéABlTPe)T = eTPB;AO 2z the above
equation can be further simplified

V = eT(A4,TP + PAy)e + 22TAB, T Pe + w(@TT 14| A|) + (67T 16]A|)
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Substituting —Q = A,,,' P + PA,, into the equation above gives
V = —€TQe + 22T0AB, T Pe + (67T 14|A|) + (8T 1] A|)

Proposing the following adaptive control gain update law, noting that 6=20

0 = —Tze" PBysign(A)

giving

67 = —sign(A)(Tze" PBy)T
= —sign(A)B;"PTezTT

Substituting this update law to continue evaluation of the candidate Lyapunov function’s derivative
V = —e"Qe + 22T0AB, T Pe — tr(sign(A) B, T PTex"TTT 10| A|) — tr(0"T Tz, e" PB;sign(A)|A|)
Simplifying, recalling that ' = I'T and P = PT are symmetric
V = —e'Qe + 22"0AB,"Pe — tr(B," Pea"fsign(A)|A|) — tr(6Tze" PBysign(A)|A|)
Because every entry in A has the same sign, sign(A)|A| = A giving
V = —€e'Qe + 22T0AB,"Pe — tr(B," Pex"0A) — tr(6 2T PB;A)
using property of trace tr(a) = tr(a"), and also that A = AT is symmetric
V = —e'Qe + 22"9AB,"Pe — tr(B," PexTGA) — tr(AB, " Pex"6)
rearranging using tr(ab) = tr(ba)
V = —e'Qe + 22"0AB,"Pe — tr(B,"Pex"0A) — tr(B, " PexOA)

combining terms . ~ ~
V =—e'Qe + 22T0AB, " Pe — 2tr(B1TPeatT9A)

and finally using tr(ab’) = bTa with a = B, Pe and bT = 2THA
V =—e'Qe + 22TOAB, " Pe — 22TOAB, " Pe

Finally simplifying to

V= —eTQe

So, if a symmetric, positive definite matrix Q exists, which solves the Lyapunov equation A,," P+ PA,, +
@ = 0, the candidate Lyapunov function which was proposed will serve as a valid Lyapunov function for
this system.

Implementing the Controller

Selecting the Tuning Gains
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36.6.5 Improvements to MRAC Architecture
Modified Reference Model

Modifying the reference model is from before, where G is a positive definite user selected matrix gain,
gives:

T = AmTm + Bmr + G(x — x,)

Matching condition still requires constant adaptive gain #*T such that the following is satisfied:
Ay +BAOT+ K= A, = A+ B K"
Substituting the new reference model into the differentiated error equation ¢ — x —
é = [Ay + BIA0T + BiAK )z + Bor — [Apay, + Bor + Ge]
rearranging and matching condition
Ay = A, — BIAOT + KT)

and substituting
é=[Ay + BiIA0T + BIAK |z — [Ap 2, + Ge]

gives ~
é=(Ap + Qe+ B0z

Using the same candidate Lyapunov function as before

V =e"Pe+ttr (éTF_1§]A|>

and differentiating . .
V =¢éTPe+ eTPé + (6T 10|A|) + t(ATT 10 A])

V = [(Ap + G)e + B1672] Pe + T P[(Ap + G)e + B8] + w(@TT10|A|) + (67T 14| A|)

Propose the same following adaptive control gain update law as before, noting that 6=4.

§ = —Tze"PBsign(A)

Substituting the adaptive control gain update law gives

V=—"Qe—e"Qge

So, if symmetric, positive definite matrices Q and Q¢ exist, which solves the Lyapunov equation A,,T P +
PA,, +Q = 0,and GTP + PG + Q¢ = 0 the candidate Lyapunov function which was proposed will
serve as a valid Lyapunov function for this system.
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Chapter 37

Classical MIMO Adaptive Control

37.1 Introduction

This document provides a description of the analysis and synthesis of classical adaptive output feedback
control as given in Reference [[11]], and aims to analyze the class of systems to which this method is appli-
cable, and compare it to closed-loop reference model based output feedback, and the systems for which that
method is applicable.

37.2 Preliminaries

R[s] is the ring of polynomials, R(s) is the field of rational functions, and Ry,(s) is the ring of proper
rational functions of a single variable with coefficients in R, i.e. transfer matrices. We will typically use the
letters G/(s) or W), (s) to represent rational (transfer) matrices, and P(s) for polynomial matrices.

Definition 36 High frequency gain for SISO plant [l/]], p.183, p. 405. The high frequency gain of

a transfer function W,(s) is the constant ky, that is pulled out leaving the numerator and denominator of
W)y (s) as monic polynomials. That is

. n* A
Slggos W,(s) =k,
Definition 37 High frequency gain for multivariable plant [///|], p. 405] This definition depends on
the structure of the right Hermite form Hy(s) of Wp(s)

lim 1, (5)Wy(s) £ K,
Definition 38 Proper/strictly proper rational transfer matrix [[/4], p.382. A rational TFM G(s) is
proper if lim,_,, G(s) < oo and strictly proper if limg_, o, G(s) = 0.
Definition 39 Characteristic polynomial [15)], p. 299. The characteristic polynomial of a transfer matrix

G(s) is defined as the least common multiple of the denominators of all minors of G(s). The degree of this
polynomial is defined as the McMillan degree of G(s). We will typically denote the characteristic polynomial

by p(s).
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Example 63 Characteristic polynomial Given the following transfer function matrix, find
the characteristic polynomial p(s)

The 1 x 1 minors of G(s) are:

1 2 1 1
s—1 (s —2)2 (s —1)2 s+3

The 2 X 2 minor of G(s) is:

11 2 1 (s—1)(s—2)* 1 2 1(s+3)

s—1s+3 (s—22(s—1)2 (s—1)2(s—2254+3 (s—2)2(s—1)2(s+3)

From this we can see that the least common multiple of the minors of G(s) is

p(s) = (s = 1)*(s = 2)*(s + 3)

Definition 40 Transmission Zero [/6], Ch. 27. A rational matrix H (s) of full column rank has a zero at
s = (o if there is a rational vector u(s) such that u((o) is finite and nonzero, and lims_,¢,[H (s)u(s)] = 0.

This definition seems hard to apply in practice, i.e. how to find the vector u(s)?

Example 64 Transmission zero This example was taken from Reference [16]. Let a
transfer matrix G(s) be given as follows

-

Using Definition [39} we can determine that G(s) has a pole at s = —3. To determine the
transmission zeros of G(s) we apply Definition We suspect there is a zero at s = —3

as well, and use u(s) = [-1 s — 3] T Applying the definition

R R . | | 0
3 s—3 — i s—3 —
lli%[o 1][3—3}_l§}3[s—3]—[0]

we see that there is in fact a transmission zero at s = —3.

Definition 41 McMillan degree (rational matrix) The McMillan degree of a system with transfer matrix
G(s) is given by deg[p(s)], where p(s) is the characteristic polynomial of G(s). The McMillan degree of a

system G(s) gives the system order, the pole locations and their multiplicities.
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Definition 42 Minimum polynomial (rational matrix) [[/5l], p.299. The monic least common denomina-

tor of all nonzero first-order minors of rational matrix G(s) is called the minimal polynomial of G(s) and
is denoted by d(s).

Example 65 Minimum polynomial Given the following transfer matrix, find the mini-
mum polynomial d(s).

1 L
G(S) = ! SI]' (S_i)
(s—1)2 s+3

Then d(s) is given by
d(s) = (s = 1)*(s = 2)*(s +3)

Find an example for the minimum polynomial that is not the same as the characteristic polynomial

Definition 43 Unimodular (polynomial matrix) [I7], p.25; [I8], p.279; [I4l], p.375; Suter 148. A
unimodular polynomial matrix Q(s) is a square polynomial matrix with inverse which is also a polynomial
matrix. A necessary and sufficient condition is det Q(s) is a real number different from zero (thus not
dependent on s).

Definition 44 Unimodular (rational matrix)
Definition 45 Elementary operations [[/7], p.25.

1. Interchange of columns
2. Multiplications of columns by scalar
3. Replacement of column by itself plus a polynomial multiple of another column

A unimodular matrix can always be obtained by elementary operations on an identity matrix.

Definition 46 Elementary matrices [l/4l], p.374. The elementary operations can be represented by ele-
mentary matrices, postmultiplication by which correspond to elementary column operations, while premul-
tiplication yields elementary row operations.

Example 66 Elementary matrices For a 2 x 2 system, these unimodular (elementary)

matrices will look like
_ |1 r(s)
R(s) = {O 1 ]

Definition 47 Hermite form (polynomial matrix) [[/4], p.375; [15)], p. 532. By elementary operations
we can convert polynomial matrices to several “standard” forms. Here we shall describe the Hermite forms,
which are obtained by using only row (or only column) operations.

Definition 48 Determinantal devisor (polynomial matrix) [I5], p. 299. The determinantal devisor D;
of a polynomial matrix P(s) is the greatest common factor of all i X i minors of P(s)
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Definition 49 Smith form (polynomial matrix) [I5l], p. 533. The Smith form of a polynomial matrix
P € R[s] is the decomposition
P(s) = Ur(s)Sp(s)Ur(s)

where UL (s) and Ug(s) are unimodular polynomial matrices. Sp(s) is a diagonal matrix with entries that
are monic polynomials. The entries of Sp(s) are calculated using the determinantal devisors of P(s). See
Reference [ 5] for details.

Definition 50 Smith-McMillan form (rational matrix) Smith-McMillan form is for a rational matrix
G(s). We identify the poles (and their multiplicities) and zeros of the transfer matrix using the Smith-
McMillan form. This form is useful in obtaining the poles and zeros (with their multiplicities) from a given
transfer matrix. Consider G € R,(s) and represent it as follows, where P € R[s] is a polynomial matrix,
and d is the minimum polynomial of G

P(s)

d(s)

The Smith-McMillan form of G(s) then uses the Smith form of the polynomial matrix P(s) as

G(s) =

UL(S)SP(S)UR(S)

C) ="

Example 67 Smith-McMillan form Consider the following transfer matrix given on page
414 of Narendra, Annaswamy.

1 2
Wy(s) = [ st ) ]

(s—1)Z  s+3
First find the minimum polynomial d(s) of the rational matrix W), (s)
d(s) = (s —1)%(s — 2)%(s + 3)

Express W, (s) using the minimum polynomial as follows, where P(s) is a polynomial

matrix
P(s)

WP(S) = d<$)

where
(s—1)(s—2)%(s+3) 2(s—1)2(s+3)
(s —2)%(s +3) (s —1)%(s—2)?

We now put this polynomial matrix P(s) into Smith form by finding the determinantal
devisors of P(s) as follows, with Dy £ 1. The 1 x 1 minors of P(s) are:

P(s) =

(s=1)(s=2%s+3)  2s-1)*s+3) (s-27%(s+3) (s—1)*(s—2)?
The greatest common devisor of these matrices is 1, so we set

Dl(S) =1




The 2 x 2 minor of W, (s) is:
(s=1)3(5—2)" (s-43)~2(s—1)2(s—2)*(s-43)” = (s—1)2(s—2)*(s-+3)[(s—1) (s—2)*—2(s+3)]
The greatest common devisor of this is itself, so we set

Da(s) = (s = 1)*(s = 2)*(s + 3)[(s — 1)(s = 2)* = 2(s + 3)]

We then calculate €, as

giving

ey(s) = (s = 1)*(s = 2)*(s +3)[(s — 1)(s = 2)* = 2(s + 3)]
So the Smith form of P(s) is

1 0

SP) =10 (s — 1%(s - 2%(s + 3)[(s — 1)(s — 2)? — 2(s + 3)]

To get the Smith-McMillan form of W),(s) divide the Smith form Sp(s) by the minimum
polynomial d(s).

s + 3

SMiy, (s) = ! L 0
W T (5= 12(s —2)2(s +3) [0 (s = 1)°(s = 2)°(s +3)[(s = 1)(s = 2)* — 2
1
_ | G276 0
0 (s = 1)(s — 2)2 — 2(s + 3)
The diagonal entries are in the form
€i(s)
Pi(s)
with
€1 — 1
e =1_(s—1)(s—2)*—2(s+3)
and

Y1 = (s —1)%(s —2)%(s + 3)
Py =1

And so the characteristic polynomial p(s) can be calculated as

p(s) = 1(s)a(s)
= (s —1)*(s — 2)*(s +3)
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The zero polynomial is given by

z(s) = ex(s)ea(s)
=(s—1)(s—2)*—2(s+3)
= 5% — 552 + 65 — 10
We can see that this system is fifth order n = 5, with a pole with multiplicity two at s = 1,

a pole with multiplicity two at s = 2, and a pole at s = —3. It also has three unstable
transmission zeros.

37.2.1 Hermite Form

Hermite form is a “standard” form which is obtained by applying only elementary row (or only col-
umn) operations on a polynomial matrix P € R[s|. The definition of Hermite form is different for rational
polynomial matrices. The elementary operations can be represented by multiplication by elementary matri-
ces. When the Hermite form of P(s) is obtained by right multiplication of P(s) by a unimodular matrix
Urg(s), this is called the right Hermite form, denoted H. Similarly, the left Hermite form of P us obtained
as Hr(s) = Ur(s)P(s). We define the right Hermite form of P(s) as the matrix Hr(s) as having the
following properties:

Hr(s) = P(s)Ur(s)
e Itis lower triangular

* Each diagonal element is monic

» Each diagonal element has higher degree than any other element in the same row

We will try to find an extended definition to rational transfer matrices.

Polynomial Matrices

The procedure of applying elementary operations using elementary matrices to a polynomial matrix P €
R[s] is described in the following steps, and uses the fact that a(s) can be written as a(s) = q(s)b(s) +r(s)
where the degrees of ¢ and r are less than that of a. The problem is, given P we wish to find the right
Hermite form of P. That is, find Hg and a unimodular matrix Ug such that Hgr = PUR.

1. Perform column operations so that in the first row the polynomial of the highest order is in the first
column

2. Express the polynomials in the first row as



3. Right multiply P by the unimodular matrix U; given by

"= [—ql(S) (1)]

This results in a matrix with the following form

4. Go back and repeat step 1

Example 68 Hermite form for polynomial matrix We provide an example to demonstrate
the steps, which are given only for 2 X 2 matrices. Given

—s3—252+1 —(s+1)?

PG = (s v 22(s + 1) 0

1. Perform column operations so that in the first row the polynomial of the highest order
is in the first column. In the first row, the polynomial of the highest order is already
in the first column so no column operations are necessary.

2. Express the polynomials in the first row as

b(s) = —s>—2s5—1
53 =252+ 1 =q(s)(—5*> — 25 — 1) +r(s)

Now we try to make ¢(s) have as high order as possible. Choose

q(s) = s
and then
—s% — 257 4+ 1=—5%—25% — 5+ 1(s)

and so

r(s)=s+1
So the first unimodular matrix is

10
o=
3. Right multiply P by U as
P, — —s3—2s2+1 —(s+1)*[1 0] s+1 —(s+1)?
L7 (s +2)%(s+1) 0 —s 1|~ [(s+2)2%s+1) 0

4. Repeat step 1
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From here onward we will simply be repeating steps 1-4. Swap the columns using the
unimodular matrix

0 1
=i
giving
[(s+1)? s+1
P2 = [ 0 (s+22(s+1)
By inspection we can see that
q(s) = —(s+1)
r(s)=0
and so
1 0
Us [—(s +1) 1]
and so
[(s+1)? s+1 1 o 0 s+1
POUUs =1 50 7 o2+ )| [s+1) 1] = [(s+12(s+2)2 (s+1)(s+2

Swap columns
01
=l

s+ 1 0 ]

giving

(s+1)(s+2)? (s+1)%(s+2)?

And this matrix satisfies the conditions of Hermite form, and the unimodular matrix Ug is
given by

1 0|0 1 1 o0 1 1 —s—1
URU1U2U3U4[—S 1} L 0] [—<s+1> 1] [1 0}[—8 82+s+1]

Hpr = PULUU3U, = [

Rational Matrices

Given a matrix W), (s), Hermite decomposition is expressing W), (s) as follows, where @,,(s) is unimod-
ular and H,(s) is lower triangular.

and so H,(s) is given by
Hy(s) = Wp(s)Qp(s)

Given a system with transfer matrix W), (s), before we try to find the Hermite form of this system, we
first want to know whether the Hermite form will be diagonal or not. To do this we need to form the matrix
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FE as given in Reference [11]], p.396. We calculate r; as the minimum relative degree in the i row of Wy(s).

We then calculate the rows of E as follows

E; = lim "W, ;(s)

§—00

where W), ; corresponds to the i row of W

(37.1)

Example 69 Checking structure of Hermite form Consider again the example from
Reference [11], p.414.

S
Wy(s) = [ e ]
(s—1)2 s+3

Evaluating the matrix £ as described above with r; = 1, 7o = 1we obtain

s 2s
E = lim [ 51 <s2>2] _ F 0]

e 0 1

And so FE is nonsingular, and so the right Hermite form of W), (s) is diagonal.

Finding the Hermite Form Try to determine the definition for Hermite form of a rational matrix as

described in Reference [[11]].

Example 70 Calculating the Hermite Form Back to our transfer matrix from Example
From that example we know the Hermite form H,(s) of W,(s) will be diagonal, and
now we wish to find Hp(s).

1 2
W(s) = [ e ]
(s—1)2 s+3

want to find the Hermite form. Because E(W),(s)) is nonsingular, by Corollary 10.1 in
Reference [[11] we know that H)(s) is diagonal.

Hp = Wpr

37.2.2 Observability Index

Note that the observability index satisfies the following inequality, as found in Reference [19]], p.157.

Given A € R™ "™ and C € R™*" where C has full rank

<v <min(n,n —q+1)

3|3
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From Transfer Matrix

An upper bound on the observability index is required for classical MIMO adaptive output feedback.
This upper bound can be computed given a transfer matrix 1), (s) as described in Reference [[11], p.406. It
says an upper bound v on the observability index can be obtained by knowing an upper bound 7;; on the
order of the i scalar entry in W,(s).

1
VvV = 75 M5
m = J
1/7]

State Space System

Given a state-space model, we can calculate the observability index using the procedure described in
Reference [[15], p.294. This process involves selecting the first n linearly independent rows of the observ-
ability matrix and then rearranging them.

37.3 Comparison of Classical and CRM Based Output Feedback
Adaptive Control

Consider the following multivariable plant with m inputs, p outputs, and 7 state variables, where (A, B)
is controllable and (A, C') is observable, and B and C' are full rank

& = Az + Bu
(37.2)
y=Cxzx
with transfer matrix given by
Wp(s) £ C(sI — A)™'B € REX™(s) (37.3)

The aim of this section is to analyze and compare the assumptions necessary of the plant in and
to determine conditions under which the classical and CRM based adaptive output feedback control
solutions are applicable. The requirements of the former will depend on information contained in (37.3),
while the latter on the state-space matrices of (37.2). These requirements are summarized below.

37.3.1 Requirements for Classical Adaptive Output Feedback
1. Plant must be square, that is m = p.
2. The plant has no unstable transmission zeros.
 This is to ensure pole-zero cancellations do not occur in the right half plane.
3. The Hermite form H)(s) of W),(s) is diagonal.

» The only information needed to determine whether the Hermite form H,,(s) of W), (s) is diagonal
is the relative degree of each entry of W, (s). See Corollary 10.1 in Reference [11]], p.396.

4. The sign of the high frequency gain satisfies a sign definite condition.

5. An upper bound on the observability index is known.
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37.3.2 Requirements for CRM Based Adaptive Output Feedback

1. Plant need not be square, that is m £ p.
2. The plant has no unstable transmission zeros.

* This is to ensure pole-zero cancellations do not occur in the right half plane.
3. CB is full rank

* This is the multivariable equivalent of relative degree unity for a SISO system. We will show in
the following slides how this relates to the relative degrees of the entries of W), (s).

4. The sign of the control input uncertainty is known.

* That is, if uncertainty in control effectiveness is given by Au, A is a diagonal matrix with entries
of known sign

5. The system order is known

* This information is contained in the state-space representation used for the CRM based method

37.3.3 Markov Parameters

The Markov parameters can be calculated directly from a system transfer matrix W), (s), or from the
matrices of a state-space realization of W),. The following definition and theorem relates information about
these state space matrices to limits of the transfer matrix.

Definition 51 Markov Parameters [l[5], p.387. Given a transfer matrix Wy (s), calculate the Markov

parameters as follows

Hy = lim W,(s)

S5—00
H, = li\m s(Wp(s) — Hp)
Hy = liﬁ\m s*(Wy(s) — Hy — Hys™1)

Theorem 12Markov Parameters Realization [[/5)], p.387. The set (A, B, C, D) is a realization of H(s)
if and only if

Hy=D
H; = CA"!'B, i=1,2,...
PROOF See [[15], p.387 for proof. O

Remark 7 Markov Parameters Realization Given a plant as in (37.2) with equal number of inputs and
outputs, that is m = p, and with transfer matrix given by (37.3), when C'B = lim,_,o, sW,,(s) is full rank,
this essentially means that there is at least one relative degree one relationship between each input and one
of the outputs of W),(s). This implies 7, = 1 for all ¢ = 1,...,m. Additionally, from the definition of
E in (37.1), we can see that this implies that £(W),(s)) = CB. Furthermore, since E[W)(s)] = CB is
nonsingular, then H)(s) is diagonal and the elements of K, are identical to the high frequency gains of
the scalar transfer functions corresponding to the minimum relative degrees in each row. That is, K, =
E[W,(s)] [L1]], p. 405. We can see this also in the definition of the high frequency gain in Definition
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Theorem 13 Given the plant in (37.2) where m = p, the Hermite form of W, (s) is diagonal if CB is full
rank, and E[W(s)] = CB.

PROOF Using Definition [51| of Markov Parameters and Theorem (12| we see that CB = limg_, o, sW)(s)
is full rank implies that then ; = 1 for all 7 = 1,...,m, where r; is the minimum relative degree of the
entries in each row of W), (s). Writing out the series expansion for the resolvent of A in (37.3) we obtain

I A A2

From which, using the following definition for ' as in (37.1) with ; = 1 forall¢ = 1, ..., m we obtain

E[W,(s)] = lim sW,(s)

§—00

I A A

§—00 S S S
=CB

And by corollary 10.1 in Reference [[11]], p.396 since C'B is full rank thus E is full rank, the Hermite form
of G(s) is diagonal. O

Corollary Given the plant in (37.2) where m = p, if CB is full rank, the high frequency gain is given by
K,=CB
where the high frequency gain is given by Definition[37as

lim H, ' (s)Wy(s) £ K,

S§—00

PROOF When the Hermite form H,(s) of G(s) is diagonal, K, = E[W,(s)] [11], p.396. By Theorem|13|
C B being full rank implies H,(s) is diagonal and E[W,(s)] = CB and so K}, = CB. O

Theorem 14 Given a relative degree one system Wy,(s) € Rb*™ with realization (A, B, C,0), both the
classical and CRM based output feedback adaptive control methods are equally applicable if

1. The plant is square, that is p = m.
2. That plant has no transmission zeros in the closed right half plane.

3. The matrix B is of the form B*A where B* is known and A is a diagonal nonsingular matrix with
elements of known sign.

37.3.4 Relating Classical and CRM Adaptive Control

From the preceding subsections and discussion, we can make the following comparison between the
applicability of the classical and CRM based methods to systems in (37.2)) and (37.3).

* For relative degree one systems, that is rank of C'B is full, both methods are applicable if the system
is square m = p.

* If the system is not square, the classical method will not work.

* If the system is not relative degree one, the CRM based method will not work
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37.4 Adaptive Control Numerical Example
Consider the following LTT plant

i = Ax + Bu
y=Cz

where z € R", y € R?, and u € R™ and the system matrices are given by

—2 -1 0 0 0 10
1 0 0 0 0 00

A=]0 0 -4 -2 0 B= 0 10:[(1) 1 8 (1) (ﬂ (37.4)
0 0 2 0 0 00
0O 0 0 0 3 0 1

Evaluating the system transfer matrix W, (s) defined as follows
Wy(s) £ C(sI — A)~'B € RE*™(s)

for the system with matrices in (37.4) we get

1 2 .
Wy(s) = [ e ]
(s+1)2 s—3

Note that this system is similar, but not identical to that in Example |67|taken from Reference [11]. In the
subsections that follow we will design a classical adaptive output feedback controller for this system. We
will check the transmission zeros and verify the requirement that all transmission zeros are stable, check that
the plant has a diagonal Hermite form, then select the reference model, and build the adaptive controller.

37.4.1 Evaluate System Transmission Zeros

First calculate the minimum polynomial d(s) of our rational matrix W),(s) as:
d(s) = (s +1)*(s +2)*(s — 3)

and express W,(s) as

where
(s+1)(s+2)%(s=3) 2(s+1)%*(s—3)
(s +2)%(s — 3) (s+1)%(s+2)?

We now put this polynomial matrix P(s) into Smith form by finding the determinantal devisors of P(s) as
follows, with Dy = 1. The 1 x 1 minors of P(s) are:

P(s) =

(s+1D(s+2)2%(s—3) 2s+13*(s—3) (5+23*(s-3) (s+13*(s+2)3
The greatest common devisor of these matrices is 1, so we set

Dl(S) =1



The 2 x 2 minor of W, (s) is:
(s+1)3(s+2) (s —3)—2(s +1D*(s+2)%(s=3) = (s + 1)*(s +2)%(s = 3)[(s + 1) (s + 2)* — 2(s — 3)]
The greatest common devisor of this is itself, so we set

Dy(s) = (s + 1) (s +2)* (s = 3)[(s + 1)(s +2)* — 2(s — 3)]

We then calculate €, as

giving
€(s)=1
ey(s) = (s +1)%(s +2)*(s = 3)[(s + 1)(s +2)* — 2(s — 3)]

So the Smith form of P(s) is

1 0
160 = [0 (04 17200+ 26— D0+ 1o+ 2~ 20— 3]

To get the Smith-McMillan form of W),(s) we divide the Smith form Sp(s) by the minimum polynomial
d(s).

SMy (s) = L L 0
P T s 1)2(s+2)2(s —3) [0 (s+1)%(s+2)%(s —3)[(s + 1)(s +2)? — 2(s — 3)]
1
_ | ey 0
0 (s+1)(s+2)% —2(s—3)
The diagonal entries are in the form
€i(s)
Yi(s)
with
€1 — 1
€2 =(s+1)(s+2)* —2(s - 3)
and

Y1 = (s +1)%(s +2)%(s — 3)
Py =1

And so the characteristic polynomial p(s) can be calculated as

p(s) = Y1(s)Pa(s)
= (s +1)*(s +2)*(s — 3)
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The zero polynomial is given by

z(s) = e1(s)ea(s)
= (s+1)(s+2)?—-2(s—3)

We can see that this system is fifth order n = 5, with a pole with multiplicity two at s = —1, a pole with
multiplicity two at s = —2, and a pole at s = 3. It also has three stable transmission zeros.

37.4.2 Check Structure of Plant’s Hermite Form

Check the matrix E to see if it is nonsingular. If so, the Hermite form Hy,(s) of W),(s) is diagonal, which
will make control design easier. To do this, we first find the minimum relative degree n; of the elements in
each row of W), (s). For our plant, this is

ny = 1
ng = 1
Evaluate F as in Reference [11]], p.396.
E; = lim s"'G;(s)

§—00

where G;(s) corresponds to the i row of G(s).

By = lim s |y gre| = [1 0]

S— 00
and . )
Bo = s e ] = [0 1]
So

==)p ]

and since F is nonsingular, the plant’s Hermite form H,(s) is diagonal.

37.4.3 Expressing the Plant’s Hermite Form
We know the plant has a diagonal Hermite form. It is given by

. i
7T_T(s) 0 P 0
0 —or
Hy(s) = ) w2 (s)
: . 0
0 .. 0 L
L wrm (s) |

where 7(s) is any monic polynomial of degree 1 and n; is the minimum relative degree of the elements of
W, (s) in the i™ row.

Remark 8 Since 7(s) is any monic polynomial of degree 1, and since the class of reference models that
we can use consists essentially of those asymptotically stable transfer matrices that are generated by the
Hermite normal form of the plant, we will pick 7(s) = s + a where a > 0.
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37.4.4 Find the High Frequency Gain

To find K, use K, = lims 0 H, 1(es*)VVp(s), which for diagonal Hermite forms is the same as K, =
E[W,(s)]-

37.4.5 Select the Reference Model

Pick the reference model transfer matrix W, (s) as

Win(s) = Hp(s)Qm(s)

where @, (s) is an asymptotically stable unimodular matrix. For purposes of simplicity we can assume that
Qm = I, where ~y is picked so that the DC gain of the components of the diagonal Hermite form, and thus
reference model, have unity DC gain.

37.4.6 Calculate an Upper Bound on the Observability Index

Calculate an upper bound v on the observability index using the following formula [[11]], p.406.

1
VvV = 75 ;5
m = /
17]

37.4.7 Design Controller Filters

Using the upper bound v on the observability index, we design v — 1 control input filters, and v output
filters as follows, where r,(s) is a Hurwitz, monic polynomial of degree v — 1.

Control signal filter w; = 1=1,...v—-1
rq(s)
51
Output filter wj = j=v,...2v—-1
rq(s)

Each filter has a scalar denominator 74(s), and there are m components to each filter, and a total of 2v — 1
filter, so the total number of integrations (i.e. the number of controller states) to generate the w signals is
m(2v — 1). There is a parameter matrix corresponding to each w signal, giving m?(2v — 1) parameters.
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37.5 Simulation Results
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37.6 Appendix

Given a transfer matrix W, (s) we want to design a classical MIMO adaptive output feedback controller,
and analyze and compare the structure of the controller to closed-loop reference model based output feed-
back controllers. To do this we would like to:

1. Given a transfer matrix, find its poles and zeros
(a) To do this, we will use Smith-McMillan form

2. Convert a given transfer matrix to a minimal state-space realization. This can be accomplished in one
of two ways:

(a) Convert the transfer matrix directly to a minimal realization
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(b) Express the transfer matrix using a non-minimal realization, and then use Kalman decomposition
to remove the uncontrollable/unobservable modes

3. Express a given transfer matrix using Hermite decomposition

37.6.1 Transmission Zeros

Of state-space and transfer matrix representations of systems. How to calculate them for a state-space
representation? (use Smith-McMillan form for transfer matrix). Given a nominal system with only stable
transmission zeros, what if the uncertainty introduces unstable transmission zeros?
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Chapter 38

Advanced Adaptive Control

38.1 Adaptive Control of Plants with Arbitrary Relative Degree

Last class: parameter convergence summary: w produces 6 and we said that if w is PE then 6 — 0.

w = w* 4+ Ce where w* comes from reference model, and so w* PE and e — 0 = w PE after some
initial time ¢ > ¢5.

if 7 has n frequencies w* € R?" is PE = PE after t > t| = 0 — 0.t is dependent on z(0) where z is
the state of the adaptive system in adaptive control (1). Whereas ¢; is independent of the initial condition in
adaptive observer (2).

(1) Adaptive control: uniform asymptotic stability (2) Adaptive observer: exponential stability

38.1.1 Adaptive Control of Plants with Arbitrary Relative Degree

Chapter 5 Z,(s): monic, degree n — n* = m R,(s): monic, degree n k,: high frequency gain

need to know sign of £, because the adaptive law needs the gradient information, that is which way the
plant will move.

At a min ym must be generated by a model with same relative degree as plant. It can be higher but
not lower. Need an upper bound on relative degree. So pick W, (s) to have relative degree n*. That is
Win(s) = Dijzs) where D, (s) is monic, and degree n*.

Use same structure as before.

QL(SI - Fn—l) gn—-1 = t}((s))

0200 + 92Tc<3[ - Fn—l) In—1 = t;((ss))
TF from r to yp,:

1 kpZp
14;617%1 7,

\m

-] e
(kekp) f(s )Z()
Rp[f —t1] — kpZpt
km
_Dm(s)




= % Are there ¢] and ¢ such that
P

Need to check if we have the degrees of freedom k. = k*
R,y (s)[f(s) —t1(s)] — kpZy(s)t5(s) =7 = Dp(8) f(s)Zp(s)

where R, (s) is degree n, f(s) is degree n — 1, t7(s) is degree n — 2, Z,(s) is degree m, ta(s) degree n — 1
and D, (s) degree n —m = n*, f(s) is degree n — 1, and Z(s) is degree m = n — n*. But ¢} and t3(s)
are not monic, so they have n — 1 and n degrees of freedom, respectively.

So we know there is a solution to this equation. Nonsingularity comes from that R,,(s) and k,Z,(s) are
coprime: that is they share no common factors.

Bezout-Identity guarantees existence and uniqueness of ¢] and ¢3.

(See book 5.2, 5.3)
Analytic part:

ti(s)

OTT(SI —Fp1) g1 = 1)
030+ 037 (sI — Foo1) Mgy = 28

™
Il

Error model
biggest problem is that the transfer function in this error model is not SPR. Want:

first assume £, is known, then deal with the case where £, is unknown later. e, is fully realizable. ¢ is

augmented error. ~
Augmenting the system with the plus/minus part only contributes a @ part, since for %, since its a

constant, the transfer function operation commutes.... that is doesn’t matter whether you differentiate first

and integrate second, or vice-versa.
Now we have error model 1 and immediately get boundedness of parameter errors. § bounded.

1 e~
=04
v 2
V=-c2<0
9~=—51C



€1 =e€e1+ €9
next class: notion of slowly-varying parameters.

38.2 Adaptive Control of n'" Order Systems with Output Feed-
back

Adaptive control of nth order systems with output feedback.
block diagram

€1+ ey =¢€q.

error model is ¢ through 07 to geter.

the error model now allows us to use § = —e1( gives bounded solutions. To be able to attempt to get
global....? make system almost time invariant by introducing a normalization.
5 _ —£1(
1+¢T¢+ww
_ 2
V= !
1+¢TC+wlw

= € L. So now system has been reduced to... ?
Next property to establish

(ii) 0 is small.

2 2
V= et =)
1+ (" +wlw VI+H{T+wTw
[Vdt <oo= ——EL ¢ [?

VIHCT CHwTw

V. €1 ¢ ] 2
sof = <\/1+gT<+wTw> (\/1+¢Tg+uﬂw> and so 0 € L=,
Barbalat’s lemma 6 € £2,0 € £, € £ and so § — 0.
(iii) Boundedness of the state:

=[]
w

Ay b8 bybao b0 by

i = Agz + b0 w+r)
Yp = h'a

RT(sI — Ay)~tb = W,,(s)

BLOCK DIAGRAM

0cL®0—0
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Properties of almost time invariant systems... growth rate of signals... () is bounded.

High order tuners.

implicit in everything we have done so far in how we realize adaptation. Time varying parameter 6(t).
Adjustment of § was given by coming up with 6 =something. Stability procedure was Lyapunov based.

What about instead we came up with 6(t) was some function f through a transfer function G(s) which
is higher order tuner for 0(t). Pick G(s) with a higher relative degree.

Problem:

BLOCK DIAGRAM

Relative degree 3, feedback through 6, where 8 is unknown. Try to use adaptive observer.

T = 5 +1 (u+ 0y)

T = wit + By

T2 (s+1) 5 (u+ 0y)
To = wig + 9w22
§ =it

ey=9y—y= H%(i? —x2) = 3+1 (0w22)

So this is the error model and we are done.
é = —CyWwa2 =

e,0 € L

if we assume y € L

then = g € L™

wog € L.

=ée L™

=e—0

Adaptive Control

y= (s+1) 3(ut0y) = o5 [(s+1) (v + Gy)]

A1 1 A
U=+ [(sﬂ)? (u) + Owayo
Choose u so thaty — 0

ie ( v 90.}22

s+1)
= Uu = (S + 1)2( — 9&)22) = —(82 + 25+ 1)(90&22)
= —S(éwzg + éCUQQ) — 2(9&122 + éwzg) — éwgg

= (9&)22 + 200.)22 + (9&)22) — 29(,022 — 20&)22 — 90.)22

= —0(&)2? + 2woo + 1) = —Hy — 29(0.122 + LUQQ) — 29(,021 — 9&122

Suppose ) = —eywa
0= —éwaQ — engg
éy = —€y + 9&)22

Higher order tuning

introduce @ another estimate of @ need in general n* — 1 estimates.
error model hasn’t changed

add and subtraet

éy = —ey + (9 — e_)w22 + (9_ — 9)0.}22

énew = 9_ —0

436



So if

enew = —€w2

and

0 so ‘thaté -0 .

ie.0=f (x) where f is chosen so that 6 —  and 6 must be computable.
Use Lyapunov as the guideline for picking the derivative

V= %(6324 + ér?ew + (é - 0_)2)

plug and chug skipping algebra we get

V = —el +2e,(0 — O)waz + (0 — 0) f(x)
So choose f(x) as

= é = f = —(é — 5)0)%2 — (é — 5)20.1220‘.)22
computable. Steven Morse. Notes of this stuff will be put online.
So 3 general methods that are available with output feedback for higher order plants

1. Augmented error approach in book
2. Higher order tuner (not in book)

3. Backstopping (also not in book, developed in 1990s)

38.3 Saturation Protection
38.3.1 Introduction

Consider the following plant, reference model, and control law, which we have seen many times before,
but note the difference between the control law which produces the desired command u,. and the input to
the plant u. As before a,,, < 0, and the sign of b, is known.

Plant: Tp = apry + byu (38.1)
Reference model: T = AmTm + by (38.2)
Control law: Ue = Oxp + kr (38.3)

Depending on the values of the adaptive parameters ¢ and k, the state x,, and the reference input 7, the
control input v might be larger than what the actuator is actually capable of. This is known as actuator
saturation, which all actuators will have. This limit is a known constraint, for example how much torque
a motor can apply, or how much a control surface on an aircraft can deflect. This limit upx > 0 is such
that |u| < umax, after which the actuator experiences saturation. The control law with this saturation can be
expressed as follows.

Control input: (38.4)

u = Uc if |uc| < Umax
UmaxSgN(Ue)  if [te| > Umax
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The control law can also be written

u= umaxsat< Ye ) (38.5)

Umax

Now, what happens when we try to apply our standard adaptive law below to a system with actuator limits?
That is we assume the actuators have no saturation limits, so u = u, and defining tracking e = x, — Ty,

parameter error 6=0—0k=k—k, matching conditions a,, + b,0* and b,k* = b, the error dynamics
are given by

é = ame + b0, + bykr (38.6)
Proposing

1 - -
V(e k,0) = 5(62 + |bp| K + by |67) (38.7)

Time differentiating we obtain V' = a,,e? + eb,0x, + eb,kr + |b,|kk + |b,|08 and propose the following
update laws

Update laws: k = —sgn(b,)er (38.8)

6= —sgn(b,)ex) (38.9)

Simulating this system when the reference command is a sinusoid, and first if we look at the response
without saturation, we can plot the plant state, reference model state, control input, and tracking error as
shown below.

Plant and Reference Model State

0 20 40 60 80 100 120
time [s]
Control Input

“WW\/W\/\

10 \ \ \ \ \
0 20 40 60 80 100 120
time [s]
Tracking Error
\
2 |
v 0
2 B
L L L L L
0 20 40 60 80 100 120

time [s]

As expected, the tracking error tends to zero. If we introduce a saturation limit of um,x = 9, say, even
starting from zero initial tracking error, we obtain the following simulation response
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Plant and Reference Model State

\
(

s
0 2 4 6 8 10 12 14 16 18 20
time [s]
Control Input
T T T

-10 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
time [s]
Tracking Error
T T T T T T
2f ]
v 0 =
-2 —
\ s \ \ s s s s \
0 2 4 6 8 10 12 14 16 18 20

time [s]

What is happening? Essentially is wind-up of the parameters. As shown before with time varying
disturbances we need to modify our controller to accommodate for the effective input disturbance due to
saturation. The difference in this case is that this disturbance is known.

38.4 Saturation Protection

We can express the control input to the actuator in two parts: the total “desired” input signal, as computed
by the adaptive law, and a component which subtracts off the portion of this control signal which the actuator
is unable to produce. We call these components u and Auwu, respectively. Aw is the control deficit, and is
known.

u = uc+ Au (38.10)
Substituting this expression for the control law into the plant equation we get
ip = (ap + by0)zp, + bpkr + byAu (38.11)

Again defining parameter errors as § = 6 — 6* and k = k — k* and comparing this expression above
to the reference model, we the following ideal constant parameters 6* and k* which satisfy the matching
conditions a,, = a, + by0* and b, = b,k*, where the ideal parameters can be solves as

S

a — Qa
gr = 2P = 38.12
b, b, ( )

Again defining the tracking error e = x;,, — y,, the error dynamics are given by
é = ame + byfx, + bykr + b,Au (38.13)
The portion of the control signal which the actuator is unable to accommodate, Au, can be looked at like a

disturbance to the system which we have seen before. We would like to design the adaptive scheme to deal
with the presence of this Au. Because our actuator has a known saturation limit, essentially what we want
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to do is measure the error, but only try to reduce the portion of the error which we actually have the actuator
authority to do so. That is, we define the controllable error e, as

ey =€ — ea (38.14)

We then obtain the controllable error e,, by subtracting the deficit error ea from the measurable tracking
error. The deficit error due to Aw is determined from the following differential equation, where the input
vector B is unknown.

EA = amen + Balu

When the control input is saturating, the controller cannot achieve any higher level of performance. That is,
the controller should not seek to minimize an error signal which it is unable to do because of the limitation
of the actuator. Instead we define the error e,, which takes the state error (the actual error we would like
to minimize) and subtracts off the portion of the error due to the “disturbance” Awu which the controller
input can do nothing about. This is the error we would like to use to drive adaptation. If the controller is
causing the input to saturate, there is no sense using an error signal which the controller cannot reduce to
drive adaptation.

Tp = apTp + bpu (Plant)

&y, = amTy, + by — L(z)p — x3,) (Closed-loop reference model)
o, = amTy, + by (Open-loop reference model)

e =z, —xy, (CRM State error)

e’ =z, —xy, (ORM State error)

Ue = Oz + kr (Control Law)

Depending on the values of the adaptive parameters ¢ and k, the state x,, and the reference input 7, the
control input v might be larger than what the actuator is actually capable of. The deflection limit of the
actuator, as we will call it, has a known constraints on the limits, in this case ]u\ < Umax, after which the
actuator will saturate. The control law with this saturation can be expressed as follows.

if <
U = te 1 el < tumax (Saturated Control Law)
UmaxSgN(Ue)  if [te| > Umax

where umax > 0. The control law can also be written

Ue
U = UmpaxSat
Umax
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We can express the control input to the actuator in two parts: the total “desired” input signal, as computed by
the adaptive law, and a component which subtracts off the portion of this control signal which the actuator
is unable to produce. We call these components u and Aw, respectively. Aw is the control deficit.

u=u.+ Au
Substituting this expression for the control law into the plant equation we get

&p = apTp + bp(uc + Au)
&p = apxy + by(0x, + kr + Au)
&p = (ap + bp)xp + byAu + bykr

Comparing this expression above to the reference model, we define the following ideal constant parameters
0* and k* which satisfy the matching condition. That is

A = ap + bpf* by, = bpk™
giving
9* — A — ap k* — bﬂ
by by

The portion of the control signal which the actuator is unable to accommodate, Au, can be looked at like
a disturbance to the system. We would like to design the adaptive scheme to deal with the presence of this
Awu. The error signal due to the presence of Aw is given as the output of the following differential equation,
where the including of the / is for the closed-loop reference model. Setting £ = 0 recovers the normal
open-loop reference model case.

én = (am + O)ea + falAu

When the control input is saturating, the controller cannot achieve any higher level of performance. That is,
the controller should not seek to minimize an error signal which it is unable to do because of the limitation
of the actuator. Instead we define the error e,, which takes the state error (the actual error we would like
to minimize) and subtracts off the portion of the error due to the “disturbance” Awu which the controller
input can do nothing about. This is the error we would like to use to drive adaptation. If the controller is
causing the input to saturate, there is no sense using an error signal which the controller cannot reduce to
drive adaptation.
ew = €% —en

The dynamics describing this error are given by
€y = €° — éa

where, differentiating the state error

e . e
€° =1, — T,

plugging in
€° = apxp + bpyu — amxy, — byr + (x, — )
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Substituting in the control law u = u. + Awu and the matching conditions a, = a,, — b,0* and b,,, = b,k*
we get
¢ = (am — bpd")zp + bp(ue + Au) — apas, — bpk*r + {(z, — x5,)

and then
€¢ = amxy — byl Ty + bpuc + bpAu — ayxy, — bpk™r + lx, — L},

and then
€ = (am +0)(zp — x3,) — b0z, + bpuc + byAu — bk™r

and now substituting the control law u, = x, + kr in
é° = (am + €)e — b0 x), + by0x), + bykr + byAu — byk™r

and then
¢“ = (am + )’ + b,(0 — 0")xp, + by(k — k*)r + byAu

Now define the following parameter errors

and substituting these in . .
é° = (am + 0)e’ + by0xy, + bykr + byAu

Now returning to é,,
bu = (am + 0)e + b0z, + bykr + byAu — (am, + £)ea — falu

and then 3 3
€y = (am + 0)ey + bpbxy, + bpkr + (b, — fa)Au

and define the last parameter

B =bp—Pa

and then 3 ) .
€y = (am + 0)ey + bybxy, + bpkr + BAu

This is the error we want to try to minimize. Now propose the following candidate Lyapunov function

PR 1 1 s 1 s 1 =
V(euaeakaﬁ) = §eu2 + §|bph/1 102 + §|bp|'72 1k2 + 573 152

taking the time derivative

V = euéu + |bplyy 100 + b,y Kk + 75 ' BB
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substituting in é,,

V= eul(am + 0)ey + bpéscp + bpl;:r + BAU] + ]bp]’yfléé + \bph;ll;l% + 7;155
and then

V= (am + E)eu2 + bpéeuﬂvp + bp/;;eur + BeuAu + |bp]’yf19~9~ + \bph;ll%l% + 7;156

Now the goal is to determine adaptive update laws for each of the parameters 0, k, and B such that all of the
terms except the quadratic in e,, are left. That is

by0e,x, + ]bphfléé =0
bpkeur + \bph;ll;:]% =0
BeuAu + 75155 =0
So this results in the following update laws
6= —1sgn(by)e,xp
k= —2sgn(bp)e,r
B = —wseutiu
resulting in the following time derivative 1%
V = (am+0)e,2 <0

And with V negative semi-definite, then V' is bounded above by V' (¢y) and below by zero. Additionally, the
arguments of V' are also bounded for all ¢ > ;.

Conditions to Ensure Bounded Solutions

Because the parameters are bounded, there exists Oy < 00 and kyax < 00 such that for all £ > ¢y the

following hold B
16(t)] < Omax

|k(t)] < Emax

These maximum values can be found from the initial value of the Lyapunov equation at t5. The maximum
value of each of these parameters is found assuming all of the others are zero. That is

1 i~
V(to) < Vo = 5lbply1  mas’

and 1
V(to) < Vo = 5 lbplrz  Fmax”

we can solve for /;:max in terms of émax
1 s 1 s
§’bp|71 O’ = §‘bp|72 e
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and from above we have that

We already showed the boundedness of the other parameters, now just have to show it for z,,. We do this
by creating a Lyapunov-like function of x;, and show that its time derivative is decreasing. However, the
boundedness of x,, is conditional, given that it is initially not too large, and Lyapunov function has a value
which is initially not too large, thus ensuring the other parameters are initially not too large.

Propose the following Lyapunov-like function

1
2
—x,

W(zp) = 9

taking its time derivative
W (zp) = zpip

Taking the equation above for ),
Tp = apTp + bplsy

Case 1 Now there are two conditions to consider for this analysis. The first one is when the control input
does not saturate. That is |u| < tmax 80 u = u. and Au = 0 giving

u =0z, + kr
plugging this in to the plant equation
Ep = apxy + by(Ox, + k1)
add subtract trick
Tp = apxp + bpbxy, + bpkr — bpyk™r + byk™r — b0 x, + b6 )

combining terms R ~
Ep = apxy + bybx, + bpkr + bpk™r + b,0"x,,

iy = (ap + bpd*)zp + byfx, + bykr + byk™r
Plugging this into W we get
W (x,) = zp[(ap + by07 )y + bbxy, + bpkr + byk*r]
W (x,) = (ap + by07)x,% + b0x,> + bpkra, + byk™rr,
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W (x,) = amx,? + bpbzy? + bykra, + bk rz,

From this equation we see that since a,, is negative, as long ]bpé | < @, then z,, can be made sufficiently
large to ensure W < (. . .
amxp2 + bpﬁmaxxpz + bpkra, + bpk™rz, <0

Additionally, to find the appropriate lower bound on x,,, we must assume “worst case” in the above expres-
sion. That is

ammp2 + bpémaxacp2 + bplérmp + bpk*ra, < (am + |b;,,|6?~max):/tp2 + |bp|§:maxrmaxacp + [bp| K™ |rmaxzp = 0

where i i
’k| < kmax Vt|r| < /rmax Vt

Also, since a,, is negative we have that a,,, = — |am] and we are going to solve for x;, = iy
(—lam| + ’bp’émax)xp + (‘bp‘l;maxrmavap + ‘prk*‘TmaX) =0
and also with l;;max = émax

. ‘bp|rmaX(aémax + k)

Lmin =

‘am| - ’bp’émax

This value iy is such that W < 0 when the control input is not saturating. As long as * > xp, then
W < 0. Another constraint on z,, comes from the plant dynamics.

Tp = apwpy + bpu <0

‘ap’xp - ’bplumax <0
1]

Tmax = ’ Umax

ap|

Case 2 Now the case where the control input does saturate must be considered. When this happens Au #
0 and we have
U = Umaxsgn(bz, + kr)

plugging this into the plant equation with a, = a,, — b,0*
Tp = apTy + bpu
&p = (A — bp0™)zp + bpumaxsgn(z, + kr)
Tp = amTp + bpUmaxsgn(Oxy, + kr) — b,0" x,
W = ama — byl x; + Tpbptimaxsgn(Oa, + kr)

and with b,z, = |byx,|sgn(byz,) we get
W= amxi - bp9*w12, + Umax |bpp|sgn(bpz,)sgn(Ox, + kr)
Now there are two cases to consider.
(i) Case: sgn(Oxy, + kr) = —sgn(b,x,)
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(ii) Case: sgn(fz, + kr) = sgn(bpx)p)

Looking at case (i) first we get

7 2 *, 2
W = amt, — bpd*x, — Umax|bpTy|
again want W < 0 we we must satisfy

‘apxp2| < |bpTptimax]

‘%pr”xﬂ < |prxp||umaX’
|apl|zp] < bp!|Umax]

|.CL‘ |< |bP’u1'ﬂaX
p

|ap|

[by|

max

’ max
ap|

Looking at case (ii) sgn(u) = sgn(fx), + kr) = sgn(b,x,) and since |u| = |0z}, + k7| > Umax then
|u|[bpp| > Umax |bpp|
and the case we are considering gives
|bpp| = bpapsgn(bprp) = bpzpsgn(bzy + kr) = byzpsgn(u)
|[u[sgn(u)bpTp > Umax|bpy|

ubpZp > Umax|bpxp|

u =0z, + kr
0=0+6"
u = (Ox, + 0z, + kr)
(O + 0% + Er)bpxy > Umax by
bpéscg + 9*:512, + bpkrazy, > Umax|bpzp|
Also with sgn(u) = sgn(b,z,) then we get
W = amap? — bp07 2y 4 tmax by
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38.4.1 CRM + Saturation Protection Simulation Results: First Order System
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Figure 38.1: ORM: State and input
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Figure 38.2: ORM: errors
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Adaptive Parameters
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Figure 38.3: ORM: Parameters
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Figure 38.4: CRM: State and input
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Figure 38.5: CRM: errors
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Figure 38.6: CRM: Parameters

38.4.2 Saturation Protection Higher Order with CRM

Plant to be controlled
i = (A4 BIAW )z + BiAu + BoTema

commanded control law
e = 0+ K,) 'z

actual control input to the plant due to the position saturation of the actuators
y o e if [ue| < Umax
UmaxSgN(ue)  if |ue] > Umax

Aw is the control deficit.

u = u. + Au
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Plugging in the control into the plant equation and 7 = z¢mg
@ = (A4 BiAW D + BiA(ue + Au) + Bor

and then
@ = (A+ BiAW )z + ByAu. + BiAAu + Byr

The reference model is given by
il?fn = AmiE?cn + BmTemd — L(IE - win)

x5, = Apx,, + Bor — L(x — )

where
Ap=A+ B K]

I am using a closed-loop reference model

én = (A + L)ea + BaAu

and

ey = €% —en

The dynamics describing this error are given by
€y = €% — ép

where, differentiating the state error
=10 —1a,

plugging in
¢¢ = (A4 BiIAW ")z + BiAu. + BiAAu + Bor — [A26, + Bor — L(z — 25,)]

and then
¢ = (A+ BIAWT)x + BiAuc + BiAAu — Azt + L(x — xy,)

Using A= A,, - BiK] andu. = (0 + K,)"z
¢¢ = (Apm — BIK] + BIAW Nz + BIA(0 + K,) 2 + BiAAu — A,26, + Lz — 2£)
and then
¢¢ = Apz 4+ (=B1K] + BIAW Nz + BIA0 Tz + BIAK z + BiAAu — A28, + L(z — 25,)
and then
¢¢ = Ap(x —25) + (B1A0T + BIAK] — B1K] + BiIAW 2 4+ BiAAu + L(z — x5)
and then

¢ = (A + L)(x — 25) + (BiAT + BIAK] — BiK] + BiAW )z + BiAAu
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and then
¢ = (A + L)(x — 25) + Bi(A0T + AK] — KT + AW )z + BiAAu

and from the matching condition we have

A [WT + (0" + Kwﬂ — KT
which we can rearrange

AWT + AT + AK] = K,

and then
AK] — KT+ AWT = —Ap*T

substituting this in
& = (Ap + L)(z — z5,) + Bi(A0T — A0*T)z + BiAAu

and with 6 = 0 — 6* we get
¢ = (A + L)(x — 25) + BIA0 2 + BiAAu
¢¢ = (A + L)e® + BiA0"x + ByAAu
And using é,, = é° — éa

by = (A + L)e® + BiAG 2z + BiAAu — [(Ay, + L)ea + SaAul

and then .
éu = (A + L)e® + BiA0 Tz + BiAAu — (A, + L)ea — BaAu
and then ~
éu = (Am + L)(e° — ea) + BiA0 Tz + BiAAu — BaAu
and then

éu = (A + L)ey + BIAGTz + (BiA — Ba)Au

defining B = BiA — Ba we get the following augmented error dynamics

éy = (Am + L)ey, + BiA0 z + BAu

by = Amen + B1ANO T + BAU

Proposing the following candidate Lyapunov function

V =elPe, +tr (éTfflé\AD + BTFglﬁN

Differentiating
V = &l Pe, + el Pé, + (0T 0|A|) + (6T OA|) + 57T 5+ 57515
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Substituting error dynamics equation from above, with the transpose
er =el Al + 2TOAB] + Au" 3T

and simplifying
V = (e AT +2TOABT +AuT BT) Pe,+el P(ApeutBi AT w43 0u)+tr(0TT 6| A|)+u(6TT 6| A +5TT5 3+5TT
and then
V= (eIALP@u)—I—(J;TéABlTjLAuTBT)P6u+(eIP[lmeu)—}—eIP(BlAGNTJH—BAu)+tr(6LTF*1§|A\)+tr(9~TF*19L]A\)+[31
and then
V = el (AT P+PAn)e,+(a OAB] +AuT BT) Pe,+el P(BIAGT 2+ BAu)+tr(§T T G|A|)+t(6TT6]A|)+5TT5 5
and with A} P+ PA,, = —Q we get
V = —elQe,+a OAB] Pe,+Au” BT Pe,+el PBAGT a+e] PBAu+tr(0TT0|A|)+u(6TT 6| A|)+5TT5 ' 3+5TT
since the terms of V are all scalars we have

V = —e] Qey + 22TOAB] Pe, + 2AuT 5T Pe, + tr(éTF_1§|A\) + tr(éTF_1§]A|) + 2BTF515

The following adaptive control gain update laws are proposed

0 = Projp-(0, —T'ze] PB;sgn(A))

,é = —I'gPe,Au

Looking at only the /3 terms ~ 3
2Au' BT Pe,, — QBTI‘EIFBPeuAu =

and since we are considering scalar input system
2Au" BT Pe, — 2Aup" Pe, = 0
and so V becomes
V = —elQey + 20 TOABT Pe, + (6T 1G[A]) + (8T 19[A)
using tr(a) = tr(a’), A = AT, T =TT, and tr(ab) = tr(ba) we get
V =—elQe+2:TAB, " Pe, + 2tr(éTI‘*19;\A|)
Substituting the adaptive control gain update law for 6

V = —elQe+2:TOAB, " Pe, + 2tr (éTF_lProjF(ﬁ, —FweIPBlsgn(A))|A|)
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Since the quantity 22TOAB, " Pe,, is scalar, it is equal to its trace, so we can write
V = —elQe, + 2tr(zTOAB, T Pe,) + 2tr (éTfflProjF(B, —erZPBlsgn(AmA\)

The terms inside the first trace operator can be rearranged using tr(a) = tr(a’), A = AT, and tr(ab) =
tr(ba)

V = —elQe, + 2r(0"ze] PBIA) + 2tr (éTF_lProjF(G, —erIPBlsgn(A)ﬂA\)

Combining the trace operators

V = —elQe, + 2tr <§TxeTPB1A + 6T~ Proj (6, —erIPBlsgn(A))\M)

V= —eTQe, + 2t (éT (1" Projr(6, ~T'we[ PBysign(A))|A| + meIPBlA))
Lety = —ze] PBysign(A) and with sign(A)|A| = A

V =—elQe, + 2tr (§T (T~ 'Proj (6, T'y)|A| — y\A]))
V =—elQe, + 2t (éT (T~ "Proj. (6, T'y) — v) |A\)
And we have the following inequality (See my personal notes)
0T (I 'Projp(0,Ty) —y) <0

So, if a symmetric, positive definite matrix P exists, which solves the Lyapunov equation A,," P+ PA,, +

Q = 0, where Q is positive definite, then V = V (e, ) < 0 is negative semidefinite, and V (e, #) serves as
a valid Lyapunov function for this system.
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Chapter 39

Appendix

Example 71

Reference Tm

Model

Zemd /@\{ e
N e

Adaptive T
Controller Plant

39.1 Eugene Lecture

Last class n* > 2

EUGENE STUFF

Linear Control LQR (state feedback) PID (classical, output) H-inf (both) Pole placement (state feedback)
LQG (LQG+kalman filter/estimator)

Nonlinear Control SMC (variable structure control) - good for DC motor control, bad for flight control
Feedback linearization (dynamic inversion, works great in Matlab, not good in real life... no guarantees
for robustness) Lyapunov redesign (mostly for systems with known dynamics, adaptive could kinda be
considered to fall under here) Adaptive control

all the control strategies above are model based design/analysis

Plant —; model models are all incorrect... some more than others. use model to cook up control, hoping
that even though model is incorrect the control will work on plant Plant —; model —; controller

reason this works is robustness. Robustness is the key.

Dynamic inversion very sensitive. Dynamic inversion might work, but can take a lot of time to design
analyze and tune.
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H . control on Harrier...

Example 72 X-45A super unstable. time to departure 20ms. 3 gains in pitch 5 gains in
roll/yaw used LQR control.

pretty much everything Boeing does (80-90 percent) is LQR

Adaptive control. Does it work? yes. Does it always work? no!

build robust control (e.g. LQR)

to fly all we need is 40* phase margin and 8dB gain margin.

LQR is really good for uncertainties in A and B but is highly sensitive when A and B are state depen-
dent. For example, standing shock wave on top of delta wing as it moves with changes in flight condition.

LQR controller has no tolerance to “bubbles” in, for example, pitching moment versus elevator angle
plot because of shock wave.

39.2 Dr. Annaswamy Lecturing

SISO system
u to y through plant P
i kpZ,
P is of form W,(s) = %p?S)
degrees of freedom... Filters of dimension n — 1
Error model

Introduce auxiliary error es, augmented error €; where €1 = e; + e3. Use € instead of e; in adaptive
law.

omega in through W, (s) and get ¢ then use § = —e ¢

SHOW BLOCK DIAGRAM THAT GENERATES es.

BLOCK DIAGRAM FOR ANALYTIC PART, THAT ALGEBRAIC PART CANCELS

when e; + ez: Wy, (s)[07] +07¢ — W,,(s)[ T w] and assume for simplicity that £* = 1 and so we get
€1 = éTC. So now use 6 = —e1(C.

Started out with adaptive system which was nonlinear and time-varying. And 6 is bounded so this is
reduced to a linear time-varying system. Can we then use this to prove stability? Need to take one more
step.

need to allow 6 to grow slowly. Make it the normalized quantity.

39.3 Review

Class review
control of an uncertain dynamic system: adaptive control
two bins:

1. Input, states, output

2. parameters
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in adaptive control measure as many of (1) as possible, and deal with as many in (2) as possible must
assume there is a plant model, and since parameters are being attached to the model, must assume the
structure of the model is known

one unifying theme of adaptive control/identificaation: error model

Two classes of error:

1. parameter

2. tracking

error model is “black box” between parameter error and tracking error. Want this black box to have a
nice feature to ...

1. error model 1: € = wh e is linear regression of 0
2. error model 2: dynamics between parameter error and e w = w6 then w goes into ¢ = Ae + Bw

3. error model 3: specific case of error model 2, and now only some part of the error is available e;. and
we needed dynamics to be SPR.

4. error model 4: uses augmented error approach with adding and subtracting... for arbitrary relative
degree. Add e; and e5 to get €

Adaptive Control (1) First order plant ﬁ so know model structure (its first order) put € in feedback

error model becomes x, -; 0 - e L€ 0= —ex,

extend to sf‘; where &, has known sign, by adding a feedforward part error model becomes w -, 6 -
P .

Mo ew= [ra,)" 6 = —sgn(ky)ew

S—am,

(2) States accessible &, = A,x, + Bu BA* = B,, where A* is diagonal with the sign of each of the

elements on the diagonal is known. w = [rTa:;]T w i 0-;box -; e = —sgn(A*)we' PB,y,

Adaptive Control: PI, PID, Phase-Lead popular for low order plant model simple example: m
parameterization shown in class shows the dependence of control parameters on plant parameters

Relative degree 2 add z into error model after 0 and before dynamics where z = 0w so @ is a filtered

version of w, and now we get error model e in terms of this filtered w

éz—e@

Extra block diagram
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L &
N

39.3.1 Time Varying Parameters

Consider the following time-varying plant, reference model, and control law

p = ap(t)xp + u + d(t)
Ty = QT + 7

u=~0x,+r

Gives time-varying matching condition

Lyapunov
1 -
V = (e 4+ 6%)
2
V= am62 + éé + éemp
V = ane® + 00 + éexp + 60"
Propose
0 = —ex, — o0
rewrite V

V = ame? + 00" — ob* — o06*(t)
if we know |6*(t)| < d and |0*(t)| < da. Rewrite pull out |0

V < —|amle® — o6 (yéy _ d1>
g

458



Part V

Nonlinear Control
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Chapter 40

Nonlinear Control

40.1 Lyapunov Stability
40.1.1 Introduction

There are several ways in which the stability of equilibria can be defined which are outlined in these
notes. Only autonomous systems are covered, looking at both continuous and discrete time cases.

Lyapunov Stability Analysis gives two approaches can be taken to analyze a system and see what type
stability an equilibrium point satisfies. Lyapunov’s first, or indirect method can be used to prove whether a
system is stable, unstable, or draw no conclusion about stability. Lyapunov’s second, or direct method can
only prove system stability.

40.1.2 Stability of Autonomous Systems

When talking about the stability of autonomous systems, it is always done relative to an equilibrium
point. Equilibrium points must first be found, and it is the stability of these points which must be studied. For
linear systems there exists only one equilibrium, so the stability of this equilibrium point can be equivalently
described by saying the stability of the system.

40.1.3 Equilibrium Points

Given the following autonomous systems (one continuous the other discrete), the system’s equilibrium
points must first be found. (DDV 13.2)

£(t) = f(x(t)) (40.1)

z(t+1) = f(z(t)) (40.2)

The point z¢q is an equilibrium point of the continuous system if f(xeq(t)) = 0,Vt > 0, and an equilibrium
point of the discrete system if f(zeq(t)) = xeq, V& > 0. If the system is started in the state z.q at time o,
it will remain there for all time. Nonlinear systems can have multiple equilibrium points (or equilibria), but
linear systems can only have one.

40.1.4 Three Types of Stability

1. Stability in the sense of Lyapunov (ISL) A system that is stable ISL is one which the system trajec-
tory can be kept close to an equilibrium point by starting sufficiently close to the equilibrium.
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* Given any € > 0, 39 such that if ||z(to)|| < J, then ||z(to)| < €, VE > 1o

This basically says that if the starting point x (%) is inside the circle centered about Z with radius d,
that the system trajectory can leave this region and into the larger circle with radius €, but it can never
leave that region. This is the weakest form of stability, and is also known as marginally stable. 1t is
important to make the point that this must hold for any € that can be picked, not just one particular and
carefully selected special case. An equilibrium point that is not stable ISL is termed unstable. (DDV
13.2)

2. Local asymptotic stability A system which is stable ISL, and satisfies the additional constraint below
is called locally asymptotically stable.

* Jr such that if || z(to)|| < r, then z(t) — T ast — oo

This statement says that if the starting point 2:(¢) is inside the circle centered about Z with radius r,
that the system trajectories will actually converge to Z. It is important to note that there exist systems
which satisfy only this additional constraint without satisfying the first constraint of being stable ISL.
Such systems are not asymptotically stable.

3. Global asymptotic stability A system which is globally asymptotically stable extends the definition
of local asymptotic stability from a circle of radius r to the entire state space. In other words, begin-
ning from any initial conditions x (%) then x(t) — Z as t — oo. This is discussed in further detail
using Lyapunov’s second method.

40.2 Lyapunov Stability Analysis

Using these three definitions of stability, tools are now needed which will allow a system to be analyzed
to determine if an equilibrium is stable, and if so, which type of stability the equilibrium point satisfies.

40.2.1 Lyapunov’s First (Indirect) Method

This method involves linearizing the nonlinear system about an equilibrium point Z in order to develop
a local conclusion about the stability of the nonlinear system. If the linearized system has poles that are all
strictly in the left-half complex plane, the equilibrium point is locally asymptotically stable. If the linearized
system has any poles that are strictly in the right-half complex plane, equilibrium point is unstable. If the
linearized system as any eigenvalues which are zero, no conclusion can be drawn about the stability of
the equilibrium point. In this case, essentially the higher order terms that were lost in linearization will
determine whether or not the equilibrium is stable or not. (DDV 14.3)

Stability of the linearized system The linearized system, with some eigenvalues on the imaginary axis
Ai = 0, can be unstable, while the nonlinear system is actually stable. This is why no conclusion about the
nonlinear system can be drawn when any eigenvalues are zero. Can the opposite be true? i.e. the linearized
system with any \; = 0 is stable, but the nonlinear system is unstable? example? The stability of the linear
systems themselves when eigenvalues are on the imaginary axis will be analyzed in more detail later.

462



40.2.2 Lyapunov’s Second (Direct) Method

Continuous Time Lyapunov’s second method requires the construction of a scalar, energy like Lyapunov
function of the state which satisfies the properties which follow. This function V' (z(t)) is proposed as a
“candidate Lyapunov function”, and if the properties are satisfied, it becomes a Lyapunov function.

* V islocally positive definite

—V(0)=0
V(z(t)) > 0,0 < ||z(t)|| < r for some r

T

7(0) =0

- V(
« V(z(t) = %V(w(t)) = diV(x(t))‘é—f is locally negative semidefinite
— V(
- V(

z(t)) <0,0 < ||z(t)]| < r for some r

The Lyapunov function which satisfies these three conditions proves the equilibrium point is locally
stable ISL. The condition of stability can be further improved if V ((t)) is negative definite, i.e. V(z(t)) <
0,0 < [|z(t)|| < r for some r. Satisfying this condition results in asymptotic stability. (DDV 13.4)

Lyapunov’s second method can be extended to prove global stability if the function |V (x)| — oo as
||| = oo (i.e. V(z(t)) is radially unbounded) and V (x(t)) is negative definite on the entire state space.

If a Lyapunov function cannot be found, this does not necessarily mean that the system is unstable, but
only that a suitable Lyapunov function could not be found. Therefore, Lyapunov’s direct method cannot be
used to prove a system is unstable.

Discrete time V (z(t)) 2 V(z(t 4+ 1)) — V(z(t))

40.2.3 The Lyapunov Equation

Continuous time To prove stability of the following continuous time, linear, autonomous system, a
quadratic Lyapunov function will suffice.
z(t) = Ax(t)
Propose the following quadratic Lyapunov function, where P must be chosen such that it is positive definite
(.e. 2T Px > 0 Va # 0).
V(z(t) =x"Pz, z€R"

As long as P is positive definite V' (x(¢)) will be a suitable Lyapunov function. Taking the time derivative
of the Lyapunov function, and substituting £ = Ax gives:

V(z) =i"Px+ 2" Pi
= (Az)" Pz + 2" PAx
=2 APz + 2" PAx
=2 (AP + PA)x
= 2'Qux
The resulting matrix Q = (ATP + PA) is symmetric as well. By picking P such that it is not only
symmetric and positive definite, but such that () is negative definite, the quadratic Lyapunov function will

prove the linear system is globally asymptotically stable.
There are no other restrictions on the selection of P, so it desired to select a P which is symmetric?
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Discrete time For the following linear, discrete time, autonomous system, a Lyapunov function is desired.
z(t+1) = Ax(t)

Propose the following quadratic Lyapunov function

<

(z(t)) =z Pz, z€R"

V(x(t) £ V(a(t+1)) - V(z(t)
=z(t+1)TPx(t+1) — z(t)" Px(t)
(Az(t))"PAx(t) — z(t)T Px(t)
= 2(t)TATPAx(t) — z(t) T Px(t)
z(t)T(ATPA — P)x(t)
= (1) Qux(1)
The resulting matrix Q = (ATPA — P) is symmetric as well. By picking P such that it is not only

symmetric and positive definite, but such that () is negative definite, the quadratic Lyapunov function will
prove the linear system is globally asymptotically stable.

40.2.4 Stability of Linear Systems

As was mentioned previously in discussing Lyapunov’s first method, the location of the eigenvalues in
the complex plane determines the stability of a linear system. If the eigenvalues are in the open LHP the
system is considered stable, and if the eigenvalues are in the open RHP the system is unstable. When all of
the eigenvalues are non-positive, but some eigenvalues are on the imaginary axis, can any conclusions about
stability be drawn then? (DDV 13.3)

The following system, while both of its eigenvalues are A = 0, 0, is stable. This is because its Jordan

blocks are 1 x 1.
i’l o 0 0 I
ig o 0 0 €T9

The following system, while both of its eigenvalues are A = 0, 0, is not stable. This is because it has

one Jordan block of size 2 x 2.
:i?l . 0 1 I
ig o 0 0 xT9
Both of these examples are explained further in the Jordan normal form section.
40.2.5 Solving Lyapunov Problems
The following section will attempt to explain how to use Lyapunov stability analysis in solving problems.

* Is the system unstable?

— if it is suspected that the system is unstable, Lyapunov’s first method can be used to prove
instability
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— if Lyapunov’s first method is used, and the system is locally stable, the second method can then
be attempted to prove global stability

* Try to find a Lyapunov function V' be which will prove stability of the system

— try to make V=0 only when x = z( to prove asymptotic stability, otherwise as long as V is
never positive the system is still stable

* For linear, autonomous, stable systems

use V =2x"Px

find P by solving ATP + PA = —Q

where () and P are both positive-definite

@ is a free design parameter: use a diagonal matrix

* For linear, non-autonomous, unstable systems

— can use full state feedback © = — Kz to stabilize the linear A matrix
— the Lyapunov equation is now solved using the closed-loop A matrix, since A¢y, is stable:
Aci,"P+ PAcr = —-Q

Sometimes having 1 negative semi-definite, and thus only being able to conclude stability in the sense
of Lyapunov and not asymptotic stability is not enough. Must use invariance when this is the case.

40.2.6 Stuff

[20] The objective of the so-called “second method” of Lyapunov is this: 7o answer questions
of stability of differential equations, utilizing the given form of the equations but without explicit
knowledge of the solutions.

40.3 Lyapunov Stability

40.3.1 Lyapunov Functions

1. First find the equilibrium points of the system

« For first order system choose V (2) = (2 — Zeq)?

« Evaluate V and if it is negative definite, the equilibrium is asymptotically stable.

* Then if V is radially unbounded, that is V' — oo as ||z|| — oo then the equilibrium is
globally asymptotically stable. Is this true if there are more than one stable equilibrium
point?

« IfVis only negative semi-definite, then the equilibrium is stable in the sense of Lyapunov.

— At this point invariant set theorems can be used.
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* For second order systems of the form ()% + b(Z) + ¢(z) = 0 with b(Z) and ¢(z) in the
first and third quadrants, then we can choose

Vi) = [ “Uy)ydy + / " e(y)dy

And if [(#) = 1 then this reduces

1 xT
Vz,2) = 5&%2 +/0 c(y)dy

 If we have a second order linear system
Alf + Agi + A3$ =0

use

1 1
V = §(L’TA1.’E —+ inAgyT

* Using this Lyapunov function if/when we evaluate V and get negative semi-definite, we
can only assert stability in the sense of Lyapunov

* To get local asymptotic stability, look at the condition that is required to make V = 0. For

example if V' = —i? then we take # = 0. Substitute this value & = 0 into the system
equations

* Then???

* Result is extended to global asymptotic stability if the integral foy c(y)dy is radially un-
bounded

When analyzing a system with multiple equilibria, in order for a scalar function V' to be consid-
ered a candidate Lyapunov function, it must be zero only at the equilibrium point, and positive
everywhere else. Thus a single candidate Lyapunov function that can be used to determine
stability about all of the equilibria cannot be proposed. Sticking to Lyapunov’s second method
would thus require a candidate Lyapunov function proposed for each of the equilibria, and then
analyzed. However, in systems with multiple equilibria, we may wish to use only a single
Lyapunov-like function in order to say something about the stability of the equilibria.

In order to do this we appeal to the global invariant set theorem, and necessarily relax the
requirement for V' to be positive definite. Therefore, we can only call the scalar function V' a
Lyapunov-like function.

We find V and evaluate the values of the state x that make V' = 0. We call this set of points R.

Then, using the system dynamics, we find a subset R that are equilibrium points and call this
subset M.

Globally, we will converge to this set, although we don’t know the particulars about which
points within this set to which the system trajectories actually converge. Additional analysis is
required. If the Lyapunov-like function is locally about an equilibrium “a bowl” this equilibrium
point is a stable one. If the Lyapunov-like function about an equilibrium point is locally “a hill”
we can’t conclude the local instability of this point? Check this statement. But a linear analysis
will indicate local instability.
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40.4 Solving Lyapunov Problems

The following section will attempt to explain how to use Lyapunov stability analysis in solving
problems.

* Is the system unstable?
— if it is suspected that the system is unstable, Lyapunov’s first method can be used to
prove instability
— if Lyapunov’s first method is used, and the system is locally stable, the second method
can then be attempted to prove global stability
* Try to find a Lyapunov function V' be which will prove stability of the system
— try to make V=0 only when x = x to prove asymptotic stability, otherwise as long
as V' is never positive the system is still stable
* For linear, autonomous, stable systems
use V =z Px
find P by solving ATP + PA = —Q
where () and P are both positive-definite

@ is a free design parameter: use a diagonal matrix
* For linear, non-autonomous, unstable systems

— can use full state feedback ©w = — Kz to stabilize the linear A matrix

— the Lyapunov equation is now solved using the closed-loop A matrix, since Aoy, is
stable: Ao, " P+ PAcr = —Q

Sometimes having 1% negative semi-definite, and thus only being able to conclude stability in
the sense of Lyapunov and not asymptotic stability is not enough. Must use invariance when
this is the case.

40.5 Stuff

40.6 Sliding Mode Control
40.6.1 Introduction

Sliding, switching, “suction” control.

40.6.2 General Idea

Perfect tracking possible in presence of arbitrary parameter inaccuracies, but requires extremely
high control activity. Provides good tradeoff between tracking performance and uncertainty. We
consider systems of the form

™ = f(x)+b(z)u
where f(z) is not completely known, but imprecision on f(z) upper bounded by a function of
x. b(x) not completely known, but known sign and also upper bounded. Goal: get the state x
to track the desired state x4. Define the state tracking error x as

T=x— x4
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To make it easier to explain in these notes, we will consider when the system is of second order.
(with some additional simplifications over the general form)

&= f(z)+b(z)u

r=f4+u

The general form of the composite/switching variable s is

d n—l
==+ 7
S <dt + > x

which, when equal to zero, drives the state error Z to zero. For a the second order system this

composite variable is
d + A iody + Az
S = _ r = —2 xr
dt dt

giving
for a third order ) ,
d d d
=(—=4+X) 2=(-—=+22—+ )3
s <dt+>x (dt2+ dt+ >x

s =1+ 2\T + \°%

giving

and so on. Our goal is to enforce that this new composite variable s tends to zero. We do
this by creating a candidate Lyapunov function V' of this variable, take its time derivative, and
choose the control input such that Vis negative definite. That is, choose the following candidate
Lyapunov equation

time differentiating

From the definition of s we can evaluate $
§=2+\&

and substitute it in
V =s(z 4+ A7)

st(i—ﬁfd%—)\f)

to simplify things we can define a new variable x, that satisfies the following
iy =g — A&

substituting this into 1%
V =s(@&— i)
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and substituting in the system equation
V=s(f+u—)

At this point we are ready to design the control input u. However, instead of designing u
simply to make 1% negative definite, we wish to impose some degree of “negativeness”. That is,
we want to design u to enforce

V < nls|

where 7 > 0 is a positive constant. With our choice of V' = %82 this constraint can be expressed

——s° < —nls
oar> =1

This gives
s(f +u—idr) <nls|

We want to design an equivalent control 1 that would completely cancel out f if the parameters
of f were completely known. That is

G=—f+ i

The control law
u =1 — ksgn(s)

w=—f+ & — ksgn(s)

plugging in
s(f = f — ksgn(s)) < nls|
—s(f = f) — sksgn(s) < s
and then .
_S(f‘s—’ f) k<
and then

(f-f)-k<n
And we know a bound on the parameter error
If=fI<F

so we can pick k to satisfy

L(f-f—k<n<|f-fl+n<k

and then )
lf=fl+n<F+n<k

and pick & such that it is the smallest value that will satisfy this inequality
k=F+n
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40.6.3 Summary

The general form of the system to use switching control.

™ = f(z) + b(z)u

So when the system is second order, use these (I don’t know for sure what it would be for higher
order systems.)

T=x— 24
S=IT+ AT
S=1—

40.6.4 Barbalat’s Lemma

1. V is positive definite
2. Vis negative semi-definite

* With V positive definite and 1% negative semi-definite, V' is bounded. That is, at the
initial time ¢ = 0 we have V (x(t = 0), (¢t = 0)) and from here (since V is negative
semidefinite) the value of V' can only decrease. V' is bounded below by zero since it
is positive definite. Finally, we say that since V' is bounded from above by V' (¢ = 0)
and bounded from below by 0, that it is bounded. And because V' is bounded and
positive definite (actually probably some other condition, but it is true for a quadratic
function) then the arguments of V' are bounded

3. Vis uniformly continuous, which follows from 1% being bounded

« We evaluate V and since now we know the arguments of V' are bounded, we use this
to bound V, thus showing uniform continuity of V'

With these three conditions met Barbalat’s Lemma states that V' — 0 as t — co. We then
look at V' and since it is tending to zero, its arguments must go to zero. Since V' at this point
is probably a function of the state error only, we say the state error tends to zero, although we

can’t necessarily say anything about the parameter error (unless the parameters are in V' also...
it is easiest to show this with examples).

Barbalat’s Lemma

Thus far, we have shown that e € L, is bounded. Now the goal is to use Barbalat’s Lemma to
prove e — 0. That is, show the system is asymptotically stable?

Stuff

* Continuity does not imply differentiability. e.g. absolute value
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Example Slotine example page 122: f(t) — 0 % f converges.

This example shows a function f(¢) which has a time derivative f(¢) that goes to zero as
t — oo, but the function f(t) does not converge as t — 0.

f(t) = sin(In(t))

ft) = Cos(ln(t))jt(ln(t)) _ COS(ltﬂ(t))
lim f(t): lim M:O

t—00 t—00 t

However, just because f (t) approaches zero as t — oo does not mean the function f(t) will
converge as t — 00, as is the case in this example.

Example Slotine example page 122: f converges = f(t) — 0.

This example shows a function f(¢) which converges as ¢ — oo, with a time derivative f(t)
that does not go to zero as t — oo.

f(t) = e tsin(e?)

. T —t . 26\
t1i>11010 ft) = tllgloe sin(e”*) =0

f(t) = —e tsin(e?) + 2 cos(e?)

c RN L T o=t i (02t 20y _ 1; 2t
tlgglof(t)—tlgglo e "sin(e*) + 2 cos(e™) tlggl(j?cos(e )

The function f(t) has a time derivative f(¢) which does not converge. It oscillates back and
forth faster and faster.

40.7 Describing Functions and Limit Cycles

The purpose of a describing function is to represent a nonlinearity as an effective gain which
varies based on the input signal. Describing functions are based on the assumption that the
input to the nonlinearity is sinusoidal. The idea is that in response to a sinusoidal excitation,
most nonlinearities will produce a periodic signal with frequencies being the harmonics of the
input frequency. The assumption is made that the output may in be acceptably approximated by
the first harmonic alone. Describing functions allow limit cycles to be found.

40.8 Contraction Analysis

plant
j: = f(a;‘? u? t)
substitute control law

u(z,t)
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get

consider a virtual displacement

o= @) _0Fs,

- Oz T ox
When a trajectory is virtually displaced, we want the displacement to tend to zero with time.
That is, we want the trajectory to eventually go back the the trajectory from which it was
displaced. If all neighboring trajectories converge to each other (contraction behavior) global
exponential convergence to a single trajectory can then be concluded. We define the distance of
this virtual displacement as
oz ox

For this distance to tend to zero, it is the same as its time derivative always being strictly
negative. Evaluating the derivative

d oo 7o\ o Ts: _oc TOf
a(ém dx) =20z’ 6 = 20x 8$5x

contraction analysis extends a number of desirable properties of linear system analysis to gen-
eral nonlinear non-autonomous systems.
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