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Chapter 1

Introduction and Preliminaries

These notes were made while in MIT’s Fluid Mechanics class, 2.25 taught by Professor Gareth McKin-
ley in the Fall semester of 2013.

1.1 Gibb’s and Index Notation
There are two ways to denote math used in vector and tensor calculus. One is symbolic or Gibb’s

notation, the other is index or Cartesian notation. Gibb’s notation handles scalars, vectors, and tensors as
different types of things, and so we need to be careful when conducting operations between these different
things, and keep in mind what operations are allowed, and which aren’t. Index notation always operates
on the scalar entries within the vectors and tensors, so the problem of what operations are legal or not is
simplified.

A free index occurs once and only once in each and every term in an equation, where term means product
of multiple quantities. The free index means the equation can be written three times, where the free index is
substituted for 1, 2, and 3. The free index can be changed to any letter, as long as it is changed everywhere
it appears, and not to a letter which is already being used in an index. The dummy or summation index are
those which are not a free index. That is, the dummy indexes are those which occur more than once in every
term. Like the the free index, the dummy index can be changed to a different letter, as long as it is changed
everywhere, and not to a letter that is already used as an index.

Example 1 Free Index
ak = bicik + dijkeij

In this equation the free index is k. So this equation can be written out as

a1 = bici1 + dij1eij

a2 = bici2 + dij2eij

a3 = bici3 + dij3eij

The free index can also be changed fro k to n and the equation is the same.

an = bicin + dijneij
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1.2 Review
A vector a and b can be written

a = a1ê1 + a2ê2 + a3ê3

b = b1ê1 + b2ê2 + b3ê3

1.2.1 Dot Product
Operation between two vectors which produces a scalar. The dot product of a unit vector with itself is

one. The dot product of any perpendicular vectors is zero. When evaluating the dot product of two vectors
a and b, write out the two vectors in their component form, and then distribute

a · b = (a1ê1 + a2ê2 + a3ê3) · (b1ê1 + b2ê2 + b3ê3)

= a1b1(ê1 · ê1) + a1b2(ê1 · ê2) + . . .

= a1b1 + a2b2 + a3b3

1.2.2 Cross Product
Operation between two vectors that produces a vector perpendicular to the first two.

a× b = (a1ê1 + a2ê2 + a3ê3)× (b1ê1 + b2ê2 + b3ê3)

= a1b1(ê1 × ê1) + a1b2(ê1 × ê2) + . . .

1.3 Index Notation

a = a1ê1 + a2ê2 + a3ê3

=
3∑
i=1

aiêi

in index notation the summation is dropped, and the vector a is expressed

a = aiêi

1.3.1 Dot Product

a · b =

(
3∑
i=1

aiêi

)
·

 3∑
j=1

biêi


=

3∑
i=1

3∑
j=1

(aiêi) · (bj êj)

=
3∑
i=1

3∑
j=1

aibj(êi · êj)
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And then we have the quantity in parentheses is zero for i 6= j and one if i = j. This gets a special quantity
called δij . But since δij = 1 only when i = j we can simplify the above expression to

a · b = aibjδij

a · b = aibi

1.3.2 Cross Product

a× b =

(
3∑
i=1

aiêi

)
×

 3∑
j=1

bj êj


=

3∑
i=1

3∑
j=1

(aiêi)× (bj êj)

=

3∑
i=1

3∑
j=1

aibj(êi × êj)

(êi × êj) = εijkêk

a× b = aibjεijkêk

εijk is a scalar, with value±1 or 0. εijk is determined by the values of the first two indices, and the third
one is the result of right hand rule cross product on right handed coordinate system. If i = j, then εijk = 0.
Also notice that

εijk = εjki = εkij

εkji = εjik = εikj

Note that when writing out the combined summations for the operations on the vectors that the order of
the summations does not matter. Show vector triple products

a · (b× c) = (a× b) · c = (c× a) · b

Evaluate the first quantity using index notation
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a · (b× c) =

(
3∑
i=1

aiêi

)
·


 3∑
j=1

bj êj

×( 3∑
k=1

ckêk

)
=

3∑
i=1

3∑
j=1

3∑
k=1

aibjckêi · (êj × êk)

=
3∑
i=1

3∑
j=1

3∑
k=1

aibjckεjklêi · êl

=
3∑
i=1

3∑
j=1

3∑
k=1

aibjckεjklδil

= aibjckεijk

The second quantity

(a× b) · c =


(

3∑
i=1

aiêi

)
×

 3∑
j=1

bj êj

 ·
(

3∑
k=1

ckêk

)

=
3∑
i=1

3∑
j=1

3∑
k=1

aibjck(êi × êj) · êk

=
3∑
i=1

3∑
j=1

3∑
k=1

aibjckεijlêl · êk

=

3∑
i=1

3∑
j=1

3∑
k=1

aibjckεijlδlk

= aibjckεijk

The third quantity

(c× a) · b =

{(
3∑

k=1

ckêk

)
×

(
3∑
i=1

aiêi

)}
·

 3∑
j=1

bj êj


=

3∑
i=1

3∑
j=1

3∑
k=1

aibjck(êk × êi) · êj

=

3∑
i=1

3∑
j=1

3∑
k=1

aibjckεkilêl · êj

=
3∑
i=1

3∑
j=1

3∑
k=1

aibjckεkilδlj

= aibjckεijk
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1.3.3 Del Operator
In Cartesian coordinate systems, the del operator is

∇ =
∂

∂x1
ê1 +

∂

∂x2
ê2 +

∂

∂x3
ê3

In cylindrical coordinate systems the del operator is

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

∂

∂z
êz

In spherical

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

1

r sin θ

∂

∂φ
êφ

Cartesian: ∇ =
∂

∂x
êx +

∂

∂y
êy +

∂

∂z
êz

Cylindrical: ∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

∂

∂z
êz

Spherical: ∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

1

r sin θ

∂

∂φ
êφ

Del Operator

In index notation

∇ =

3∑
i=1

∂

∂xi
êi

∇ =
∂

∂xi
êi

1.3.4 Gradient
The gradient is basically a derivative with respect to position.

∇Φ =
∂Φ

∂xi
êi

In cylindrical coordinates

∇Φ =
∂Φ

∂r
êr +

1

r

∂Φ

∂θ
êθ +

∂Φ

∂z
êz
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1.3.5 Divergence

∇ · v =
∂vi
∂xi

In cylindrical coordinates

∇ · v =
1

r

∂

∂r
(rvr) +

1

r

∂vφ
∂φ

+
∂vz
∂z

1.3.6 Curl
Curl is the operation of the del operator acting on a vector with the cross product.

∇× v =
∂vj
∂xi

εijkêk

The curl of the velocity field is known as the vorticity, ω. In Gibbs notation, the curl, in cylindrical
coordinates is given by

∇× v =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
êr +

(
∂vr
∂z
− ∂vz

∂r

)
êθ +

(
1

r

∂

∂r
(vθr)−

1

r

∂vr
∂θ

)
êz

In cartesian coordinates it is

∇× v =

(
∂vz
∂y
− ∂vy

∂z

)
êx +

(
∂vx
∂z
− ∂vz
∂x

)
êy +

(
∂vy
∂x
− ∂vx

∂y

)
êz

1.4 Tensors
Dot product of vector with tensor produces a vector.

T = Tij(êiêj)

1.4.1 Symmetric Tensors

Tij = Tji

1.4.2 Antisymmetric Tensors

Tij = −Tji

1.4.3 Tensor Products
note the following IS THIS TRUE?

TijSji = TijSij
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1.4.4 Dyadic Product
Pretty much just outer product.

∇ v =

∂vx∂x
∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z



1.4.5 Unit Vector Derivatives
Cartesian Coordinates

êx =

1
0
0

 êy =

0
1
0

 êz =

0
0
1


From these, we can see that any derivative of a unit vector in a cartesian coordinate system is zero.

∂êx
∂x

=

0
0
0


Cylindrical Coordinates

êr =

cos θ
sin θ

0

 êθ =

− sin θ
cos θ

0

 êz =

0
0
1


Taking the derivatives of these unit vectors with respect to the different directions we have

∂
∂r êr = 0 ∂

∂r êθ = 0 ∂
∂r êz = 0

∂
∂θ êr =

− sin θ
cos θ

0

 = êθ
∂
∂θ êθ =

− cos θ
− sin θ

0

 = −êr ∂
∂θ êz = 0

∂
∂z êr = 0 ∂

∂z êθ = 0 ∂
∂z êz = 0

Components:

∇ v =

rr rθ rz
θr θθ θz
zr zθ zz


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Chapter 2

Basic Conservation Laws

2.1 Continuity: Conservation of Mass
Conservation of mass is also called the continuity equation to emphasize that the continuum assumptions

are prerequisites. [1] The continuity equation states that the time rate of change of the mass of a material
region is zero. The continuity equation can typically be found in integral and derivative form, and can be
derived in several different ways. The integral form of conservation of mass is

Compressible mass conservation (integral):
∂

∂t

∫
V
ρdV︸ ︷︷ ︸

Rate of change of mass

= −
∮
S
ρv · ndS︸ ︷︷ ︸

Net inflow of mass

2.1.1 Deriving the Differential Form of Continuity
Using Gauss’ theorem the right hand side of the integral form of conservation of mass equation can be

written ∮
S
ρv · ndS =

∫
V
∇ · (ρv)dV

using this definition the integral form of mass conservation can be written

∂

∂t

∫
V
ρdV = −

∫
V
∇ · (ρv)dV

Leibnitz’s theorem allows the integral to be moved inside giving∫
V

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0

Then, since the choice of the material region that we chose was arbitrary, the only way this equation can be
true is if the integrand is zero, which is the differential form of conservation of mass.

Compressible mass conservation (differential):
∂ρ

∂t
+∇ · (ρv) = 0
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2.1.2 Conservation of Mass for an Incompressible Fluid
This section provides a first-principles, control volume derivation of conservation of mass for an incom-

pressible fluid. This is an alternative derivation of the differential form of continuity, and is a little bit easier
and more intuitive to derive using an infinitesimal control volume, as opposed to starting with the integral
form and using Gauss’ theorem.

δz

δx
δy

vx(x+ δx)vx(x)

vy(y)

vy(y + δy)

vz(z + δz)

vz(z)

Figure 2.1: Infinitesimal control volume

The box is a fixed volume. Continuity represents the rate of accumulation of mass within the box, minus
the net flow out of the box. Conservation of mass is written as

∂ρ

∂t
δxδyδz + ρvx(x)δyδz + ρvy(y)δxδz + ρvz(z)δxδy

= (ρ+ δρx)vx(x+ δx)δyδz + (ρ+ δρy)vy(y + δy)δxδz + (ρ+ δρz)vz(z + δz)δxδy

Note now that ρ is a constant and thus all derivatives of ρ are zero, giving

vx(x)δyδz + vy(y)δxδz + vz(z)δxδy

= vx(x+ δx)δyδz + vy(y + δy)δxδz + vz(z + δz)δxδy

Multiplying each velocity term by unity gives

vx(x)
δyδzδx

δx
+ vy(y)

δxδzδy

δy
+ vz(z)

δxδyδz

δz

= vx(x+ δx)
δyδzδx

δx
+ vy(y + δy)

δxδzδy

δy
+ vz(z + δz)

δxδyδz

δz

Dividing both sides by δxδyδz gives

vx(x)

δx
+
vy(y)

δy
+
vz(z)

δz
=
vx(x+ δx)

δx
+
vy(y + δy)

δy
+
vz(z + δz)

δz

Combining terms
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vx(x)− vx(x+ δx)

δx
+
vy(y)− vy(y + δy)

δy
+
vz(z)− vz(z + δz)

δz
= 0

Taking the limit as the fluid element gets small

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0

In vector form [
∂
∂x

∂
∂y

∂
∂z

]
·
[
vx vy vz

]
= 0

And of course this can be written using the del operator as

Incompressible mass conservation (differential): ∇ · v = 0

2.1.3 Conservation of Mass for a Compressible Fluid
This section provides a control volume derivation of conservation of mass for a compressible fluid. It

follows the same derivation as the one above for incompressible fluids, except that the density is not constant
and thus has, in general, nonzero derivatives. Furthermore, the result above can be obtained from the one
below when density is constant.

δz

δx
δy

vx(x+ δx)vx(x)

vy(y)

vy(y + δy)

vz(z + δz)

vz(z)

Figure 2.2: Infinitesimal control volume

Conservation of mass

∂ρ

∂t
δxδyδz + ρvx(x)δyδz + ρvy(y)δxδz + ρvz(z)δxδy

= (ρ+ δρx)vx(x+ δx)δyδz + (ρ+ δρy)vy(y + δy)δxδz + (ρ+ δρz)vz(z + δz)δxδy

Looking at the terms on the right hand side with
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δρx =
∂ρ

∂x
δx δρy =

∂ρ

∂y
δy δρz =

∂ρ

∂z
δz

and using a first order Taylor series approximation on the following

vx(x+ δx) = vx(x) +
∂vx
∂x

δx

vy(y + δy) = vy(y) +
∂vy
∂y

δy

vz(z + δz) = vz(z) +
∂vz
∂z

δz

we get

ρvx(x)δyδz + ρvy(y)δxδz + ρvz(z)δxδy =

(
ρ+

∂ρ

∂x
δx

)(
vx(x) +

∂vx
∂x

δx

)
δyδz

+

(
ρ+

∂ρ

∂y
δy

)(
vy(y) +

∂vy
∂y

δy

)
δxδz

+

(
ρ+

∂ρ

∂z
δz

)(
vz(z) +

∂vz
∂z

δz

)
δxδy

Multiplying out the left hand side and neglecting second order terms

ρvx(x)δyδz =

(
ρvx(x) + ρ

∂vx
∂x

δx+ vx(x)
∂ρ

∂x
δx

)
δyδz

ρvy(y)δxδz =

(
ρvy(y) + ρ

∂vy
∂y

δy + vy(y)
∂ρ

∂y
δy

)
δxδz

ρvz(z)δxδy =

(
ρvz(z) + ρ

∂vz
∂z

δz + vz(z)
∂ρ

∂z
δz

)
δxδy

simplifying

0 =

(
ρ
∂vx
∂x

δx+ vx(x)
∂ρ

∂x
δx

)
δyδz

0 =

(
ρ
∂vy
∂y

δy + vy(y)
∂ρ

∂y
δy

)
δxδz

0 =

(
ρ
∂vz
∂z

δz + vz(z)
∂ρ

∂z
δz

)
δxδy

Recognizing these quantities as from product rule, and combining the components back onto a single equa-
tion

0 =
∂(ρvx)

∂x
δx+

∂(ρvy)

∂y
δy +

∂(ρvz)

∂z
δz
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0 =
∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z

In vector form

∂ρ

∂t
+
[
∂
∂x

∂
∂y

∂
∂z

]
·
[
ρvx ρvy ρvz

]
= 0

And again this can be written as follows using the del operator.

Compressible mass conservation (differential):
∂ρ

∂t
+∇ · (ρv) = 0

And we can see that if ρ is a constant, this expression reduces to conservation of mass for an incompressible
fluid.

2.2 Conservation of Momentum
2.2.1 Cauchy Momentum Equation

This is the most basic form, where the surface and pressure forces are very general. Fluid doesn’t have
to be Newtonian, or compressible, etc.

2.2.2 Conservation of Momentum with Euler’s Equation
This section is about conservation of momentum for an incompressible fluid with pressure and gravity,

deriving Euler’s Equation.
Conservation of momentum when only surface force is pressure and only body force is gravity. Consider

a differential element of fluid, and consider only pressure and gravity forces acting upon it. We also assume
the density is constant. To derive Euler’s equation, by assuming that these are the only forces acting on the
fluid, this version of Euler’s equation is only valid for inviscid, incompressible flows.

δz

δx
δy

p(x+ δx)p(x)

p(y)

p(y + δy)

p(z + δz)

p(z)

mg

Figure 2.3: Fluid element with pressure and gravity acting on it

Summing the forces in the x, y, and z directions we have
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pδyδz −
(
p+

∂p

∂x

)
δyδz = ρδxδyδzax

pδxδz −
(
p+

∂p

∂y

)
δxδz = ρδxδyδzay

pδxδy −
(
p+

∂p

∂z

)
δxδy − ρgzδxδyδz = ρδxδyδzaz

simplifying

−∂p
∂x

= ρax

−∂p
∂y

= ρay

−∂p
∂z
− ρgz = ρaz

we obtain

ρa = −∇p+ ρg

Substituting the following

a =
Dv

Dt

=
∂v

∂t
+ (v · ∇)v

into above to obtain

Euler’s Equation: ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ ρg (2.1)

The assumptions of Euler’s equation are: inviscid flow (neglects stress tensor τ ). For inviscid flow, if it
is irrotational at any instant in time, it remains irrotational for all subsequent time.

2.2.3 Conservation of Momentum including Viscous Forces
The above derivation can be repeated including surface forces (but still assuming density is constant),

resulting in the following.

ρ

(
∂v

∂t
+∇ · (vv)

)
= −∇p+∇ · τ + ρg
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Chapter 3

Material Derivative

Local change plus convective change, where f can be a vector or scalar quantity. The left hand side of
the equation is the Lagrangian side: it is following a particular material element through the flow, and the
right hand side is the Eulerian side.

Material Derivative:
Df

Dt
=

∂f

∂t︸︷︷︸
local rate of change

+ f · ∇ f︸ ︷︷ ︸
convective change

3.1 Hydrostatics
Note that in hydrostatic problems the fluid is at rest, and so viscosity can be ignored, we set a = 0 in

Euler’s equation to obtain the following

Hydrostatic Equation: ∇p = ρg

In a lot of cases, pressure variations occur only in the vertical direction due to gravity. In these cases we
have

∇p = ρg[
∂p
∂x

∂p
∂y

∂p
∂z

]
= ρ

[
gx gy gz

]
If we have a coordinate system where the z axis points upwards and gravity points downwards, the z com-
ponent of gravity is gz = −g where g is gravitational acceleration constant, e.g. 9.81 m/s2 on Earth. This
gives

∂p

∂z
= −ρg

Separating and integrating back ∫
∂p = −

∫
ρg∂z

p2 − p1 = −ρg(z2 − z1)
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3.1.1 Force and Moment
To find force and moment about a point on say, a door or floodgate holding back hydrostatic fluid

F =

∫
A
p(z)dA

τ =

∫
A
rp(z)dA

where r is the distance from the point about which we are taking moments along the door or floodgate.

3.2 Motion of a Fluid Element Along a Streamline
3.2.1 Streamline Coordinates

The osnl coordinate is orthogonal but not always Cartesian. For example for the rigid body problem
streamlines are circles and the osnl coordinate system becomes similar to cylindrical (es is eθ and en is er
and el is ez) whereas in other arbitrary flows it may be something else. What people call these is a subset of
“curvilinear coordiante systems” See Wikipedia.

Assume constant density? Think about looking at Euler’s equation along a streamline in order to simplify
it. This will allow the velocity components to be simplified, since by definition the velocity vector along a
streamline is always tangent to the streamline. Recall Euler’s equation in (2.1)

Start generally though with with the velocity vector given by the following components

v = vsês + vn ên + vl êl =

vsvn
vl


Evaluating Euler’s equation starting with the term v · ∇

v · ∇ =

vsvn
vl

 ·
 ∂
∂s
∂
∂n
∂
∂l

 = vs
∂

∂s
+ vn

∂

∂n
+ vl

∂

∂l

Now evaluating (v · ∇)v

(v · ∇)v =

(
vs
∂

∂s
+ vn

∂

∂n
+ vl

∂

∂l

)
v

= vs
∂

∂s
v + vn

∂

∂n
v + vl

∂

∂l
v

= vs
∂

∂s
(vsês + vn ên + vl êl)

+ vn
∂

∂n
(vsês + vn ên + vl êl)

+ vl
∂

∂l
(vsês + vn ên + vl êl)

= vs
∂

∂s
(vsês) + vn

∂

∂n
(vsês) + vl

∂

∂l
(vsês)

+ vs
∂

∂s
(vnên) + vn

∂

∂n
(vnên) + vl

∂

∂l
(vnên)

+ vs
∂

∂s
(vlêl) + vn

∂

∂n
(vlêl) + vl

∂

∂l
(vlêl)
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Now using the following simplification since we are considering flow along a streamline we have vn =
vl = 0. Using this, we simplify the above to

(v · ∇)v = vs
∂

∂s
(vsês)

= vs

(
∂

∂s
(vs)ês + vs

∂

∂s
(ês)

)
Since ês has unit magnitude, it can change only in direction. This change must be perpendicular to ês itself.
Therefore ên is defined by

ên = −R∂ês
∂s

giving
∂ês
∂s

= − 1

R
ên

(v · ∇)v = vs
∂vs
∂s

ês −
v2
s

R
ên

3.2.2 Motion Tangent to the Streamline
We can see in this expression that there is a component of acceleration tangential to the streamline, as

well as the centripetal component of acceleration. If we neglect the centripetal acceleration, we have

(v · ∇)v = vs
∂vs
∂s

ês

The next term we are looking at is ∂v
∂t at a fixed point in space, and we are considering steady flow here, so

∂v

∂t
= 0

Looking at the terms on the right hand side we have

∇p =
∂p

∂s
ês +

∂p

∂n
ên +

∂p

∂l
êl

And if we consider only pressure variations along the streamline, this expression is simplified to

∇p =
∂p

∂s
ês

With g a vector pointing down, and considering only the component of gravity along the streamline gs we
have

ρg = ρgsês

And sothe total simplified Euler equation along a streamline as

ρvs
∂vs
∂s

ês = −∂p
∂s
ês + ρgsês
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Dropping the unit vector showing its along the streamline

ρvs
∂vs
∂s

= −∂p
∂s

+ ρgs

but we can express gs as

gs = −gdz
ds

giving

ρvs
∂vs
∂s

= −∂p
∂s
− ρgdz

ds

moving stuff over

ρvs
∂vs
∂s

+
∂p

∂s
+ ρg

dz

ds
= 0

ρvs∂vs + ∂p+ ρgdz = 0

3.2.3 Bernoulli’s Equation
integrating, but only in the s-direction∫ s2

s1

(
ρvs

∂vs
∂s

+
∂p

∂s
+ ρg

dz

ds

)
= 0

∫ s2

s1

(ρvs∂vs + ∂p+ ρgdz) = 0

1

2
ρv2
s(s) + p(s) + ρgz(s)

∣∣∣∣s2
s1

= 0

(
1

2
ρv2
s(s2) + p(s2) + ρgz(s2)

)
−
(

1

2
ρv2
s(s1) + p(s1) + ρgz(s1)

)
= 0

finally

Bernoulli’s along streamline:
1

2
ρv2
s2 + p2 + ρgz2 =

1

2
ρv2
s1 + p1 + ρgz1

Bernoulli’s equation is for steady incompressible flow of a fluid in the absence of viscous effects along
a streamline.
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3.2.4 Motion Normal to the Streamline

(v · ∇)v =
v2
s

R
ên

The next term we are looking at is ∂v
∂t at a fixed point in space, and we are considering steady flow here, so

∂v

∂t
= 0

Looking at the terms on the right hand side we have

∇p =
∂p

∂s
ês +

∂p

∂n
ên +

∂p

∂l
êl

And if we consider only pressure variations normal to the streamline, this expression is simplified to

∇p =
∂p

∂n
ên

With g a vector pointing down, and considering only the component of gravity along the streamline gs we
have

ρg = ρgnên

And sothe total simplified Euler equation along a streamline as

−ρv
2
s

R
ên = −∂p

∂n
ên + ρgnên

Bernoulli’s equation normal to streamline: −ρv
2
s

R
= −∂p

∂n
+ ρgn

From this expression we can see that the change in pressure with respect to the normal direction is
always positive with respect to R, so pressure increases in the n direction.

3.3 Solid Body Rotation
Rotating bucket of water. The velocity is dependent only on the radial direction r. This cylindrical

coordinate system is inertially fixed. Bucket spinning with angular velocity Ω.
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Figure 3.1: Solid body rotation

Thus, the total velocity in cylindrical coordinates is

v = vrêr + vθêθ + vz êz =

vrvθ
vz

 =

 0
rΩ
0


Apply Euler’s equation

ρa = −∇p+ ρg

a =
Dv

Dt
=
∂v

∂t
+ v · ∇ v

3.3.1 Cylindrical Coordinates
The partial derivative with respect to time, also known as the local rate of change, is zero, because at a

fixed point in the fluid, the velocity is not changing with time.

∂v

∂t
= 0

Looking at the next term

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

∂

∂z
êz

Now evaluating (v · ∇)v

(v · ∇)v =

(
vr
∂

∂r
+

1

r
vθ
∂

∂θ
+ vz

∂

∂z

)
v

= vr
∂

∂r
v +

1

r
vθ
∂

∂θ
v + vz

∂

∂z
v

= vr
∂

∂r
(vrêr + vθ êθ + vz êz)

+
1

r
vθ
∂

∂θ
(vrêr + vθ êθ + vz êz)

+ vz
∂

∂z
(vrêr + vθ êθ + vz êz)
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Now substitute in that vr = vz = 0 and get

(v · ∇) v =
1

r
vθ
∂

∂θ
(vθêθ)

=
1

r
vθ
∂vθ
∂θ

êθ +
1

r
v2
θ

∂êθ
∂θ

= 0 +
1

r
v2
θ

∂êθ
∂θ

= −
v2
θ

r
êr

since

∂êθ
∂θ

= −êr

And note that we have

a =
Dv

Dt
= −

v2
θ

r
êr

So we can see this as centripetal acceleration. The surface force term

∇p =
∂p

∂r
êr +

1

r

∂p

∂θ
êθ +

∂p

∂z
êz

body force term

ρg = −ρgz êz

Forming the whole equation we have

−ρ
v2
θ

r
êr = −∂p

∂r
êr −

1

r

∂p

∂θ
êθ −

∂p

∂z
êz − ρgz êz

Equating the components we have

−ρ
v2
θ

r
= −∂p

∂r
0 = −1

r

∂p

∂θ
0 = −∂p

∂z
− ρgz

This gives

∂p

∂r
= ρrΩ2 ∂p

∂θ
= 0

∂p

∂z
= −ρgz

separating and integrating these back∫
∂p =

∫
ρrΩ2∂r

∂p

∂θ
= 0

∫
∂p = −

∫
ρgz∂z

The second equation shows that the pressure is not a function of θ. Integrating back the first and third
equations we have the following
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p =
1

2
ρr2Ω2 + f(z) + c

p = −ρgzz + g(r) + c

and we have

f(z) = −ρgzz

g(r) =
1

2
ρr2Ω2

and so the pressure in the rotating cylinder is given by

p(r, z) =
1

2
ρr2Ω2 − ρgzz + c

And we can find the constant c by setting r = 0 and looking at the interface height at the center of the
cylinder, at the vertex of the parabaloid shape, and call this height z0. At this point, the pressure is equal to
atmospheric pressure.

p(r = 0, z0) = −ρgzz0 + c = patm

giving the following value of the constant

c = ρgzz0 + patm

substituting this into the pressure equation we obtain the following

Pressure for solid body rotation: p(r, z) =
1

2
ρr2Ω2 + ρgz(z0 − z) + patm

To determine the shape that the air-water interface makes, we apply the boundary condition at this interface.
That is

p(r, z)
∣∣
interface = patm

And then we have

0 =
1

2
ρr2

interfaceΩ
2 − ρgzzinterface + ρgzz0

zinterface =
Ω2

2gz
r2

interface + z0
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Isobars

Can also find out the shape of the fluid by solving for isobars by evaluating dp and setting it equal to
zero. Since p = p(r, z) chain rule gives us the following for dp.

dp =

(
∂p

∂r

)
dr +

(
∂p

∂z

)
dz

dp = ρrΩ2dr − ρgzdz = 0

gzdz = rΩ2dr

Integrating back and solving for the constant of integration when r = 0 we have

z =
Ω2

2gz
r2 + h0

Vorticity

The vorticity of a fluid element in our bucket is given by the curl of the velocity vector. That is,

ω = ∇× v

=

(
êr
∂

∂r
+ êθ

1

r

∂

∂r
+ êz

∂

∂z

)
× (0êr + rΩêθ + 0êz)

= êr ×
∂

∂r
(rΩêθ) + êθ

1

r
× ∂

∂θ
(rΩêθ) + êz ×

∂

∂z
(rΩêθ)

= êr × (Ωêθ) + êθ
1

r
× (−rΩêr)

= 2Ωêz

And from this expression we can see that the vorticity everywhere in the fluid is the same.

3.3.2 Cartesian Coordinates
Velocity is given in cylindrical coordinates, so we convert it to cartesian coordinates, using an inertially

fixed coordinate system

v =

vrvθ
vz

 =

 0
rω
0



x = r cos θ

y = r sin θ

vx = −v sin θ

vy = v cos θ

39



v =

vxvy
vz

 =

−ωyωx
0


∂v

∂t
= 0

Looking at the next term

(v · ∇) v =

ρvθ
∂

∂θ
(vθêθ) = −dp

dz
êz − ρgz êz

∇ v =

[ ∂
∂x
∂
∂y

] [
vx vy

]
=

[
∂vx
∂x

∂vy
∂x

∂vx
∂y

∂vy
∂y

]

and now

(v · ∇ v =

[
vx
vy

]
·

[
∂vx
∂x

∂vy
∂x

∂vx
∂y

∂vy
∂y

]

3.4 Ideal, Irrotational, or Free Vortex
An ideal, or free vortex is one in which the flow is irrotational.

3.4.1 Derivation
Deriving the shape of an ideal vortex. We will use this assumption to first derive the velocity distribution

of the ideal vortex, and then show the shape that the free surface makes with the air is a hyperboloid.

Figure 3.2: Ideal vortex
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Derivation of Velocity Profile

The irrotational vortex has zero vorticity ω, so all of the components of ω = ∇× v must be zero. From
the definition for curl in cylindrical coordinates, these components are the following

1

r

∂vz
∂θ
− ∂vθ

∂z
= 0

∂vr
∂z
− ∂vz

∂r
= 0

1

r

∂

∂r
(vθr)−

1

r

∂vr
∂θ

= 0

The vortex is azimuthally symmetric, so all the θ derivatives are zero, that is ∂
∂θ = 0, allowing the

equations above to simplify to

∂vθ
∂z

= 0

∂vr
∂z
− ∂vz

∂r
= 0

∂

∂r
(vθr) = 0

From the fact that the vortex is azimuthally symmetric, no properties are functions of θ. Furthermore,
from the first equation we can see that vθ is not a function of z. That is

vθ = vθ(r)

From the third equation, applying product rule we have

r
∂vθ
∂r

+ vθ = 0

−
∫
∂r

r
=

∫
∂vθ
vθ

− ln(r) = ln(vθ) + c1

ln(vθ) = ln(c)− ln(r)

ln(vθ) = ln
( c
r

)
vθ =

c

r

Derivation of Pressure Distribution

Now write down Euler’s equation in each direction. The partial derivative with respect to time, also
known as the local rate of change, is zero, because at a fixed point in the fluid, the velocity is not changing
with time.

∂v

∂t
= 0
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Looking at the next term

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

∂

∂z
êz

Now evaluating (v · ∇)v

(v · ∇)v =

(
vr
∂

∂r
+

1

r
vθ
∂

∂θ
+ vz

∂

∂z

)
v

= vr
∂

∂r
v +

1

r
vθ
∂

∂θ
v + vz

∂

∂z
v

= vr
∂

∂r
(vrêr + vθ êθ + vz êz) +

1

r
vθ
∂

∂θ
(vrêr + vθ êθ + vz êz) + vz

∂

∂z
(vrêr + vθ êθ + vz êz)

Now substitute in that vr = vz = 0 and get

(v · ∇) v =
1

r
vθ
∂

∂θ
(vθêθ)

=
1

r
vθ
∂vθ
∂θ

êθ +
1

r
v2
θ

∂êθ
∂θ

= 0 +
1

r
v2
θ

∂êθ
∂θ

= −
v2
θ

r
êr

The surface force term

∇p =
∂p

∂r
êr +

1

r

∂p

∂θ
êθ +

∂p

∂z
êz

body force term

ρg = −ρgz êz
Forming the whole equation we have

−ρ
v2
θ

r
êr = −∂p

∂r
êr −

1

r

∂p

∂θ
êθ −

∂p

∂z
êz − ρgz êz

Equating the components we have

−ρ
v2
θ

r
= −∂p

∂r
0 = −1

r

∂p

∂θ
0 = −∂p

∂z
− ρgz

This gives

∂p

∂r
=
ρc2

r3

∂p

∂θ
= 0

∂p

∂z
= −ρgz

separating and integrating these back∫
∂p =

∫
ρc2

r3
∂r

∂p

∂θ
= 0

∫
∂p = −

∫
ρgz∂z
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The second equation shows that the pressure is not a function of θ. Integrating back the first and third
equations we have the following

p = −ρc
2

2r2
+ f(z) + k

p = −ρgzz + g(r) + k

and we have

f(z) = −ρgzz

g(r) = −ρc
2

2r2

and so the pressure in the rotating cylinder is given by

p(r, z) = −ρc
2

2r2
− ρgzz + k

From this equation for the pressure in the vortex, we can see that when pressure is a constant, i.e. on an
isobar, that z ≈ − 1

r2
. We can solve for the constant of integration c by saying when r = R, the radius of

the tank, patm is achieved at a height h0. Plugging this in

patm = − ρc
2

2R2
− ρgzh0 + k

k = patm +
ρc2

2R2
+ ρgzh0

The final equation is

Pressure in ideal vortex: p(r, z) =
ρc2

2

(
1

R2
− 1

r2

)
+ patm + ρgz(h0 − z)

To determine the shape that the air-water interface makes, we apply the boundary condition at this interface.
That is

p(r, z)
∣∣
interface = patm

And then we have

0 =
ρc2

2

(
1

R2
− 1

r2
interface

)
+ ρgz(h0 − zinterface)

zinterface =
c2

2gz

(
1

R2
− 1

r2
interface

)
+ h0
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Isobars

Can also find out the shape of the fluid by solving for isobars by evaluating dp and setting it equal to
zero. Since p = p(r, z) chain rule gives us the following for dp.

dp =

(
∂p

∂r

)
dr +

(
∂p

∂z

)
dz

dp =
ρc2

2

r3
dr − ρgzdz = 0

dz =
c2

2

gzr3
dr

Integrating back and solving for the constant of integration when r = 0 we have

z2 − z1 = − c2
2

2gz

(
1

r2
2

− 1

r2
1

)

z = − c2
2

2gz

(
1

r2
− 1

R2

)
+ h0

z =
c2

2

2gz

(
1

R2
− 1

r2

)
+ h0

Pretty sure this c2 is just supposed to be c.

Problem 10.11

Has thin inlet in the outer edge of tank to supply water for vortex. From original equation where we
solve for vθ

c = V R

z =
(V R)2

2gz

(
1

R2
− 1

r2

)
+ h0

3.5 Hydrostatics
Hydrostatics comes from simplifying Euler’s equation by making the acceleration of the fluid element

zero, that is a = 0, giving the following equation

−∇p+ ρg = 0
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Chapter 4

Gauss’ and Stokes’ Theorem

4.1 Gauss’ Theorem

Gauss’ Theorem:
∫
V

(∇ · v)dV =

∮
S
v · dA

4.2 Stokes’ Theorem

Stokes’ Theorem:
∫
A

(∇× v)︸ ︷︷ ︸
vorticity

·dA =

∮
C
v · dl︸ ︷︷ ︸

circulation

And Γ is called the circulation. Stokes’ theorem relates the area integral of vorticity to circulation.

Γ =

∮
C
v · dl
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Chapter 5

Control Surfaces, Volumes, and Masses

5.1 More on Conservation Equations: Forms A and B

Form A:
d

dt

∫
CV (t)

ρdV +

∫
CS(t)

ρ(v − vc) · ndA = 0

Form B:
∫
CV (t)

∂ρ

∂t
dV +

∫
CS(t)

ρvndA = 0

Mass Conservation

vrn = (v − vc) · n

v is the velocity across the control surface.

Form A:
d

dt

∫
CV (t)

ρvdV +

∫
CS(t)

ρv(v − vc) · ndA = FCV (t)

Form B:
∫
CV (t)

∂(ρv)

∂t
dV +

∫
CS(t)

ρvvndA = FCV (t)

Momentum Conservation
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Chapter 6

Viscous Flow

The Newtonian stress tensor τ contains contributions of normal stress from pressure, as well as shear
stresses in the form of the viscous stress tensor σ. Thus, the Newtonian stress tensor can be written as
the following, where for an inviscid fluid σ = 0. The viscous stress tensor is a tensor used in continuum
mechanics to model the part of the stress at a point within some material that can be attributed to the strain
rate, the rate at which it is deforming around that point.

Inviscid τ = −pI

Viscous τ = −pI + σ

Definition 1 Newton’s viscosity law (Viscosity)

viscosity = − shear stress
rate of shear deformation or strain

µ = − τ
dγ
dt

This is what it is to be a Newtonian fluid, one where the shear stress is proportional to the shear strain
rate, where the constant of proportionality is called the fluid’s viscosity.

Definition 2 Reynolds number The Reynolds number is the ratio between the inertial viscous forces in
a fluid.

Re =
ρUl

µ

Airplanes flying at high altitude (rarefied gas) the density is very low, which means the Reynolds number
is very small. This is the same effect as highly viscous flow. Basically ∇ v is the divergence of the velocity
field. Thinking about this in terms of a square fluid element in some velocity field, ∇ v describes how
this fluid element will move with time. This movement can cause the fluid element to translate, rotate, and
deform. We would like to split these three parts up.

∇ u =
1

2

(
∇ u+ (∇ u)>

)
+

1

2

(
∇ u− (∇ u)>

)
= e+ Ω
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Strain rate tensor: e =
1

2

(
∇ u+ (∇ u)>

)
Rotation rate tensor: Ω =

1

2

(
∇ u− (∇ u)>

)
Can derive from pictures

σ = 2µe

For incompressible flows with constant viscosity

∇ · v = 0

The strain rate tensor represents shearing/stretching of the fluid element.

Figure 6.1: a. Translation, b. rotation, c. shearing, d. Pure compression

6.1 Derivation of Incompressible Navier-Stokes’ Equations
The Navier Stokes’ Equation describes conservation of linear momentum for isothermal flow of an

incompressible newtonian fluid.

δz

δx
δy

p(x+ δx)p(x)

p(y)

p(y + δy)

p(z + δz)

p(z)

mg

Figure 6.2: Fluid element with pressure and gravity acting on it

Summing the forces in the x, y, and z directions we have
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pδyδz −
(
p+

∂p

∂x

)
δyδz = ρδxδyδzax

pδxδz −
(
p+

∂p

∂y

)
δxδz = ρδxδyδzay

pδxδy −
(
p+

∂p

∂z

)
δxδy − ρgzδxδyδz = ρδxδyδzaz

simplifying

Incompressible Navier-Stokes ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + ρg

ρ
Dv

Dt
= −∇p+∇ · σ + ρg

ρ
Dv

Dt
= −∇p+ µ∇2v + ρg

Fully developed flow implies that the velocity profile does not change in the fluid flow direction hence
the momentum also does not change in the flow direction. In such a case, the pressure in the flow direction
will balance the shear stress near the wall.

The assumptions of the equation are that the fluid is incompressible and newtonian; the flow is laminar
through a pipe of constant circular cross-section that is substantially longer than its diameter; and there is no
acceleration of fluid in the pipe. For velocities and pipe diameters above a threshold, actual fluid flow is not
laminar but turbulent, leading to larger pressure drops than calculated by the Hagen−Poiseuille equation.

6.2 Exact Solutions to the Navier-Stokes Equations

Some cases where an exact analytic solution to the Navier-Stokes equations exist are for the steady case
Poisseiulle flow (viscous flow through a circular pipe, or between two long parallel plates) and Coutte flow
(laminar flow between two parallel plates where one is moving). In other time dependent cases we have
Stokes’ first and second problems.

6.2.1 Poiseuille Flow in Circular Pipe

In this section we derive of Poiseuille flow in a circular pipe from Navier-Stokes equation. The laminar
flow through a pipe of uniform (circular) cross-section is one of two cases known as Hagen−Poiseuille flow.
In this case, we make the following assumptions:
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Steady:
∂

∂t
= 0

No radial or swirl velocity: vr = vθ = 0

Radially symmetric:
∂

∂θ
= 0

Fully developed:
∂vz
∂z

= 0

Gravity is neglible: g = 0

Circular Pipe Poiseuille Flow

In a large pipe we can have hydrostatic pressure variations, but usually these are very small and can be
neglected. Use the Navier-Stokes’ equation sheet to obtain the expanded equations in cylindrical coordi-
nates. Simplifying the Navier-Stokes equations using the above assumptions we have

0 = −∂p
∂r

0 = −∂p
∂θ

0 = µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)]
− ∂p

∂z

The first two equations show that the pressure in the tube is only a function of z. Because of this, the
partial derivative in the third equation can be made a full derivative, and then we can integrate this equation
back to find the an expression for the velocity along the pipe, vz .

0 = µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)]
− dp

dz

dp

dz
=
µ

r

∂

∂r

(
r
∂vz
∂r

)
∫
dp

dz
r∂r =

∫
µ∂

(
r
∂vz
∂r

)
1

2

dp

dz
r2 + c3 = µr

∂vz
∂r

1

2

dp

dz
r +

c3

r
= µ

∂vz
∂r∫ (

1

2

dp

dz
r +

c3

r

)
∂r =

∫
µ∂vz

1

4

dp

dz
r2 + c3 ln r + c4 = µvz

vz =
1

4µ

dp

dz
r2 + c1 ln r + c2
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vz =
1

4µ

dp

dz
r2 + c1 ln r + c2

Applying Boundary Conditions

Here we need to use the boundary conditions to find the constants c1 and c2.

Regular Pipe

z

r

Figure 6.3: Parabolic velocity profile for Poiseuille flow through a circular pipe

Finite velocity along center of pipe: vz(r = 0) = finite

No slip at pipe wall: vz(R) = 0

From the first boundary condition, when r = 0, vz must be finite. Looking at c1 ln r when r = 0 we see
that this term goes to infinity when r goes to zero. To prevent the velocity from going to infinity c1 must be
zero. Now look at the second boundary condition

0 =
1

4µ

dp

dz
R2 + c2

c2 = − 1

4µ

dp

dz
R2

so we have

vz =
1

4µ

dp

dz
r2 − 1

4µ

dp

dz
R2

Velocity for Poiseuille flow in regular pipe: vz = − 1

4µ

dp

dz
(R2 − r2)
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Now we can integrate the velocity across the pipe to get the average velocity and flow rate. Furthermore,
we can see that the velocity decreases away from the center of the pipe, where the velocity is maximum.
The maximum velocity is

Maximum velocity for Poiseuille flow in regular pipe: vz,max = −R
2

4µ

dp

dz

Integrating to find the average velocity and flow rate, which are related by Q = vz,maxA we have the
following, where dA = 2πrdr.

Q =

∫
A
− 1

4µ

dp

dz
(R2 − r2)dA

Q = − π

2µ

dp

dz

∫ R

0
(R2 − r2)rdr

Q = − π

4µ

dp

dz

[
1

2
R2r2 − 1

4
r4

]R
0

Volume flow rate for Poiseuille flow in regular pipe: Q = − π

8µ

dp

dz
R4

The average velocity is then given by

vz,avg =
Q

A

Average velocity for Poiseuille flow in regular pipe: vz,avg = − 1

8µ

dp

dz
R2

Conservation of mass, and the fully developed assumption gave the condition that the velocity distri-
bution along the pipe is constant. Once the Navier Stokes’ equations are solved, the equation for velocity
distribution is expressed in terms of the pressure gradient down the pipe. Since we know for any given value
of r that the velocity is constant along the z direction, we can see that the pressure gradient is constant. This
allows us to replace the pressure gradient in all of the above equations with the pressure drop along a length
of pipe

−dp
dz

=
∆p

L

In particular, we can use this expression with the flow rate equation, and solve for the pressure drop as
a function of pipe length, flow rate, and diameter, among others. From this we can see that to minimize
pressure drop we want a pipe with a large diameter.

54



Velocity vz =
1

4µ

∆p

L
(R2 − r2)

Maximum velocity vz,max =
R2

4µ

∆p

L

Average velocity vz,avg =
1

8µ

∆p

L
R2

Flow rate Q =
π

8µ

∆p

L
R4

Pressure drop ∆p =
128µLQ

πD4

Pipe Poiseuille Flow

Annulus Pipe

This problem is from 6.04 of Shapiro and Sonin problems.

z

r

No slip at pipe wall: vz(R1) = 0

No slip at pipe wall: vz(R2) = 0

0 =
1

4µ

dp

dz
R2

1 + c1 lnR1 + c2

0 =
1

4µ

dp

dz
R2

2 + c1 lnR2 + c2

Let A = 1
4µ

dp
dz

0 = AR2
1 + c1 lnR1 + c2

0 = AR2
2 + c1 lnR2 + c2
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AR2
1 + c1 lnR1 = AR2

2 + c1 lnR2

A(R2
1 −R2

2) = c1(lnR2 − lnR1)

c1 =
A(R2

1 −R2
2)

ln
(
R2
R1

)
c1 =

1
4µ

dp
dz (R2

1 −R2
2)

ln
(
R2
R1

)

c2 = − 1

4µ

dp

dz
R2

2 − c1 lnR2

c2 = − 1

4µ

dp

dz
R2

2 −
1

4µ
dp
dz (R2

1 −R2
2)

ln
(
R2
R1

) lnR2

c2 = − 1

4µ

dp

dz

R2
2 +

(R2
1 −R2

2) lnR2

ln
(
R2
R1

)


vz =
1

4µ

dp

dz
r2 + c1 ln r + c2

vz =
1

4µ

dp

dz
r2 +

 1
4µ

dp
dz (R2

1 −R2
2)

ln
(
R2
R1

)
 ln r +

− 1

4µ

dp

dz

R2
2 +

(R2
1 −R2

2) lnR2

ln
(
R2
R1

)


6.2.2 Derivation of Plane Poiseuille Flow from Navier-Stokes
Consider the following parallel plates

x

y

h

Figure 6.4: Parabolic velocity profile for plane Poisseiulle flow
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Steady:
∂

∂t
= 0

No vertical velocity: vy = 0

2-D flow:
∂

∂z
= 0

vz = 0

Fully developed:
∂vx
∂x

= 0

0 = µ
∂2vx
∂y2

− ∂p

∂x

0 = −∂p
∂y

+ ρgy

0 = −∂p
∂z

+ ρgz

Basically need to solve

0 = µ
∂2vx
∂y2

− ∂p

∂x

∂p

∂x
∂y = µ∂

∂vx
∂y[

∂p

∂x
y

]
+ C1 = µ

∂vx
∂y[

∂p

∂x
y + C1

]
∂y = µ∂vx

1

2

∂p

∂x
y2 + C1y + C2 = µvx

And using the boundary conditions, we have that vx(0) = 0 and vx(h) = 0 so

C2 = 0

C1 = −1

2

∂p

∂x
h

Velocity for plane Poisseiulle flow: vx(y) = −h
2

2µ

∂p

∂x

y

h

(
1− y

h

)
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Finding volume flow rate

6.2.3 Plane Coutte Flow

x

y
U

hh

Figure 6.5: Linear velocity profile for plane Couette flow

Couette flow is flow driven by moving one plate relative to another.

Steady:
∂

∂t
= 0

Laminar: vy = vz = 0

Symmetric:
∂

∂z
= 0

Fully developed:
∂vx
∂x

= 0

Use the Navier-Stokes’ equation sheet to obtain the expanded equations in cartesian coordinates. Sim-
plifying the Navier-Stokes equations using the above assumptions we have

0 = µ
∂2vx
∂y2

− ∂p

∂x

0 = −∂p
∂y

+ ρgy

0 = −∂p
∂z

+ ρgz

Assume the plates are really long, so

∂p

∂x
= 0

so pretty much need to solve the following, where vx on depends on the y position, so the partial
derivative can be made a full derivative

0 =
d2vx
dy2∫

0dy =

∫
d
dvx
dy
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C1 =
dvx
dy

∫
C1dy =

∫
dvx

C1y + C2 = vx

Using boundary conditions vx(y = h) = U and vx(y = 0) = 0 we get C2 = 0 and C1 = U
h . So the

final solution is

Velocity for plane Couette flow: vx(y) =
U

h
y

6.2.4 Rotational Couette Flow

Steady:
∂

∂t
= 0

Laminar: vr = vz = 0

Azimuthally symmetric:
∂

∂θ
= 0

Fully developed:
∂vx
∂x

= 0

x

y

6.2.5 Rayleigh Problem: Stoke’s First Problem
Abrupt movement of a flat plate in fluid at rest. Assuming parallel flow with no instabilities.
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x

y

U

Steady:
∂

∂t
= 0

Laminar or parallel flow: vy = vz = 0

2-D flow:
∂

∂z
= 0

Infinite plate:
∂vx
∂x

= 0

Reducing the Navier-Stokes’ equations as presented in component form on the handout by applying the
simplifying assumptions listed above gives

ρ
∂vx
∂t

= µ
∂2vx
∂y2

0 = −∂p
∂y

+ ρgy

0 = −∂p
∂z

These equations can be rearranged to give

∂vx
∂t

=
µ

ρ

∂2vx
∂y2

0 = −∂p
∂y

+ ρgy

0 = 0

The quantity µ
ρ = ν is the dynamic viscosity, and we can simplify the first equation with this. The

second equation is just hydrostatic pressure in the y-direction. So we want to solve the first equation.

∂vx
∂t

= ν
∂2vx
∂y2

This is also known as the “Heat Equation”. So basically we have a PDE, but we want to make it an ODE
somehow, so I guess we try to non-dimensionalize?
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Solution of Stokes’ First Problem: Method 1

f(ν, y, t,
vx
U

) = 0

ν :
L2

T
y : L

t : T
vx
U

: 1

and we have

n = 4

k = 2

j = n− k = 2

Pick y and t to be the primary variables

Π1 = νyatb

(
L2

T

)
LaT b = 1

a = −2, b = 1

Π1 =
νt

y2

However, we can make new Pi groups from any of the “original” Pi groups by operating on them by a
function. So, in this case it is convention (and simplifies the solution of the problem) if we pick the first Pi
group instead to be

Π∗1 =
y√
νt

However, while this simplifies the solution, we will show first the case using our original Pi group. The
second Pi group is

Π2 =
vx
U
yctd

1LcT d = 1

c = 0, d = 0
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Π2 =
vx
U

and so we have

vx
U

= φ

(
νt

y2

)
or

vx = Uφ

(
νt

y2

)
letting

η =
νt

y2

we have

vx = Uφ(η)

Now we want to use this non-dimensionalized expression to help us solve the PDE, and reduce it to an
ODE.

∂vx
∂t

= ν
∂2vx
∂y2

So we need to evaluate using the function φ the following

∂vx
∂t

= U
∂φ

∂η

∂η

∂t

∂vx
∂y

= U
∂φ

∂η

∂η

∂y

∂2vx
∂y2

= U

[
∂

∂y

(
∂φ

∂η

)
∂η

∂y
+
∂φ

∂η

∂

∂y

(
∂η

∂y

)]
∂2vx
∂y2

= U

[
∂2φ

∂η2

(
∂η

∂y

)2

+
∂φ

∂η

∂2η

∂y2

]
And now we need to evaluate

∂η

∂t
=

ν

y2

∂η

∂y
= −2

νt

y3
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∂2η

∂y2
= 6

νt

y4

(
∂η

∂y

)2

= 4
ν2t2

y6

This gives

U
∂φ

∂η

∂η

∂t
= νU

[
∂2φ

∂η2

(
∂η

∂y

)2

+
∂φ

∂η

∂2η

∂y2

]
canceling out the U and substituting in the known derivatives we get

∂φ

∂η

ν

y2
= ν

[
∂2φ

∂η2

(
4
ν2t2

y6

)
+
∂φ

∂η
6
νt

y4

]
∂φ

∂η

(
ν

y2
− 6ν

νt

y4

)
= ν

∂2φ

∂η2

(
4
ν2t2

y6

)
∂φ

∂η

(
y2 − 6νt

y2

)
=
∂2φ

∂η2

(
4
ν2t2

y4

)
∂φ

∂η
(1− 6η) =

∂2φ

∂η2

(
4η2
)

∂2φ

∂η2
=

(
1− 6η

4η2

)
∂φ

∂η

Now we separate and integrate twice

∂2φ
∂η2

∂φ
∂η

=
1− 6η

4η2

∂
∂η

∂φ
∂η

∂φ
∂η

=
1− 6η

4η2

∫
1
∂φ
∂η

∂

(
∂φ

∂η

)
=

∫
1− 6η

4η2
∂η

∫
1
∂φ
∂η

∂

(
∂φ

∂η

)
=

1

4

∫
1

η2
∂η − 6

4

∫
1

η
∂η

ln

(
∂φ

∂η

)
= − 1

4η
− 6

4
ln(η) + f1(not η)

∂φ

∂η
= exp

(
− 1

4η
− 6

4
ln(η) + C1

)
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∫
∂φ =

∫
exp

(
− 1

4η
− 6

4
ln(η) + C1

)
∂η

φ = C2

∫ η

0
exp

(
− 1

4η
− 6

4
ln(η)

)
∂η + C3

Evaluate this integral to get

φ = C2

[
−2
√
πerf

(
1

2
√
η

)]η
0

+ C3

φ = 2
√
πC2

[
1− erf

(
1

2
√
η

)]
+ C3

Now apply boundary conditions to determine C2 and C3. Looking at η in terms of y we have

y →∞⇒ η → 0 and
vx(y →∞)

U
= 0⇒ φ(η = 0) = 0

y = 0⇒ η =∞ and
vx(y = 0)

U
= 1⇒ φ(η =∞) = 1

Continuing to apply these boundary conditions, with the following

erf(0) = 0

erf(∞) = 1

First boundary condition η = 0

0 = 2
√
πC2 [1− erf(∞)] + C3

C3 = 0

Next boundary condition η →∞

1 = 2
√
πC2 [1− erf(0)] + C3

1 = 2
√
πC2

C2 =
1

2
√
π

φ(η) =

[
−erf

(
1

2
√
η

)]η
0

φ(η) =

[
−erf

(
1

2
√
η

)
+ erf(∞)

]
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φ(η) =

[
1− erf

(
1

2
√
η

)]
Now relate this function with the non-dimensional variables, or Pi groups, back to the physical variables

vx(y, t)

U
=

1− erf

 1

2
√

νt
y2



Velocity for Stokes’ first problem:
vx(y, t)

U
=

[
1− erf

(
y

2
√
νt

)]
Now, if at the beginning we had picked a different non dimensional variable, or Pi group, η the result

would have been the same, but the solution would have been easier, in particular in the evaluation of the
integral that resulted in the error function. Some extra stuff. Look at the dimensional analysis sheet and see
that the time scale for the diffusion of viscous effects into the fluid are like

tc ∼
L2

ν

and we need to pick a characteristic length scale, which is usually the boundary layer thickness δ. This gives

tc ∼
δ2

ν

Solving for δ we have
δ ∼
√
νt

And we can approximate the shear stress as a linear velocity profile over the boundary layer

τw ∼
µU

δ
∼ µU√

νt

Solution of Stokes’ First Problem: Method 2

Using different η

6.2.6 Stokes’ Second Problem
Stokes apparently had many problems. In this problem, at first I thought we could just reuse most of the

solution from Stokes’ first problem, but change the boundary condition and somehow take into account the
oscillating boundary condition because the constants of integration that we found last time are not actually
constants, but functions of not eta. Should clear up the notation on how to express arbitrary constants
that are “not a function” of some variable. This didn’t work though, and I think it is something like we
fundamentally ignored the variable omega (plate oscillation frequency) when we non-dimensionalized, so
our solution won’t work. This basically means the whole non-dimensionalizing part to turn the governing
PDE into an ODE needs to be redone.
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x

y

U cosωt

Example 2 Viscometer A motor with a cylinder attached is submerged in a viscous fluid.
The motor is set to rotate at a known rpm, and a device is used to measure the torque
required to rotate the cylinder. From this, we can figure out the viscosity of the fluid.

6.3 Nondimensionalizing the Navier-Stokes’ Equation
By nondimensionalizing the Navier-Stokes’ Equations, we can understand better what contributions like

viscosity are “large” or “small”. To express in dimensionless variables, we have to scale all the variables in
the problem using characteristic scales for the problem of interest.

x∗ =
x

l
v∗ =

v

V
p∗ =

p

ρV 2
t∗ =

t(
l
V

) =
V t

l

solving

x = x∗l v = v∗V p = p∗ρV 2 t =
lt∗

V

Where the time is called the convective time scale. And the del operator ∇ takes a different form when
nondimensionalized as well.

∇ =
[
∂
∂x

∂
∂y

∂
∂z

]
=
[

∂
∂(x∗l)

∂
∂(y∗l)

∂
∂(z∗l)

]
=

1

l

[
∂
∂x∗

∂
∂y∗

∂
∂z∗

]
=

1

l
∇∗

The Navier-Stokes’ Equation is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + ρg
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ρ

(
∂(v∗V )

∂( lt
∗

V )
+ (v∗V ) · 1

l
∇∗(v∗V )

)
= −1

l
∇∗(p∗ρV 2) +

µ

l2
∇∗2(v∗V ) + ρg

ρ

(
V 2

l

∂v∗

∂t∗
+
V 2

l
v∗ · ∇∗v∗

)
= −ρV

2

l
∇∗p∗ +

µV

l2
∇∗2v∗ + ρg

Divide through by ρV
2

l and get

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p∗ +

(
µ

ρV l

)
︸ ︷︷ ︸

1
Re

∇∗2v∗ +

(
gl

V 2

)
︸ ︷︷ ︸

1
Fr2

êz

The Froude number plays an analogous role to the Mach number in a compressible flow. From this non-
dimensionalized version of Navier-Stokes’ Equation, we can see if Re = ρV l

µ is very large, the viscous terms
in the equation of motion become very small and negligible compared to the inertial terms in the equation.
The flow is inviscid, not the fluid.

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p∗ +

1

Re
∇∗2v∗ +

gl

V 2
êz

Dv∗

Dt∗
= −∇∗p∗ +

1

Re
∇∗2v∗ +

gl

V 2
êz

Dv∗

Dt∗
= −∇∗p∗ +

1

Re
∇∗2v∗ +

1

Fr2 êz

To solve such problems, use the following procedure. Nondimensionalize the problem we are interested
in: the skinny gap considered for lubrication theory problems. Do this just like all the other dimensional
analysis problems before. Take those non dimensional quantities or Pi groups and make new ones just so
they look like one we are familiar with. Write a few inequalities based on the prescribed geometry. That is:
h << L and dh

dx << 1 which says gap is small and doesn’t expand too quickly. Solve for the dimensional
variables in terms of the nondomensional ones. Plug these dimensional variables into NSE and obtain a non
dimensionalized version of the equation. From this equation and using our assumptions of flow geometry,
we can simplify terms within the non dimensional NSE.

• why in lubrication theory can we show that inertia effects are small?

• How do we say that two non dimensional derivatives are of the same order of magnitude? To allow
us to compare terms like mckinley did in notes comparing 5/6...

• integration of multivariable functions required for the solution to Stokes’ first problem f(notz)

• Stokes flow from original nondimensionalization (see sphere moving in fluid example below) and in
general how to ignore inertial effects? ρ = 0?
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Chapter 7

Dimensional Analysis

To solve a dimensional analysis problem, use the following steps.

1. Pick the fundamental variables which describe the problem, and note the number n of these funda-
mental variables

• In picking the fundamental variables, we typically want to pick one quantity which describe the
fluid, the flow, and the geometry.

2. Write the fundamental dimensions for each fundamental variable, and note the number k of indepen-
dent fundamental dimensions.

3. Subtracting j = n − k we need j Pi groups. We need to pick k primary variables to use in making
these Pi groups.

4. Make the j Pi groups

5. Identify as many of the Pi groups as known dimensionless quantities, such as Reynolds number, Weber
number, etc.
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Example 3 Sphere falling in a viscous fluid

Fundamental variables FD, U , ρ, µ, D. n = 5. Fundamental dimensions are

FD :
ML

T 2

U :
L

T

ρ :
M

L3

µ :
M

LT
D : L

From this we see that the number of independent dimensions is k = 3. So n − k = 2 and
we need 2 Pi groups. Choose ρ, U , and D as the primary variables.

Π1 = FDρ
aU bDc Π2 = µρdU eDf

(
ML

T 2

)(
M

L3

)a(L
T

)b
(L)c = M0L0T 0

(
M

LT

)(
M

L3

)d(L
T

)e
(L)f = M0L0T 0

T−2T−b = T 0 T−1T−f = T 0

MMa = M0 MMd = M0

LL−3aLbLc = L0 L−1L−3dLeLf = L0

b = −2 f = −1

a = −1 d = −1

LL3L−2Lc = L0 L−1L3LeL−1 = L0

c = −2 e = −1

Π1 = FDρ
−1U−2D−2 Π2 = µρ−1U−1D−1
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Π1 =
FD

ρD2U2
Π2 =

µ

ρDU
=

1

Re

Π1 is essentially the drag coefficient. Since we know the Pi groups can always be off by a
constant factor, the drag coefficient usually looks like

CD =
Fd

1
2ρU

2A

where A is the projected area. And we can see that

Π1 = φ (Π2)

CD = φ

(
1

Re

)
And when the Reynolds number is very large, inertia dominates and viscous forces are
negligible. In this case, we can redo the dimensional analysis, but this time without µ. This
gives n = 4, but with k = 3 still, and so there is only one Pi group. In this case we know
that that one Pi group, which is shown below, must be a constant.

High Re:
FD

ρU2D2
= constant

What about when Reynolds number is very very small? Essentially this means inertia is
negligible, so that means ρ is small?

Low Re:
FD
xyz

= constant

Basically the drag coefficient is given as a dimensionless drag force. So take the drag force
and divide it by something that has units of force. To get a force we do pressure times
area, so depending on whether viscous or inertial pressure dominates, pick the correct one,
multiply it by an area, and we have a force.

High Re: CD = const
FD

ρU2D2

Low Re: CD = const
FD
µU
R R

2

so the drag forces in each of these cases are

High Re: FD = constρU2D2

Low Re: FD = constµUR

The drag on a sphere... when viscosity negligible:
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FD = K2ρv
2R2

when inertia is negligible

FD = K3µvR

Stokes Creeping Flow
Can get the following equations by simplifying and solving Navier-Stokes’ equations.

vr = −V cos(θ)

(
1− 3R

2r
+
R3

2r3

)

vθ = V sin(θ)

(
1− 3R

4r
+
R3

4r3

)

p = p∞ −
3

2

(µv
R

) R2

r2
cos(θ)

To find the drag force on a sphere, need the pressure gradient and the shear stress at the surface, τrθ and
integrate all the terms over the surface of a sphere

Stokes drag on a sphere FD,x =

∫
A
ex · τdA = 6πµRV = 3πµV D

and so CD of the sphere simplifies to

CD =
24

Re

Example 4 How long for a falling sphere to get to steady state velocity?
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Chapter 8

Lubrication Theory

The key requirement for lubrication theory is that the ratio h/l << 1 is small, where h is gap between
surfaces and L is the length. More than one readily identifiable characteristic length scale. If there is a clear
separation of scales h << l then we can use lubrication analysis to simplify the Navier-Stokes’ equation.
(Slender body analysis).

8.1 Cartesian Coordinates

x∗ =
x

l
y∗ =

y

h
v∗x =

vx
U

v∗y =
vy
Vc

t∗ =
t

tc

p∗ =
p

pc
p∗ =

p

ρV 2
t∗ =

t(
l
V

) =
V t

l

where Vc is a characteristic velocity. Solving for the dimensional quantities in terms of the dimensionless
ones, we have

x = x∗l y = y∗h vx = v∗xU vy = v∗yVc t = t∗tc p = p∗pc

8.1.1 Non-dimensionalization of Conservation of Mass
Starting with conservation of mass for 2-D in cartesian coordinates

∂vx
∂x

+
∂vy
∂y

= 0

we substitute these into conservation of mass and get

∂(v∗xU)

∂(x∗l)
+
∂(v∗yVc)

∂(y∗h)
= 0

Pulling out the characteristic terms we have

U

l

∂v∗x
∂x∗

+
Vc
h

∂v∗y
∂y∗

= 0

73



and so from this both of the dimensionless groups are are order one dimensionless quantities, and so we see
that the characteristic velocity must scale as

Vc ∼
Uh

l

8.1.2 Simplification of Navier-Stokes for Lubrication Theory
x-direction

The x-component of the Navier-Stokes equation in cartesian coordinates is the following

ρ

(
∂vx
∂t

+ vx
∂vx
x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= µ

[
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

]
− ∂p

∂x
+ ρgx

Simplifying these equations for 2-D flow, we get

ρ

(
∂vx
∂t

+ vx
∂vx
x

+ vy
∂vx
∂y

)
= µ

[
∂2vx
∂x2

+
∂2vx
∂y2

]
− ∂p

∂x
+ ρgx

Substituting in the dimensional variables in terms of the non dimensional variables and characteristic values,
we get

ρ

(
∂(v∗xU)

∂(t∗tc)
+ v∗xU

∂(v∗xU)

∂(x∗l)
+ v∗yV

∂(v∗xU)

∂(y∗h)

)
= µ

[
∂2(v∗xU)

∂(x∗l)2
+
∂2(v∗xU)

∂(y∗h)2

]
− ∂(p∗pc)

∂(x∗l)
+ ρgx

Pull out characteristic values to leave differential equation in dimensionless form

ρ

(
U

tc

∂v∗x
∂t∗

+
U2

l
v∗x
∂v∗x
∂x∗

+
V U

h
v∗y
∂v∗x
∂y∗

)
= µ

[
U

l2
∂2v∗x
∂x∗2

+
U

h2

∂2v∗x
∂y∗2

]
− pc

l

∂p∗

∂x∗
+ ρgx

Plug in the scaling for V which came from continuity and dividing by µ

ρ

µ

(
U

tc

∂v∗x
∂t∗

+
U2

l
v∗x
∂v∗x
∂x∗

+
U2

l
v∗y
∂v∗x
∂y∗

)
=

[
U

l2
∂2v∗x
∂x∗2

+
U

h2

∂2v∗x
∂y∗2

]
− pc
µl

∂p∗

∂x∗
+
ρ

µ
gx

Multiply both sides by h2

U

ρh2

µtc

∂v∗x
∂t∗

+
ρUh2

µl
v∗x
∂v∗x
∂x∗

+
ρUh2

µl
v∗y
∂v∗x
∂y∗

=
h2

l2
∂2v∗x
∂x∗2

+
∂2v∗x
∂y∗2

− h2pc
µUl

∂p∗

∂x∗
+
h2ρ

µU
gx

Notice now that to keep the left side of the same order, we must pick the characteristic time as

tc =
l

U

Substituting this in to get

ρUh2

µl

∂v∗x
∂t∗

+
ρUh2

µl
v∗x
∂v∗x
∂x∗

+
ρUh2

µl
v∗y
∂v∗x
∂y∗

=
h2

l2
∂2v∗x
∂x∗2

+
∂2v∗x
∂y∗2

− h2pc
µUl

∂p∗

∂x∗
+
h2ρ

µU
gx

Recognize the Reynolds number terms
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Rel
h2

l2

(
∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

)
=
h2

l2
∂2v∗x
∂x∗2

+
∂2v∗x
∂y∗2

− h2pc
µUl

∂p∗

∂x∗
+
h2ρ

µU
gx

If Rel h
2

l2
<< 1 and h2

l2
<< 1 then we can simplify this expression

0 =
∂2v∗x
∂y∗2

− h2pc
µUl

∂p∗

∂x∗
+
h2ρ

µU
gx

Rearranging terms we can redimensionalize

0 =
µU

h2

∂2v∗x
∂y∗2

− pc
l

∂p∗

∂x∗
+ ρgx

µ
∂2(Uv∗x)

∂(hy∗2)
− ∂(pcp

∗)

∂(lx∗)
+ ρgx = 0

So the governing equation of motion for lubrication theory in the x-direction is the following, where gx is
the component of gravity along the x-axis.

Lubrication theory x-direction: µ
∂2vx
∂2
− ∂p

∂x
+ ρgx = 0

We can now separate this equation and integrate it back to obtain an expression for the velocity. How-
ever, we require two boundary conditions, and these depend on the problem being solved. A free surface
corresponds to Neumann boundary conditions, those where the shear stress at the free surface are zero, and
so the relationship of velocity and shear stress says that the derivative of the velocity with respect to the
perpendicular direction are zero. Will clear this up later. Dirichlet boundary conditions are those where the
velocity itself takes a certain value rather than derivative. Integrate the governing equation back.

µ

∫
d
dvx
dy

=

∫ (
∂p

∂x
− ρgx

)
dy

µ
dvx
dy

=

(
∂p

∂x
− ρgx

)
y + C1

µ

∫
dvx =

∫ (
∂p

∂x
− ρgx

)
ydy +

∫
C1dy

µvx =
1

2

(
∂p

∂x
− ρgx

)
y2 + C1y + C2

y-direction

Taking the Navier-Stokes equation in the y-direction and substituting in the dimensional terms we have

ρ

(
∂(v∗yV )

∂(t∗tc)
+ v∗xU

∂(v∗yV )

∂(x∗l)
+ v∗yV

∂(v∗yV )

∂(y∗h)

)
= µ

[
∂2(v∗yV )

∂(x∗l)2
+
∂2(v∗yV )

∂(y∗h)2

]
− ∂(p∗pc)

∂(y∗h)
+ ρgy
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Pulling out the characteristic values so the derivatives are dimensionless

ρ

(
V

tc

∂v∗y
∂t∗

+
UV

l
v∗x
∂v∗y
∂x∗

+
V 2

h
v∗y
∂v∗y
∂y∗

)
= µ

[
V

l2
∂2v∗y
∂x∗2

+
V

h2

∂2v∗y
∂y∗2

]
− pc
h

∂p∗

∂y∗
+ ρgy

First substitute in the expression from conservation of mass that gives the scaling of V , and the characteristic
time

V ∼ Uh

l

this gives

ρ

(
Uh

l

1

tc

∂v∗y
∂t∗

+
U2h

l2
v∗x
∂v∗y
∂x∗

+
U2h

l2
v∗y
∂v∗y
∂y∗

)
= µ

[
Uh

l3
∂2v∗y
∂x∗2

+
U

hl

∂2v∗y
∂y∗2

]
− pc
h

∂p∗

∂y∗
+ ρgy

Something here about if the flow is slowly varying, the timescale in the y-direction is roughly the same as
timescale in the x-direction, so we use again

tc =
l

U

ρU2h

l2
∂v∗x
∂t∗

+
ρU2h

l2
v∗x
∂v∗x
∂x∗

+
ρU2h

l2
v∗y
∂v∗x
∂y∗

=
µUh

l3
∂2v∗y
∂x∗2

+
µU

hl

∂2v∗y
∂y∗2

− pc
h

∂p∗

∂y∗
+ ρgy

ρU2h

l2

(
∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

)
=
µUh

l3
∂2v∗y
∂x∗2

+
µU

hl

∂2v∗y
∂y∗2

− pc
h

∂p∗

∂y∗
+ ρgy

multiply both sides by

l3

Uµh

h3

l3
=

h2

Uµ

Where the first term we can see would make the coefficient on the left side become the Reynolds number
Re = ρUl

µ . Then, the second term would make the left hand side be Re
(
h
l

)3
. That way if we can say that

Re
(
h
l

)3
<< 1, then the whole left side goes away. We will see what happens to the right hand side.

Re
(
h

l

)3(∂v∗y
∂t∗

+ v∗x
∂y∗x
∂x∗

+ v∗y
∂y∗x
∂y∗

)
=

(
h

l

)3 ∂2v∗y
∂x∗2

+
h

l

∂2v∗y
∂y∗2

− pch

Uµ

∂p∗

∂y∗
+
h2

Uµ
ρgy

And so if hl << 1 and Rehl << 1 then this equation can be simplified to

h2

Uµ
ρgy −

pch

Uµ

∂p∗

∂y∗
= 0

Now we redimensionalize again, remembering that

1

U
∼ h

V l

h3

V lµ
ρgy −

pch
2

V lµ

∂p∗

∂y∗
= 0

h3

V lµ
ρgy −

h3

V lµ

∂(pcp
∗)

∂(hy∗)
= 0
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Finally we have

Lubrication theory y-direction: ρgy −
∂p

∂y
= 0

And integrating this expression back, we can have the following function for pressure, where we have
to apply boundary conditions to solve for the constant

p = ρgyy + C1

x-momentum µ
d2vx
dy2

− ∂p

∂x
+ ρgx = 0

y-momentum ρgy −
∂p

∂y
= 0

Continuity
∂vx
∂x

+
∂vy
∂y

= 0

Lubrication Theory Equations: Cartesian

8.2 Cylindrical Polar Coordinates

vr = v∗rU vz = v∗zV t = t∗
R

U
z = z∗h r = r∗R p = p∗pc

8.2.1 Conservation of Mass

1

r

∂(rvr)

∂r
+
∂vz
z

= 0

Plut in quantities expressed in terms of the dimensionless and characteristic

U

R

1

r∗
∂(r∗v∗r )

∂r∗
+
V

h

∂(v∗z)

z∗
= 0

and so from this we see

U

R
∼ V

h

V ∼ Uh

R

8.2.2 Navier-Stokes Equation
Neglect gravity and azimuthally symmetric (fully developed in the θ direction)
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r-direction

This equation is for azimuthally symmetric flow on a spinning disk.

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2
θ

r
+ vz

∂vr
∂z

)
= µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]
− ∂p

∂r

The velocity vθ was moved over to the right side and vθ = rω. Then we get

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

)
= µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]
− ∂p

∂r
+ ρω2r

Now plugging in the non dimensional quantities we get

ρ

(
∂(v∗rU)

∂(t∗RU )
+ v∗rU

∂(v∗rU)

∂(r∗R)
+ v∗zV

∂(v∗rU)

∂(z∗h)

)

= µ

[
∂

∂(r∗R)

(
1

r∗R

∂

∂(r∗R)
(r∗Rv∗rU)

)
+
∂2(v∗rU)

∂(z∗h)2

]
− ∂(p∗pc)

∂(r∗R)
+ ρω2r∗R

ρ

(
U2

R

∂v∗r
t∗

+
U2

R
v∗r
∂v∗r
∂r∗

+
V U

h
v∗z
∂v∗r
∂z∗

)
= µ

[
U

R2

∂

∂r∗

(
1

r∗
∂(r∗v∗r )

∂r∗

)
+
U

h2

∂2v∗r
∂z∗2

]
− pc
R

∂p∗

∂r∗
+Rρω2r∗

Using the relationship from continuity

V ∼ Uh

R

we get

ρU2

R

(
∂v∗r
t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

)
= µ

[
U

R2

∂

∂r∗

(
1

r∗
∂(r∗v∗r )

∂r∗

)
+
U

h2

∂2v∗r
∂z∗2

]
− pc
R

∂p∗

∂r∗
+Rρω2r∗

We want to get ReR
(
h
R

)2
<< 1 on the left hand side to cancel all those terms, so want the left hand

side to have coefficient

ReR

(
h

R

)2

=
ρUR

µ

h2

R2
=
ρUh2

µR
<< 1

so to do this, multiply both sides by

h2

µU

giving
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ReR

(
h

R

)2(∂v∗r
t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

)
=
h2

U

[
U

R2

∂

∂r∗

(
1

r∗
∂(r∗v∗r )

∂r∗

)
+
U

h2

∂2v∗r
∂z∗2

]
− pch

2

RµU

∂p∗

∂r∗
+
h2Rρ

µU
ω2r∗

simplifying

ReR

(
h

R

)2(∂v∗r
t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

)
=

[
h2

R2

∂

∂r∗

(
1

r∗
∂(r∗v∗r )

∂r∗

)
+
∂2v∗r
∂z∗2

]
− pch

2

RµU

∂p∗

∂r∗
+
h2Rρ

µU
ω2r∗

simplifying

0 =
∂2v∗r
∂z∗2

− pch
2

RµU

∂p∗

∂r∗
+
h2Rρ

µU
ω2r∗

we want to keep the pressure term, so the characteristic pressure should scale as

pc =
µUR

h2

giving

0 =
∂2v∗r
∂z∗2

− ∂p∗

∂r∗
+
h2Rρ

µU
ω2r∗

Redimensionalizing

0 =
∂2
(
vr
U

)
∂
(
z
h

)2 − ∂
(
p
pc

)
∂
(
r
R

) +
h2Rρ

µU
ω2 r

R

0 =
h2

U

∂2vr
∂z2

− R

pc

∂p

∂r
+
h2rρ

µU
ω2

0 =
h2

U

∂2vr
∂z2

− Rh2

µUR

∂p

∂r
+
h2rρ

µU
ω2

∂2vr
∂z2

− 1

µ

∂p

∂r
+
rρ

µ
ω2 = 0

And if ∂p∂r is very small this reduces to

µ
∂2vr
∂z

+ ρω2r = 0
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Chapter 9

Potential Flows

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the
velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a
valid approximation for several applications. The irrotationality of a potential flow is due to the curl of a
gradient always being equal to zero. A velocity potential is used in fluid dynamics, when a fluid occupies a
simply-connected region and is irrotational. In such a case

∇× u = 0

where u denotes the flow velocity of the fluid. As a result, u can be represented as the gradient of a
scalar function Φ:

u = ∇Φ

Φ is known as a velocity potential for u. Unlike a stream function, a velocity potential can exist in
three-dimensional flow. The stream function is defined for two-dimensional flows of various kinds. The
stream function can be used to plot streamlines In most cases, the stream function is the imaginary part of
the complex potential, while the potential function is the real part.

The general procedure for solving a potential flow problem is:

1. to guess a proper potential function Φ

2. check that it satisfies the Laplace equation∇2Φ = 0

3. check whether the corresponding velocity field v = ∇Φ satisfies the boundary conditions

9.1 Stream Function
The stream function is defined in general only for 2-D flows. There are some special cases of 3-D flows

where the stream function is used, but for this class we will consider only the stream function for 2-D flow.
Let stream function be defined so that

vx =
∂ψ

∂y
vy = −∂ψ

∂x

Definition 3 Streamline Curve that is everywhere tangent to velocity field
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Looking at a velocity vector and the streamline, we can see there are similar triangles.
So along a streamline we have

dy

dx
=
vy
vx

which can be written
vxdy − vydx = 0

Substituting the definition for stream function in

∂ψ

∂y
dy +

∂ψ

∂x
dx = 0

Notice that this is the derivative dψ as evaluated using chain rule, giving

dψ = 0

So this shows the important fact that the stream function is constant along stream lines. Schwarz’s theorem:
if ψ has continuous 2nd order partial derivatives (when is this true for the stream function?) over all space,
then

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x

∂

∂x

(
∂ψ

∂y

)
=

∂

∂y

(
∂ψ

∂x

)
∂

∂x
vx = − ∂

∂y
vy

∂vx
∂x

+
∂vy
∂y

= 0

And so stream function is defined in a way that automatically satisfies continuity for incompressible
flow. Units of stream function, as mass flow between two streamlines.

Example 5 Volumetric flow rate between two streamlines

Definition 4 Pathline Locus of points through which a particle of fixed identity has traveled

For steady flow path lines and streamlines are identical. See wikipedia streamline page video.
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Chapter 10

Vorticity

The vorticity ω is defined as the curl of the velocity field:

ω = ∇× u

Kelvin’s circulation theorem states that the circulation Γ does not change with respect to time.

Γ =

∮
C
v · dl

Recall Euler’s equation (2.1)

ρ

(
∂v

∂t
+ v · ∇ v

)
= −∇p+ ρg

Simplify for steady flow ∂v/∂t = 0 gives

ρ(v · ∇ v) = −∇p+ ρg

Use the identity, which is a general form of∇(A ·B)

1

2
∇(v · v) = v ×∇× v + v · ∇ v

ρ

(
1

2
∇(v · v)− v ×∇× v

)
= −∇p+ ρg

ρ(v ×∇× v) = ρ
1

2
∇(v · v) +∇p− ρg

And we can substitute in for gravity g = −g∇h giving

ρ(v ×∇× v) = ρ
1

2
∇(v · v) +∇p+ ρg∇h

ρ(v ×∇× v) = ∇
(
ρ

1

2
v2 + p+ ρgh

)
To look at this along a streamline take the unit vector s along a streamline and dot it onto both sides. The
directional derivative by definition is ∂f

∂s = ∇f · s. And so we have the change in Bernoulli’s along a
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streamline. On the left hand side, orthogonality of the vectors dotted into s gives zero. Looking at how this
quantity changes normal to a streamline, we take a unit vector n normal to the streamline.

ρ(v × ω) = ∇
(
ρ

1

2
v2 + p+ ρgh

)
Integrate both sides from 1 to 2.
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Chapter 11

Boundary Layers

The essential characteristics of regions described by boundary layer theory are that they are thin and that
they have steep velocity gradients that make the viscous effects important. See Panton page 418.

11.1 Derivation of the Boundary Layer Equations: Cartesian Co-
ordinates

Derivation Outline and Assumptions

• Start with Navier-Stokes equation in the x− and y-direction, and conservation of mass

• Assume steady, 2-D flow and neglect gravity to simplify the Navier-Stokes equations

• Nondimensionalize to get the boundary layer equations

– Assume during the non-dimensionalization that Re>> 1

–
(
L
δ

)2 ∼ Re >> 1 so
(
L
δ

)2
>> 1

– Laminar

Start with Navier-Stokes equation in the x-direction and conservation of mass as shown below

NSE (x): ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= µ

[
∂2

∂x2
vx +

∂2

∂y2
vx +

∂2

∂z2
vx

]
− ∂p

∂x
+ ρgx

Continuity:
∂vx
∂x

+
∂vy
∂y

= 0

The x Navier-Stokes equation can be simplified by only considering 2-D steady flow, where gravity is in the
y-direction, reducing this equation to

ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= µ

[
∂2

∂x2
vx +

∂2

∂y2
vx

]
− ∂p

∂x
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11.1.1 Non-Dimensionalize to Get Boundary Layer Equations
Define the following dimensionless quantities

x∗ =
x

L
y∗ =

y

δ
v∗x =

vx
U∞

v∗y =
vy
Vc

p∗ =
p

pc

where Vc is a characteristic velocity. Solving for the dimensional quantities in terms of the dimensionless
ones, we have

x = x∗L y = y∗δ vx = v∗xU∞ vy = vyVc p = p∗pc

Non-dimensionalizing Conservation of Mass

Substituting in the dimensional variables

U∞
L

∂v∗x
∂x∗

+
Vc
δ

∂v∗y
∂y∗

= 0

And so from this we see
U∞
L
∼ Vc

δ

and so our characteristic length scale is

L ∼ U∞δ

Vc

Nondimensionalizing Navier-Stokes Equations in x-Direction

Plugging all the dimensional variables into the simplified Navier-Stokes equation we have

ρ

(
v∗xU∞

∂(v∗xU∞)

∂(x∗L)
+ v∗yVc

∂(v∗xU∞)

∂(y∗δ)

)
= µ

[
∂2(v∗xU∞)

∂(x∗L)2
+
∂2(v∗xU∞)

∂(y∗δ)2

]
− ∂(p∗pc)

∂(x∗L)

Pulling out the dimensional quantities from the derivative terms

U2
∞
L
v∗x
∂v∗x
∂x∗

+
VcU∞
δ

v∗y
∂v∗x
∂y∗

=
µ

ρ

[
U∞
L2

∂2v∗x
∂x∗2

+
U∞
δ2

∂2v∗x
∂y∗2

]
− pc
Lρ

∂p∗

∂x∗

Dividing through

v∗x
∂v∗x
∂x∗

+
VcL

δU∞
v∗y
∂v∗x
∂y∗

= ν

[
1

LU∞

∂2v∗x
∂x∗2

+
L

δ2U∞

∂2v∗x
∂y∗2

]
− pc
ρU2
∞

∂p∗

∂x∗

Using the result of non-dimensionalizing conservation of mass, and recognizing the Reynolds number term
this becomes

v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

=
1

Re
∂2v∗x
∂x∗2

+
νL

δ2U∞

∂2v∗x
∂y∗2

− pc
ρU2
∞

∂p∗

∂x∗

Manipulating one of the terms on the right hand side this gives

v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

=
1

Re
∂2v∗x
∂x∗2

+
ν

LU∞

L2

δ2

∂2v∗x
∂y∗2

− pc
ρU2
∞

∂p∗

∂x∗
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Now we recognize this as another coefficient with the Reynolds number in it

v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

=
1

Re
∂2v∗x
∂x∗2

+
1

Re
L2

δ2

∂2v∗x
∂y∗2

− pc
ρU2
∞

∂p∗

∂x∗

We can also see what the characteristic pressure needs to be to satisfy this non dimensional equation

pc = ρU2
∞

giving

v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

=
1

Re
∂2v∗x
∂x∗2

+
1

Re
L2

δ2

∂2v∗x
∂y∗2

− ∂p∗

∂x∗

So when the Reynolds number gets big, the first term with Reynolds number in the denominator goes
away. But in order for the second viscous term to remain when the Reynolds number gets big, we need the
following scaling relationship to hold

L2

δ2
∼ Re

So this gives that δ needs to scale as

δ ∼ L√
Re

With the assumption that Reynolds number is large, and with δ scaling as above, the boundary layer equation
becomes

v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

=
1

Re
L2

δ2

∂2v∗x
∂y∗2

− ∂p∗

∂x∗

The dimensionless quantities can then be substituted back in for, yielding the dimensional form of the x-
momentum equation for a boundary layer.

Nondimensionalizing Navier-Stokes Equations in y-Direction

11.1.2 Boundary Layer Equations in Cartesian Summary
To summarize, the simplified equations are shown below.

x-momentum ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= µ

∂2vx
∂y2

− ∂p

∂x

y-momentum
∂p

∂y
= 0

Continuity
∂vx
∂x

+
∂vy
∂y

= 0

Boundary Layer Equations: Cartesian

We can see the shape that the boundary layer makes over a surface depending on the pressure gradient
in the x-direction. That is, at the surface we have vx = vy = 0, so for ∂p

∂x < 0, ∂p∂x = 0, and ∂p
∂x > 0 we can

see the ∂vx
∂y , that is, the curvature of the velocity profile.
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Displacement thickness δ∗ =

∫ ∞
0

(
1− vx(y)

U∞

)
dy

Momentum thickness θ =

∫ ∞
0

vx
U∞

(
1− vx(y)

U∞

)
dy

Momentum Integral Equation
d

dx
(U2θ) + δ∗U

dU

dx
=
τ0

ρ

δ ∼
√
νt∗

t∗ =
x

U∞
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Chapter 12

Surface Tension

Surface tension is not a property of materials but of interfaces between two (or more) materials. It is
implicit in its definition that the interface separates two kinds of materials that behave differently (otherwise
the interface would be just some imaginary surface inside the one material with no physical meaning) and
so there must always be some surface tension that sustains the physical interface. First of all, Marek is right
that a surface tension exists only between two different materials (well, I would say between two different
phases - for example water and ice)

σ is the surface tension.

p(x)

Surface tension for cylinder: ∆p =
σ

r

Surface tension for sphere: ∆p =
2σ

r

Young-Laplace equation: ∆p = σ

(
1

rx
+

1

ry

)

Contact angle α is a property of the fluid, the material it is touching, and the third fluid it is in (like air).
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Young’s equation: cos θE =
σsv − σsl
σlv

where s, l, and v are solid, liquid, and vapor, respectively, and θE is the equilibrium contact angle.
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Chapter 13

Appendix

Volume of sphere: V =
4

3
πr3

Surface area of sphere: A = 4πr2

Power of fan or pump where Ẇ is the time derivative of work, aka power, and η is the fan or pump
efficiency.

ηẆ =
1

2
ρv2Q

Work of fluid with velocity U applying force F

Wext = FU

Power is

P = FextU

Work is
W = Q∆p

13.1 Equation Summary Sheet

Bernoulli’s along streamline:
1

2
ρv2
s2 + p2 + ρgz2 =

1

2
ρv2
s1 + p1 + ρgz1

Reynolds transport theorem (form A)

d

dt

∫
CV (t)

φdV +

∫
CS

φ(v − vc) · ndA =
d

dt

∫
MV

φdV

Material Derivative
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ρ
Dv

Dt
=

(
∂v

∂t
+ v · ∇v

)
Navier Stokes Equation

ρ
Dv

Dt
= −∇p+ µ∇2v + ρg

Incompressible Navier-Stokes ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + ρg

ρ
Dv

Dt
= −∇p+∇ · σ + ρg

ρ
Dv

Dt
= −∇p+ µ∇2v + ρg

Form A:
d

dt

∫
CV (t)

ρdV +

∫
CS(t)

ρ(v − vc) · ndA = 0

Form B:
∫
CV (t)

∂ρ

∂t
dV +

∫
CS(t)

ρvndA = 0

Mass Conservation

vrn = (v − vc) · n

v is the velocity across the control surface.

Form A:
d

dt

∫
CV (t)

ρvdV +

∫
CS(t)

ρv(v − vc) · ndA = FCV (t)

Form B:
∫
CV (t)

∂(ρv)

∂t
dV +

∫
CS(t)

ρvvndA = FCV (t)

Momentum Conservation

Vorticity: ω = ∇× v

Derivative of Error Function:
d

dz
erf(z) =

2√
π
e−z

2
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13.2 Stokes
13.2.1 From Stokes First Problem

look at the dimensional analysis sheet and see that the time scale for the diffusion of viscous effects into
the fluid are like

tc ∼
L2

ν
and we need to pick a characteristic length scale, which is usually the boundary layer thickness δ. This gives

tc ∼
δ2

ν

Solving for δ we have
δ ∼
√
νtc

And we can approximate the shear stress as a linear velocity profile over the boundary layer

τw ∼
µU

δ
∼ µU√

νt

To find boundary layer growth, we have the characteristic time scale for convection

tc =
L

U

so Blasius boundary layer grows like

δ ∼
√
νL

U
which is the solution for the growth over a flat plate. But the boundary layer is usually really small compared
to the radius of curvature of non-flat surfaces, so we can pretty much use this always.

x-momentum µ
d2vx
dy2

− ∂p

∂x
+ ρgx = 0

y-momentum ρgy −
∂p

∂y
= 0

Continuity
∂vx
∂x

+
∂vy
∂y

= 0

Lubrication Theory Equations: Cartesian

13.2.2 Boundary Layer Equations in Cartesian Summary
To summarize, the simplified equations are shown below.

x-momentum ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= µ

∂2vx
∂y2

− ∂p

∂x

y-momentum
∂p

∂y
= 0

Continuity
∂vx
∂x

+
∂vy
∂y

= 0

Boundary Layer Equations: Cartesian
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We can see the shape that the boundary layer makes over a surface depending on the pressure gradient
in the x-direction. That is, at the surface we have vx = vy = 0, so for ∂p

∂x < 0, ∂p∂x = 0, and ∂p
∂x > 0 we can

see the ∂vx
∂y , that is, the curvature of the velocity profile.

Displacement thickness δ∗ =

∫ ∞
0

(
1− vx(y)

U∞

)
dy

Momentum thickness θ =

∫ ∞
0

vx
U∞

(
1− vx(y)

U∞

)
dy

Momentum Integral Equation
d

dx
(U2θ) + δ∗U

dU

dx
=
τ0

ρ

δ ∼
√
νt∗

t∗ =
x

U∞

Young-Laplace equation: ∆p = σ

(
1

rx
+

1

ry

)

Surface Tension Energy: dE = σdA

Esurf = σAsurf

13.3 What Formulas to use When
If the question says, show that a given functional form satisfies some governing equation, rather than

trying to derive the given functional form from some governing equation, instead pick a governing equation
and plug the given functional form in just to check that it satisfies it. Relating u to v: think continuity! When
asked to compare gravity and surface tension forces, compare hydrostatic pressure of the whole column of
fluid to the pressure due to surface tension as calculated from the Young-Laplace equation.

13.4 Stuff to Remember for Quals

∂ρ

∂t
+∇ · (ρv) = 0

∂vx
∂x

+
∂vy
∂y

= 0

ρ

(
∂vx
∂t

+ vx
∂vx
x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= µ

[
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

]
− ∂p

∂x
+ ρgx

∂ρ

∂t
+

1

r
(ρrvr) +

1

r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0
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ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2

∂2vz
∂θ2

+
∂2vz
∂z2

]
+ ρgz −

∂p

∂z

∆p = σ
(

1
rx

+ 1
ry

)
Boundary layer:

• Start with Navier-Stokes equation in the x− and y-direction, and conservation of mass
• Assume steady, 2-D flow and neglect gravity to simplify the Navier-Stokes equations
• Nondimensionalize to get the boundary layer equations

– Assume during the non-dimensionalization that Re>> 1

–
(
L
δ

)2 ∼ Re >> 1 so
(
L
δ

)2
>> 1

– Laminar

d

dt

∫
CV (t)

ρvdV +

∫
CS(t)

ρv(v − vc) · ndA = FCV (t)
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Part II

Dynamics and Modeling
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Chapter 14

Linear and Angular Momentum Principles

14.1 Single Particle

m

O

B

rOm

F

v

rOB

rBm

Figure 14.1: Point mass m under action of force f . Point O is fixed in inertial space, and point B is a general
point, not necessarily fixed in inertial space.

Linear momentum: p = mv

Linear momentum principle: f =
dp

dt

Torque about point O: τO = rOm × f

Moment of momentum about point O: hO = rOm × p

differentiate expression for hO
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d

dt
hO =

d

dt
rOm × p+ rOm ×

d

dt
p

but

d

dt
rOm = v

and since p = mv the cross product d
dtrOm × p = 0 and so

d

dt
hO = rOm ×

d

dt
p

and substituting the linear momentum principle
dp

dt = f this gives

d

dt
hO = rOm × f

But the right hand side is just the torque about point O, so we have

Angular momentum principle of particle about point O: τO =
d

dt
hO

About a general point B the torque and moment of momentum can be expressed as

τB = rBm × f
hB = rBm × p

Using rBm = rOm − rOB and substituting in we have

τB = (rOm − rOB)× f
= rOm × f − rOB × f
= τO −ROB × f

Torque on particle about general point B: τB = τO − rOB × f

and

hB = (rOm − rOB)× p
= rOm × p− rOB × p
= hO − rOB × p

Moment of momentum of particle about gen. point B: hB = hO − rOB × p
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Evaluate the following

d

dt
hB =

d

dt
hO −

d

dt
rOB × p− rOB ×

d

dt
p

= τO − vB × p− rOB × f

From above we have rOB × f = τO − τB and so we can write

d

dt
hB = τO − vB × p− τO + τB

= −vB × p+ τB

solving for τB this gives

Angular momentum principle of particle about gen. point B: τB =
d

dt
hB + vB × p

14.2 General System (System of Particles)

i

O

B

rOi

p
i

rOB

rBi

Figure 14.2: General system which is made up of many masses mi, with total mass M . There are forces f
i

acting on the i particles. Point O is fixed in inertial space, and point B is a general point, not necessarily fixed
in inertial space.

Linear momentum principle for general system: F ext =
d

dt
P

HO = [I]Oω
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Angular momentum principle of general system about point O: τ ext
O =

d

dt
HO

Moment of momentum of general system about point B: HB = HO + rOB × P

To find the angular momentum principle for general system about general pointB, we take the derivative
of above expression

d

dt
HB =

d

dt
HO −

d

dt
rOB × P − rOB ×

d

dt
P

= τ ext
O − vB × P − rOB × F ext

but we have that

F ext =
∑
i

f ext
i

The angular momentum principle of a system about a general point is the following

Angular momentum principle about point B: τ ext
B =

d

dt
HB + vB × P

If we have another general point A we can write

Moment of momentum of general system about pointB: HB = HA + rBA × P

14.3 Kinematics of Rigid Bodies

P

O

G

rOP

rGP

rOG

Figure 14.3: Rigid Body. PointO is fixed in inertial space, and pointB is a general point, not necessarily fixed
in inertial space.
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Velocity of point P on rigid body relative to pointG on body vP = vG + ω × rGP

14.3.1 Moment of Inertia

Moment of inertia HB = [I]Bω

To find principle axes

Iprincipal − λI = 0

14.4 Impulse
Take linear and angular momentum principle for a rigid body. The linear and angular momentum prin-

ciples for a system about a general point are given as follows.

Linear momentum principle for general system: F ext =
d

dt
P

Angular momentum principle about general point B: τ ext
B =

d

dt
HB + vB × P

and separate them and integrate them over a short period of time

∫ t=0+

t=0−
F extdt =

∫ P (0+)

P (0−)
dP∫ t=0+

t=0−
τ ext
B dt =

∫ HB(0+)

HB(0−)
dHB +

∫ t=0+

t=0−
vB × Pdt

∆P =

∫ t=0+

t=0−
F extdt

103



104



Chapter 15

Work and Energy Principles

mi

O

G

rGi

rOG

ω

Figure 15.1: Rigid Body. PointO is fixed in inertial space, and pointB is a general point, not necessarily fixed
in inertial space.

The kinetic energy of this rigid body is

T =
∑
i

1

2
mivi · vi

In a rigid body vi is given by

vi = vG + ω × ri
Substituting this in we get the following expression

T =
1

2

(∑
i

mi

)
vG · vG + vG ·

(
ω ×

∑
i

miri

)
+

1

2

∑
i

mi(ω × ri) · (ω × ri)

The middle term drops out if vG = 0 or if G is at the center of mass of the body, allowing the kinetic
energy to be written as
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KE of rigid body about CM: T =
1

2
M |vG|2 +

1

2

∑
i

mi(ω × ri) · (ω × ri)

KE of rigid body rotating about CM: T =
1

2
Mv2

G +
1

2

(
Ixω

2
x + Iyω

2
y + Izω

2
z

)

15.1 Finding Center of Mass and Moment of Inertia

Finding CM: xcm =

∑
iAiri∑
iAi

Finding CM: zcm =

∫
m zdm∫
m dm

Finding CM: zcm =

∫
V zdV∫
V dV

Parallel axis theorem: IB = I0 +Mh2

Ix =

∫
m

(y2 + z2)dm

Iy =

∫
m

(x2 + z2)dm

Iz =

∫
m

(x2 + y2)dm

constant density

Ix = ρ

∫
V

(y2 + z2)dV

Iy = ρ

∫
V

(x2 + z2)dV

Iz = ρ

∫
V

(x2 + y2)dV
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Example 6 Cylinder

X

Y

r

By definition, the moment of inertia is

Icylinder,z =

∫
V
ρ(x2 + y2)dV

The volume of a cylinder is given by

V = πr2L

A differential volume element is given by

dV = 2πrLdr

where r2 = x2 + y2. Substituting this into the expression for moment of inertia

Icylinder =

∫ R

0
ρr22πrLdr

= 2πLρ

∫ R

0
r3dr
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Icylinder =
πLρR4

2

But, for a cylinder, M = ρV = ρφR2L giving

Icylinder =
1

2
MR2

Example 7 Rectangular Cube

X

Y

r

x

y

l

h

This cube has depth w into the page. z axis is coming out of the page. By definition, the
moment of inertia is

Icube,z =

∫
V
ρ(x2 + y2)dV

The volume of a cube is given by

V = wxy

A differential volume element is given by

dV = wdxdy
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Substituting this into the expression for moment of inertia

Icube,z =

∫ l
2

− l
2

∫ h
2

−h
2

ρ(x2 + y2)wdxdy

Icube,z = ρw

[∫ h
2

−h
2

(yx2 +
y3

3
)dx

]y= l
2

y=− l
2

= ρw

∫ h
2

−h
2

(
l

2
x2 +

l3

24

)
−
(
− l

2
x2 − l3

24

)
dx

= ρw

∫ h
2

−h
2

lx2 +
l3

12
dx

= ρw

[
l

3
x3 +

l3

12
x

]x=h
2

x=−h
2

= ρw

[(
lh3

24
+
hl3

24

)
−
(
− lh

3

24
− hl3

24

)]x=h
2

x=−h
2

= ρw

(
lh3

12
+
hl3

12

)
= ρwlh

(
h2 + l2

12

)

Icube,z = m
h2 + l2

12

Example 8 Sphere
Vsphere =

4

3
πr3

Example 9 Cone
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Y

Z

X

Find the centroid. The cone is symmetric about the z axis, so the centroid is along the z
axis, and we just need to find where.

zcm =

∫
m zdm∫
m dm

Since the cone has constant density we have that dm = ρdV and so this equation becomes
the following, where the constant density is pulled out of the integral and cancels

zcm =

∫
V zdV∫
V dV

We integrate over this volume by using a stack of thin disks, and integrating from z = 0 to
z = h. Each disk has radius r. We find the formula for the disk radius with z as

r = R− R

h
z

A differential volume element is given by

dV = πr2dz

= π

(
R− R

h
z

)2

dz

= πR

(
1− 1

h
z

)2

dz

= πR

(
1− 2z

h
+
z2

h2

)
dz
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integrating

Cylinder radius r: Icylinder =
1

2
mr2

Sphere radius r: Isphere =
2

5
mr2

Rod length L about end: Irod,end =
1

3
mL2

Rod length L about center: Irod,center =
1

12
mL2
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Chapter 16

Lagrange

Holonomic system: the number of independent coordinates in the large is equal to the number of inde-
pendent admissible variations. Non-holonomic system is not holonomic. Usually the number of admissible
variations are less than the number of generalized coordinates. Usually we can see nonholonomic systems
by allowing the system to undergo large motions. Remember example of coin rolling without slipping on
table.

1. choose generalized coordinates in the large ξ1, . . . , ξn

• A complete set of coordinates should be able to exactly define the orientation of the system
without ambiguity

• An independent set of coordinates should not have any redundancy. In other words, none of
the generalized coordinates should be able to be written in terms of the others. Should be the
minimal amount of coordinates that can describe the orientation of the system

2. consider displacement about each of these coordinates one at a time, while holding all the others fixed
calculate the incremental work δW done by the external forces under the incremental displacement
δξj . Express this incremental work as δW = Ξjδξj to see what the generalized force is. Repeat this
for each of the generalized coordinates.

3. Find kinetic and potential energy T and V for the system.

4. Make lagrangian L = T − V

5. Use the formula
d

dt

(
∂L

∂ξ̇j

)
− ∂L

∂ξj
= Ξj

That gives us the equations of motion
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Chapter 17

Problems

C

O

A

B

θ

φ

θ + φψ

Looking at the arc lengths, and how the cylinder rolled inside the ring, with ψ the absolute angular
displacement of the cylinder, we have

(ψ + θ + φ)r = φR

ψ =
φ(R− r)− θr

r

ψ = φ

(
R

r
− 1

)
− θ
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and so differentiating to get the angular velocity of the cylinder

ψ̇ = φ̇

(
R

r
− 1

)
− θ̇

But we can also find this relationship using first principles: equations for motions of rigid bodies. Since
there is no slip, we will find expressions for the velocity of the material point of the ring where it touches
the cylinder (point B) and do the same for the material point of the cylinder where it touches the ring (again
pointB). By equating these two expressions, we should be able to solve for ψ̇ in terms of the two generalized
coordinates θ and φ and their derivatives and constants.

vB
∣∣
ring = ωring × rOB

ωring = θ̇êZ

rOB = rOC + rCB

rOC = R sin θêX −R cos θêY

rCB = R sin(θ + φ)êX −R cos(θ + φ)êY

vB
∣∣
ring = θ̇R(sin θ + sin(θ + φ))êY + θ̇R(cos θ + cos(θ + φ))êX

vB
∣∣
disk = vA + ωdisk × rAB

vA = vC + (θ̇ + φ̇)êZ × rOC

vC = θ̇êZ × rOC

vC = θ̇R sin θêY + θ̇R cos θêX

rCA = (R− r) sin(θ + φ)êX − (R− r) cos(θ + φ)êY

vA = θ̇R cos θêX + θ̇R sin θêY + (θ̇ + φ̇)(R− r) sin(θ + φ)êY + (θ̇ + φ̇)(R− r) cos(θ + φ)êX

vA =
(
θ̇R cos θ + (θ̇ + φ̇)(R− r) cos(θ + φ)

)
êX+

(
θ̇R sin θ + (θ̇ + φ̇)(R− r) sin(θ + φ)

)
êY

vB
∣∣
disk = vA − ωdiskêZ × (r sin(θ + φ)êX − r cos(θ + φ)êY )
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Equating the two velocities of disk and ring, and separating into X and Y components we have

θ̇R cos θ + θ̇R cos(θ + φ) = θ̇R cos θ + (θ̇ + φ̇)(R− r) cos(θ + φ)− ωdiskr cos(θ + φ)

θ̇R(sin θ + sin(θ + φ)) = θ̇R sin θ + (θ̇ + φ̇)(R− r) sin(θ + φ) = ωdiskr sin(θ + φ)

and both these equations simplify to

θ̇R = (θ̇ + φ̇)(R− r)− ωdiskr

giving

ωdisk = φ̇

(
R

r
− 1

)
− θ̇

ωdisk =

{
φ̇

(
R

r
− 1

)
− θ̇
}
êZ

Now start doing Lagrangian stuff. Start by writing an expression for the kinetic energy T and potential
energy V .

Iring = MR2

Idisk =
1

2
mr2

V = −MgR cos θ −mg(R cos θ + cos(θ + φ)(R− r))

T =
1

2
MvC · vC +

1

2
Iringω

2
ring +

1

2
mvA · vA +

1

2
Idiskω

2
disk

vC · vC = (θ̇R sin θ)2 + (θ̇R cos θ)2

= θ̇2R2

ω2
ring = θ̇2

vA · vA = (θ̇R cos θ + (θ̇ + φ̇)(R− r) cos(θ + φ))2

+ (θ̇R sin θ + (θ̇ + φ̇)(R− r) sin(θ + φ))2

vA · vA = θ̇2R2 cos2 θ + 2θ̇R cos θ(θ̇

+ φ̇)(R− r) cos(θ + φ) + (θ̇ + φ̇)2(R− r)2 cos2(θ + φ)

+ θ̇2R2 sin2 θ + 2θ̇R sin θ(θ̇ + φ̇)(R− r) sin(θ + φ)

+ (θ̇ + φ̇)2(R− r)2 sin2(θ + φ)
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vA · vA = θ̇2R2 + (θ̇ + φ̇)2(R− r)2

+ 2θ̇R cos θ(θ̇ + φ̇)(R− r) cos(θ + φ)

+ 2θ̇R sin θ(θ̇ + φ̇)(R− r) sin(θ + φ)

vA · vA = θ̇2R2 + (θ̇ + φ̇)2(R− r)2

+ 2θ̇R(θ̇ + φ̇)(R− r)
(

cos θ cos(θ + φ) + sin θ sin(θ + φ)
)

cos θ cos(θ + φ) + sin θ + sin(θ + φ) = cos(−φ) = cosφ

vA · vA = θ̇2R2 + (θ̇ + φ̇)2(R− r)2 + 2θ̇R(θ̇ + φ̇)(R− r) cosφ

ω2
disk =

{
φ̇

(
R

r
− 1

)
− θ̇
}2

T =
1

2
Mθ̇2R2 +

1

2
MR2θ̇2

+
1

2
m
(
θ̇2R2 + (θ̇ + φ̇)2(R− r)2 + 2θ̇R(θ̇ + φ̇)(R− r) cosφ

)
+

1

4
mr2

{
φ̇

(
R

r
− 1

)
− θ̇
}2

T = Mθ̇2R2

+
1

2
m
(
θ̇2R2 + (θ̇ + φ̇)2(R− r)2 + 2θ̇R(θ̇ + φ̇)(R− r) cosφ

)
+

1

4
mr2

{
φ̇

(
R

r
− 1

)
− θ̇
}2

T = Mθ̇2R2 +
1

2
mθ̇2R2

+
1

2
m(θ̇2 + 2φ̇θ̇ + φ̇2)(R− r)2

+mR(θ̇2 + φ̇θ̇)(R− r) cosφ

+
1

4
mr2

{
φ̇

(
R

r
− 1

)
− θ̇
}2

V = −MgR cos θ −mg(R cos θ + cos(θ + φ)(R− r))

L = T − V
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∂L

∂θ̇
= 2Mθ̇R2 +mθ̇R2 +m(θ̇ + φ̇)(R− r)2

+mR(2θ̇ + φ̇)(R− r) cosφ+
1

2
mr2

{
φ̇

(
R

r
− 1

)
− θ̇
}

∂L

∂θ
= MgR sin θ +mgR sin θ +mg sin(θ + φ)(R− r)

∂L

∂φ̇
= m(θ̇ + φ̇)(R− r)2 +mRθ̇(R− r) cosφ+

1

2
mr2

{
φ̇

(
R

r
− 1

)
− θ̇
}(

R

r
− 1

)
∂L

∂φ
=

17.1 Wave Equation on String
This page gives an outline of the general procedure to derive the equation of motion, propose a general

solution, and solve for constants using boundary and initial conditions (here we assume the boundary con-
ditions are both ends fixed, and zero initial conditions just to get the mode shapes and natural frequencies.

Physical assumptions: homogenous string ρA = constant, the string is perfectly elastic (no resistance
to bending), the tension is way more than gravity, and string only vibrates perfectly up and down.

1. Derive governing equation

(a) Momentum in x-direction gives T (x) is constant
(b) Do momentum in the y-direction
(c) Use small angles: sin(α+ ∂α

∂xdx) = α+ ∂α
∂xdx and tan(α) = α

The governing equation is T
∂2y

∂x2
= ρA

∂2y

∂t2

2. Propose a general separable solution y(x, t) = a(x)f(t)

(a) Rearrange the governing equation as C2 ∂2y
∂x2

= ∂2y
∂t2

and propose f(t) = Aeiωnt giving y(x, t) =
a(x)Aeiωnt and plug in

(b) The governing equation becomes C2 ∂2a
∂x2

+ ω2
na(x) = 0

(c) Propose a(x) = Beiλx and get ωn = Cλ

(d) The total solution is then y(x, t) = Bei
ωn
C
xAeiωnt which can be decomposed into sine and

cosine as y(x, t) = (B1 sin(λx) +B2 cos(λx))(A1 sin(ωnt) +A2 cos(ωnt))

3. Apply boundary and initial conditions to get the constants

(a) Apply boundary conditions y(x = 0, t) = y(x = L, t) = 0 gives B2 = 0 and B1 sin(ωnC L) =
0 so ωn

C L = nπ where n = 1, 2, 3 . . . . So ωn = Cnπ
L . The solution becomes y(x, t) =

B1 sin(ωnC x)(A1 sin(ωnt) +A2 cos(ωnt))
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(b) Apply initial conditions y(x, t = 0) = 0 givesA2 = 0 reducing solution to y(x, t) = B1 sin(ωnC x)A1 sin(ωnt)
or by combining the constants

y(x, t) = Cn sin(
ωn
C
x) sin(ωnt)

4. Now we have the governing equation, now we see if it is self-adjoint if it satisfies the following
conditions

(i)
∫
uρAvdx =

∫
vρAudx

(ii)
∫
v
(
−T ∂2

∂x2

)
udx =

∫
u
(
−T ∂2

∂x2

)
vdx

The first condition is satisfied automatically, since u and v (in our case a(x) and f(t) commute. We
show that the second condition holds by doing integration by parts twice.∫ L

0
ai

(
−T ∂2

∂x2

)
ajdx

= ai

(
−T ∂

∂x
(aj

)∣∣∣∣L
0

+

∫ L

0
T
∂

∂x
(aj)

dai
dx

dx

one more integration by parts∫ L

0
ai

(
−T ∂2

∂x2

)
ajdx

= ai

(
−T ∂

∂x
(aj

)∣∣∣∣L
0

−
(
dai
dx

(−Taj)
)∣∣∣∣L

0

+

∫ L

0
aj

(
−T ∂2

∂x2
(ai)

)
dx

and since we evaluate the first two terms on the right hand side at x = 0 and x = L, the boundary
conditions dictate that ai = aj = 0 here, thus proving the system is self-adjoint. Self-adjointness
depends on the boundary conditions.

5. Now we use the self adjoint property to show that the modes are orthogonal, where aj and ai are
orthogonal functions if they satisfy ∫ L

0
ajaidx = 0
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Chapter 18

Aircraft Equations of Motion

18.1 Introduction
The equations of rigid body motion are expanded and expressed in state space form. The expression of

the equations in this form assumes the Earth is flat, and inertially fixed. The atmosphere is stationary with
respect to the Earth.

• Show linear equations represented in stability axes . . .

• Show Taylor series expansion

• Stability derivative has dimensions. Stability coefficient does not. (Nelson pg 109)

• Express stability derivatives in terms of stability coefficients

• How to know before linearization that longitudinal and lateral equations can be decoupled?

18.1.1 Notation
I useR for rotation matrix, and T for the transformation matrix from body axes to Euler axes. Etkin uses

L for rotation matrices, and R for the transformation matrix from body axes to Euler axes. Bilimoria and
Schmidt use [T ] for rotation matrices and [L] for the transformation matrix from body axes to Euler axes.
Some of the standard notation describing the expression of vectors in various reference frames is outlined
below.

• Fa denotes reference frame a in Etkin. I will use lower-case fa to denote reference frame a.

• va describes vector v of a point along axes of reference frame a, when the referred point is obvious.

• v0 indicates the velocity of point 0.

• v0a indicates the velocity of point 0 along the axes of reference frame a.

• SUPERSCRIPT BASICALLY MEANS RELATIVE TO. Bilimoria and Schmidt use |· instead of just
a superscript, and often when there is no superscript, it is implied that it is actually relative to body
axes.

• A superscript indicates motion relative to a certain reference frame. va is the velocity of a point
relative to frame fa, when the referred point is obvious.
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• The notation vba gives the velocity of a point relative to reference frame fa described along the axes
of fb.

• To be clear, when the point of interest is not obvious, or there are multiple points, the notation v0b
a

would describe the velocity of point 0 relative to reference frame fa, described along the axes of fb.

• ω is typically reserved to describe the angular velocity of a reference frame relative to inertial axes fI .
Making use of the notation above, ωE represents the angular velocity of reference frame fE relative
to fI . (pretty sure this is from Etkin) Bilimoria and Schmidt: ω1,2 is the angular velocity of reference
frame 1 relative to reference frame 2. This implies vector is expressed in the coordinates of reference
frame 2?

• In Bilimoria and Schmidt VI is the inertial velocity of the vehicle

– I is inertial frame
– EC is Earth-centered, Earth-fixed frame
– E is Earth-surface frame
– V is vehicle carrying frame
– V is vehicle-carried frame
– A is atmosphere-fixed frame
– W is air-trajectory frame (wind axes)
– B is body-fixed frame (body axes)
– S stability axes (special set of body axes)

• The transformation Rab describes a vector transformation from being expressed in reference frame b
to being expressed in reference frame a.

• Typically capital letter denotes vector quantity

18.2 Equations of Motion
In this problem, the rigid body equations of motion shown in Equations (18.1-18.6) below were ex-

panded and expressed in a state space representation. See Steven’s and Lewis page 44 for moment equation
derivation. Poisson orientation equations page 28, and list of different kinematic equations page 46.

• Flat earth - this defined the reference frames. A constant velocity in the flat earth does not lead to
moments, but on a spherical earth it does.

• The aircraft is a rigid body - no rotating terms due to rotating turbo machinery

Force V̇B = −ωB,I × VB +RIB
Tg + FB/m

Moment ω̇B = J−1(MB − ωB,I × JωB)

Orientation Poisson: ṘIB = RIBω̂B,I

Euler’s:

Quaternion:

Location ∆̇ = RIBvB

(18.1)

(18.2)

(18.3)

(18.4)

(18.5)

(18.6)

122



Where the gravity vector in inertial coordinates g is given by

g =
[

0 0 g0

]T
Making use of the “hat” operator, the cross product operations in equations (18.1-18.2) can be written

V̇B = −ω̂BVB +RIB
Tg + FB/m

ω̇B = J−1(−ω̂BJωB + τB)

ṘIB = RIBω̂B

∆̇ = RIBvB

where the hat operator is defined as follows

ω =

ab
c

 ⇒ ω̂ =

 0 −c b
c 0 −a
−b a 0


The rotation matrix RIB is given by

RIB =

cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ
cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cosφ cos θ


with its transpose

RIB
T =

 cosψ cos θ cos θ sinψ − sin θ
cosψ sinφ sin θ − cosφ sinψ cosφ cosψ + sinφ sinψ sin θ cos θ sinφ
sinφ sinψ + cosφ cosψ sin θ cosφ sinψ sin θ − cosψ sinφ cosφ cos θ


The body linear and angular velocity components are given by the following:

ωB =

pq
r

 VB =

uv
w


Force Equations

Writing equation (18.1) out using the hat operator and the rotation matrix transpose

V̇B =

u̇v̇
ẇ

 =

 0 −r q
r 0 −p
−q p 0

uv
w

+

 −gD sin(θ)
gD sin(φ) cos(θ)
gD cos(φ) cos(θ)

+
FB
m

(18.7)

where the force vector that represents all non-gravitational forces acting on the body, in body axes is given
by:

FB =

XY
Z


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The forces included in FB are all forces other than gravitational forces. For an aircraft these forces are
aerodynamic and propulsive. Expanding equation (18.7) gives the following represent the force equations
of a generalized rigid body. These equations describe the the motion of its cg since the origin of the axis
system was placed at the cg.

u̇ = rv − qw − g0 sin(θ) +X/m

v̇ = −ru+ pw + g0 sin(φ) cos(θ) + Y/m

ẇ = qu− pv + g0 cos(φ) cos(θ) + Z/m

(18.8)

Moment equations

To expand equation (18.2), the moment of inertia matrix J is needed, as defined below. Defined (McLean
pg 21) (Stevens and Lewis pg 43)

J =

 Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz


Without any simplification, expansion of the moment equations would become very cumbersome. In gen-
eral, aircraft are symmetric about the x − z plane, mass is uniformly distributed, and the body coordinate
system is oriented such that Jxy = Jyz = 0. This allows the moment of inertia matrix to be simplified to:

J =

 Jxx 0 −Jxz
0 Jyy 0
−Jxz 0 Jzz


Sometimes the product of inertia Jxz is sufficiently small, allowing this term to be neglected. This is the
case when the aircraft body axes are aligned with the principle axes. (McLean 23) A further simplification
can be made if it is assumed that the aircraft body axes are aligned to be principal inertial axes. In this
special case the remaining product of inertia Jxz is also zero. This simplification is not often used owing
to the difficulty of precisely determining the principal inertia axes. However, the symmetry of the aircraft
determines that Jxz is generally very much smaller than Jxx, Jyy and Jzz and can often be neglected. (Cook
pg 72) The inverse of J is given by

J−1 =


Jzz

JxxJzz−Jxz2
0 Jxz

JxxJzz−Jxz2
0 1

Jyy
0

Jxz
JxxJzz−Jxz2

0 Jxx
JxxJzz−Jxz2


where sometimes Γ = JxxJzz − Jxz2 is used to simplify this expression (Stevens and Lewis pg 45, 110).
The input torque in body axes is given by

MB =

LM
N


Writing equation (18.2) out using the hat operator and simplified moment of inertia matrix gives, where
ωB =

[
p q r

]T:
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ṗq̇
ṙ

 = J−1

−
 0 −r q
r 0 −p
−q p 0

 Jxx 0 −Jxz
0 Jyy 0
−Jxz 0 Jzz

pq
r

+

LM
N


ṗq̇
ṙ

 = J−1

 0 r −q
−r 0 p
q −p 0

 Jxxp− JxzrJyyq
−Jxzp+ Jzzr

+

LM
N


ṗq̇
ṙ

 = J−1

 qrJyy + pqJxz − qrJzz
−prJxx + r2Jxz − p2Jxz + prJzz

pqJxx − qrJxz − pqJyy

+

LM
N


ṗq̇
ṙ

 = J−1

 qr(Jyy − Jzz) + pqJxz
(r2 − p2)Jxz + pr(Jzz − Jxx)

pq(Jxx − Jyy)− qrJxz

+

LM
N


ṗq̇
ṙ

 = J−1

 qr(Jyy − Jzz) + pqJxz
(r2 − p2)Jxz + pr(Jzz − Jxx)

pq(Jxx − Jyy)− qrJxz

+ J−1

LM
N


Evaluating the first term on the RHS

Jzz
JxxJzz−Jxz2

0 Jxz
JxxJzz−Jxz2

0 1
Jyy

0
Jxz

JxxJzz−Jxz2
0 Jxx

JxxJzz−Jxz2


 qr(Jyy − Jzz) + pqJxz

(r2 − p2)Jxz + pr(Jzz − Jxx)
pq(Jxx − Jyy)− qrJxz

 =


Jzz [qr(Jyy−Jzz)+pqJxz ]+Jxz [pq(Jxx−Jyy)−qrJxz ]

JxxJzz−Jxz2
(r2−p2)Jxz+pr(Jzz−Jxx)

Jyy
Jxz [qr(Jyy−Jzz)+pqJxz ]+Jxx[pq(Jxx−Jyy)−qrJxz ]

Jxz2−JxxJzz

 =


Jzz(Jyy−Jzz)qr+pqJxzJzz+pqJxz(Jxx−Jyy)−qrJxz2

JxxJzz−Jxz2
(r2−p2)Jxz+pr(Jzz−Jxx)

Jyy
Jxz(Jyy−Jzz)qr+Jxz2pq+Jxx(Jxx−Jyy)pq−JxxJxzqr

Jxz2−JxxJzz

 =


pq[JxzJzz+Jxz(Jxx−Jyy)]+qr[Jzz(Jyy−Jzz)−Jxz2]

JxxJzz−Jxz2
(r2−p2)Jxz+pr(Jzz−Jxx)

Jyy
qr[Jxz(Jyy−Jzz)−JxxJxz ]+pq[Jxz2+Jxx(Jxx−Jyy)]

Jxz2−JxxJzz

 =


Jxz(Jxx−Jyy+Jzz)pq+[Jzz(Jyy−Jzz)−Jxz2]qr

JxxJzz−Jxz2
(r2−p2)Jxz+pr(Jzz−Jxx)

Jyy
[(Jxx−Jyy)Jxx+Jxz2]pq+Jxz [−Jxx+Jyy−Jzz ]qr

Jxz2−JxxJzz


Evaluating the second term on the RHS
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
Jzz

JxxJzz−Jxz2
0 Jxz

JxxJzz−Jxz2
0 1

Jyy
0

Jxz
JxxJzz−Jxz2

0 Jxx
JxxJzz−Jxz2


LM
N

 =


JzzL+JxzN
JxxJzz−Jxz2

M
Jyy

JxzL+JxxN
JxxJzz−Jxz2


Putting everything together:

ṗ =
Jxz(Jxx − Jyy + Jzz)pq + [Jzz(Jyy − Jzz)− Jxz2]qr

JxxJzz − Jxz2 +
JzzL+ JxzN

JxxJzz − Jxz2

q̇ =
(Jzz − Jxx)pr − Jxz(p2 − r2)

Jyy
+
M

Jyy

ṙ =
[(Jxx − Jyy)Jxx + Jxz

2]pq − Jxz[Jxx − Jyy + Jzz]qr

Jxz
2 − JxxJzz

+
JxzL+ JxxN

JxxJzz − Jxz2

(18.9)

Kinematic Equations

The orientation, or kinematic equations describe the orientation of the aircraft body axes with respect to
the inertial axes. Expanding Equation (18.3) Converting from the ṘIB and RIB equation to whats below?
Also, make clear what subscript means exactly. The relationship between Euler rates and body angular
velocities is  φ̇

θ̇

ψ̇

 =

 1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

 p
q
r


where the following is the transformation matrix T

T =

 1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


Expanding

φ̇ = p+ tan(θ)[q sin(φ) + r cos(φ)]

θ̇ = q cos(φ)− r sin(φ)

ψ̇ = [q sin(φ) + r cos(φ)]/ cos(θ)

(18.10)

Navigation Equations

The location, or navigation equations describe the location of the origin of the body fixed coordinate
system with respect to the inertial axes. Writing out Equation (18.6) where ∆ =

[
x y z

]T
ẋẏ
ż

 =

cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ
cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cosφ cos θ

uv
w


126



Expanding

ẋ = u cosψ cos θ + v[cosψ sinφ sin θ − cosφ sinψ] + w[sinφ sinψ + cosφ cosψ sin θ]

ẏ = u cos θ sinψ + v[cosφ cosψ + sinφ sinψ sin θ] + w[cosφ sinψ sin θ − cosψ sinφ]

ż = −u sin θ + v cos θ sinφ+ w cosφ cos θ

(18.11)

Equation Summary

The flat-earth, nonlinear 6-DOF equations which describe the motion of an aircraft in body axes are
summarized below, and are consistent with (Stevens and Lewis pg 110). The nonlinear equations above
started by assuming

• Flat earth - this defined the reference frames. A constant velocity in the flat earth does not lead to
moments, but on a spherical earth it does.

• The aircraft is a rigid body - no rotating terms due to rotating turbo machinery

• The products of inertia Jxy = Jyz = 0 due to symmetry of the aircraft

FORCE EQUATIONS

u̇ = rv − qw − gD sin(θ) +X/m

v̇ = −ru+ pw + gD sin(φ) cos(θ) + Y/m

ẇ = qu− pv + gD cos(φ) cos(θ) + Z/m

(18.8)

U̇ = RV −QW − g sin(Θ) +X/m

V̇ = −RU + PW + g sin(Φ) cos(Θ) + Y/m

Ẇ = QU − PV + g cos(Φ) cos(Θ) + Z/m

(18.12)

MOMENT EQUATIONS

ṗ =
Jxz(Jxx − Jyy + Jzz)pq + [Jzz(Jyy − Jzz)− Jxz2]qr

JxxJzz − Jxz2 +
JzzL+ JxzN

JxxJzz − Jxz2

q̇ =
(Jzz − Jxx)pr − Jxz(p2 − r2)

Jyy
+
M

Jyy

ṙ =
[(Jxx − Jyy)Jxx + Jxz

2]pq − Jxz[Jxx − Jyy + Jzz]qr

Jxz
2 − JxxJzz

+
JxzL+ JxxN

JxxJzz − Jxz2

(18.9)
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Ṗ =
Jxz(Jxx − Jyy + Jzz)PQ+ [Jzz(Jyy − Jzz)− Jxz2]QR

JxxJzz − Jxz2 +
JzzL+ JxzN

JxxJzz − Jxz2

Q̇ =
(Jzz − Jxx)PR− Jxz(P 2 −R2)

Jyy
+
M

Jyy

Ṙ =
[(Jxx − Jyy)Jxx + Jxz

2]PQ− Jxz[Jxx − Jyy + Jzz]QR

Jxz
2 − JxxJzz

+
JxzL+ JxxN

JxxJzz − Jxz2

KINEMATIC EQUATIONS

φ̇ = p+ tan(θ)[q sin(φ) + r cos(φ)]

θ̇ = q cos(φ)− r sin(φ)

ψ̇ = [q sin(φ) + r cos(φ)]/ cos(θ)

(18.10)

Φ̇ = P + tan(Θ)[Q sin(Φ) +R cos(Φ)]

Θ̇ = Q cos(Φ)−R sin(Φ)

Ψ̇ = [Q sin(Φ) +R cos(Φ)]/ cos(Θ)

NAVIGATION EQUATIONS

ẋ = u cosψ cos θ + v[cosψ sinφ sin θ − cosφ sinψ] + w[sinφ sinψ + cosφ cosψ sin θ]

ẏ = u cos θ sinψ + v[cosφ cosψ + sinφ sinψ sin θ] + w[cosφ sinψ sin θ − cosψ sinφ]

ż = −u sin θ + v cos θ sinφ+ w cosφ cos θ

(18.11)

The nonlinear, rigid body equations of motion are now expressed in the state space representation Ẋ =
f(X,U), where the state vector X and input vector U are given by

X =
[
u v w p q r φ θ ψ x y z

]T
U =

[
X Y Z L M N

]T
The equations as represented in this form turn out to not be very useful. When considering the motion of
a spacecraft tumbling in space, forces and moments in the body axes may be able to be directly applied
using thrusters and reaction wheels. However, Euler angles are not the best way to represent the orientation
of a tumbling spacecraft, due to singularities that exist. For the motion of an aircraft, the body forces and
moments are not simply system inputs, as they are functions of the aircraft’s current motion. The forces and
moments in body axes would have to be calculated based on the current state and control surface deflections
to be of any use.

U = Ueq + u P = Peq + p Φ = Φeq + φ

V = Veq + v Q = Qeq + q Θ = Θeq + θ

W = Weq + w R = Req +R Ψ = Ψeq + ψ
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Stability Axes

sin(α) =
w

Veq

approximating

α ≈ w

Veq

18.3 Linearizing
Consider the following system

Ẋ = f(X,U) (18.13)

The equilibrium, or trim state Xeq and input Ueq satisfy

Ẋeq = f(Xeq, Ueq) = 0 (18.14)

The equilibrium state and input are found for the nominal steady, level cruise condition, and Equation (18.13)
is linearized about this trim condition as follows. Defining x and u to be state and input perturbations about
equilibrium, the state and input can be expressed as

X = Xeq + x

U = Ueq + u

Using this representation for X and U we have

Ẋ = ẋ = f(X,U)

= f(Xeq + x, Ueq + u)

Performing a Taylor series expansion, neglecting second order terms and higher

f(X,U) = f(Xeq, Ueq) +
∂f(X,U)

∂X

∣∣∣∣
eq
x+

∂f(X,U)

∂U

∣∣∣∣
eq
u+ ε

where the subscript (·)eq indicates these quantities be evaluated at the equilibrium point. With f(Xeq, Ueq) =
0, the linearization results in the state-space system given by

ẋ = Ax+Bu (18.15)

where

A =
∂f(X,U)

∂X

∣∣∣∣
eq

B =
∂f(X,U)

∂U

∣∣∣∣
eq

(18.16)

So now we need to see how to actually evaluate (18.16).

∂f(X,U)

∂X

∣∣∣∣
eq

=
∂f(X,U)

∂X1

∣∣∣∣
eq

+
∂f(X,U)

∂X2

∣∣∣∣
eq

+
∂f(X,U)

∂X3

∣∣∣∣
eq

+ . . .
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Let’s do an example from the X-force equation. The use of U as either control input vector or velocity can
be deduced by context, as can X as either the force vector in the X-direction, or to mean the state vector.

U̇ = RV −QW − g sin(Θ) +X/m

So in this example, f(X,U) = RV −QW − g sin(Θ) +X/m. First term.

∂f

∂(X1 = U)

∣∣∣∣
eq

= 0

18.3.1 Stability and Control Derivatives
The equations in the form Ẋ = f(X,U) will do little to help solve control problems for aircraft using

the current input U (total forces and moments). For a spacecraft in outer space, the input vector U is quite
reasonable: forces and torques in body axes could be generated using thrusters and/or reaction wheels.
When the thrusters are switched off, no other forces will act on the spacecraft. However, for an aircraft, the
“input” U is not so much an input, as it is itself a function of the state X , as well as other terms (such as
ẇ). That is, the forces and moments generated during flight depend on the state of the aircraft; the aircraft’s
current velocity, in addition to control surface deflections, determines the total body force.

Under steady straight and level flight, the longitudinal and lateral equations can be decoupled.

18.3.2 Longitudinal Equations
Grouping the longitudinal equations below, and dropping the dependency on the lateral variables:

u̇ = qw − g0 sin(θ) +X/m

ẇ = qu+ g0 cos(φ) cos(θ) + Z/m

q̇ =
M

Jyy

θ̇ = q

ḣ = −u sin(θ) + w cos(θ)

These equations are to be linearized about a trim point X∗. The state X and input U are given by:
X = X∗ + ∆X and U = U∗ + ∆U . The perturbation state and input ∆X and ∆U , respectively, are given
by:

∆X =
[

∆u ∆v ∆w ∆p ∆q ∆r ∆φ ∆θ ∆ψ ∆x ∆y ∆z
]T

∆U =
[
δT δe δa δr

]T
Linearizing

Linearizing for the x force equation:

mu̇ = −mqw −mg0 sin(θ) +X (18.17)

where, for an aircraft the force X is a function given by X(u, u̇, w, ẇ, q, q̇, δe, δ̇e, δT ). The linearization
yields:
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m∆u̇ =
∂X

∂u
∆u+

∂X

∂u̇
∆u̇+

(
∂X

∂w
−mq∗

)
∆w +

∂X

∂ẇ
∆ẇ

+

(
∂X

∂q
−mw∗

)
∆q +

∂X

∂q̇
∆q̇ − gD cos(θ∗)∆θ

+
∂X

∂δe
∆δe +

∂X

∂δ̇e
∆δ̇e +

∂X

∂δT
∆δT

Dividing through by m and using the following definition

Xi =
1

m

∂X

∂i

gives

∆u̇ = Xu∆u+Xu̇∆u̇+ (Xw − q∗) ∆w +Xẇ∆ẇ + (Xq − w∗) ∆q +Xq̇∆q̇ − gD cos(θ∗)∆θ

+Xδe∆δe +Xδ̇e
∆δ̇e +XδT∆δT

By studying aircraft aerodynamic data it is found that many of the stability derivatives under most flight
conditions can be neglected. These typically are (McLean pg 33, Nelson pg 149):

Xu̇, Xq Xẇ Xδe Zu̇ Zẇ Mu̇ Zδ̇e Mδ̇e

giving:

∆u̇ = Xu∆u+ (Xw − q∗) ∆w + (Xq − w∗) ∆q +Xq̇∆q̇ − gD cos(θ∗)∆θ +Xδe∆δe +XδT∆δT

evaluating this linearization about steady wings level flight:

∆u̇ = Xu∆u+Xw∆w + (Xq − w∗) ∆q − gD cos(θ∗)∆θ +Xδe∆δe +XδT∆δT

For the w equation

Zi =
1

m

∂Z

∂i

∆ẇ = Zu∆u+ Zw∆w + (Zq + u∗) ∆q − gD sin(θ∗)∆θ + Zδe∆δe + ZδT∆δT

For the q equation

∆q̇ = Mu∆u+Mu̇∆u̇+Mw∆w +Mẇ∆ẇ +Mq∆q +Mq̇∆q̇ +Mδe∆δe +Mδ̇e
∆δ̇e +MδT∆δT

Where the following definition is used
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Mi =
1

Jyy

∂M

∂i

Dropping small terms gives

∆q̇ = Mu∆u+Mw∆w +Mẇ∆ẇ +Mq∆q +Mq̇∆q̇ +Mδe∆δe +MδT∆δT

writing these equations in the form Eẋ = Ax+Bu:


1 0 0 0

0 1− Zẇ 0 0

0 −Mẇ 1 0

0 0 0 1




∆u̇

∆ẇ

∆q̇

∆θ̇

 =


Xu Xw Xq − w∗ −g0 cos(θ∗)

Zu Zw Zq + u∗ −g0 sin(θ∗)

Mu Mw Mq 0

0 0 1 0




∆u

∆w

∆q

∆θ

+


XδT Xδe

ZδT Zδe

MδT Mδe

0 0


[

∆δT

∆δe

]

where E is given by

E =


1 0 0 0

0 1− Zẇ 0 0

0 −Mẇ 1 0

0 0 0 1


with inverse given by

E−1 =


1 0 0 0

0 1
1−Zẇ 0 0

0 Mẇ
1−Zẇ 1 0

0 0 0 1


Multiplying stuff out

1 0 0 0

0 1
1−Zẇ 0 0

0 Mẇ
1−Zẇ 1 0

0 0 0 1



Xu Xw Xq − w∗ −g0 cos(θ∗)

Zu Zw Zq + u∗ −g0 sin(θ∗)

Mu Mw Mq 0

0 0 1 0

 =

IN STABILITY AXES

[
α̇
q̇

]
=

[
Zα
V0

1 +
Zq
V0

Mα Mq

] [
α
q

]
+

[
Zδe
V0
Mδe

]
δe
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18.3.3 Lateral-Directional Equations
Now the lateral equations are grouped, and the dependency on the longitudinal variables under steady

wings level flight is dropped:

v̇ = −ru+ pw + gD sin(φ) cos(θ) + Y/m

ṗ =
Jxz(−Jxx + Jyy − Jzz)pq + [Jzz(Jyy − Jzz)− Jxz2]qr

JxxJzz − Jxz2 +
JzzL− JxzN
JxxJzz − Jxz2

ṙ =
[(Jxx − Jyy)Jxx + Jxz

2]pq + Jxz[Jxx − Jyy + Jzz]qr

JxxJzz − Jxz2 +
−JxzL+ JxxN

JxxJzz − Jxz2

φ̇ = p

Following the same procedure as was done for the longitudinal equations, and using the following definitions

Yi =
1

m

∂Y

∂i
Li =

1

Jxx

∂Y

∂i
Ni =

1

Jzz

∂N

∂i

The lateral-directional linearized equations of motion can be written in the form Eẋ = Ax+Bu


1 0 0 0

0 1 −Jxz
Jxx

0

0 −Jxz
Jzz

1 0

0 0 0 1



v̇

ṗ

ṙ

φ̇

 =


Yv Yp Yr − u∗ −g0 cos(θ∗)

Lv Lp Lr 0

Nv Np Nr 0

0 1 0 0



v

p

r

φ

+


Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0


[
δa

δr

]

From Yechout page 291


1 0 0 0

0 1 −Jxz
Jxx

0

0 −Jxz
Jzz

1 0

0 0 0 1



v̇

ṗ

ṙ

φ̇

 =


Yv Yp Yr − Ueq g cos(Θeq)

Lv Lp Lr 0

Nv Np Nr 0

0 1 0 0



v

p

r

φ

+


Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0


[
δa

δr

]


1 0 0 0

0 1 −Jxz
Jxx

0

0 −Jxz
Jzz

1 0

0 0 0 1


−1

=


1 0 0 0

0 JxxJzz
JxxJzz−J2

xz

JxzJzz
J2
xz−JxxJzz

0

0 JxzJxx
J2
xz−JxxJzz

JxxJzz
JxxJzz−J2

xz
0

0 0 0 1


See also McLean page 37, where he defines primed stability derivatives, and then makes the linear model

as follows, as shown on page 49. The primed notation just takes into account coupling.
β̇

ṗ

ṙ

φ̇

 =


Yβ 0 −1 g

Ueq

Lβ Lp Lr 0

Nβ Np Nr 0

0 1 0 0



β

p

r

φ

+


0 Yδr

Lδa Lδr

Nδa Nδr

0 0


[
δa

δr

]
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SEE STENGEL BOOK PAGE 293 HAS THE FULL LINEAR EQUATIONS WILL ALL THE TERMS
IN THEM!

18.4 Overview of Equations for Spherical, Rotating Earth
In this section the equations of motion describing the flight of a vehicle in the Earth’s atmosphere are

described. The Earth is assumed to be spherical, and rotating about the z-axis of an inertially fixed reference
frame. The Earth’s atmosphere is assumed to move with the relative rotation of the Earth.

Force Equations In (Bilimoria, Schmidt)

dVA
dt

∣∣∣∣
B

+ ωB,I × VA + ωE,I × VA + ωE,I × (ωE,I ×R) = g + (FA + FT )/m (18.18)

Where VA =
[
u v w

]T and ωB,I =
[
p q r

]T. The force equations in FB are given by: (Etkin pg 123-
143)

X −mg sin θ = m[u̇+ (qEB + q)w − (rEB + r)v]

Y +mg cos θ sinφ = m[v̇ + (rEB + r)u− (pEB + p)w]

Z +mg cos θ sinφ = m[ẇ + (pEB + p)v − (qEB + q)u]

Moment Equations

J
dωB,I
dt

∣∣∣∣
B

+ ωB,I × JωB,I = MA +MT (18.19)

The moment equations in FB are given by the following, where as in the force equations, the moments L,
M , and N are computed from look-up tables.

L = Ixṗ− Iyz(q2 − r2)− Izx(ṙ + pq)− Ixy(q̇ − rp)− (Iy − Iz)qr
M = Iy q̇ − Izx(r2 − p2)− Ixy(ṗ+ qr)− Iyz(ṙ − pq)− (Iz − Ix)rp

N = Iz ṙ − Ixy(p2 − q2)− Iyz(q̇ + rp)− Izx(ṗ− qr)− (Ix − Iy)pq

Orientation Equations The orientation kinematic equation is given by

ωB,V |Eu = TωB,V |B

where the following is the transformation matrix T from body axes to Euler axes

T =

 1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


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Expressing this equation in terms of the scalar componentsφ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pvqv
rv


where pvqv

rv

 =

pq
r

−RBV
 (ωearth + τ̇) cosλ

−λ̇
−(ωearth + τ̇) sinλ


Etkin uses captial letters to denote angular velocity of the aircraft with respect to the vehicle carrying frame,
whereas Bilimoria and Schmidt use subscript v.pvqv

rv

 =

PQ
R


The following rotation matrix is used to rotate a vector A expressed in the the vehicle carrying frame fV to
be expressed in body frame fB . That is: A|B = RBVA|V . This rotation matrix RBV is given by (Bilimoria
and Schmidt use the notation [T ]):

RBV =

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


The rotation matrix from the body frame fB to the vehicle carrying frame fV is given by:

RV B = RBV
−1 = RBV

T

Kinematics:

V E
B =

uv
w

+

Wx

Wy

Wz

 (18.20)

Finally, the absolute angular velocity are shown, as well as the angular velocity components due to the
Earth’s rotation in FB:

ωB =

pq
r

 , ωEB =

pEBqEB
rEB

 = LBV

 cosλ
0

− sinλ

ωearth

Navigation Equations The trajectory kinematics are given by rotating the absolute velocity components
of FB into FEC . Bilimoria and Schmidt use [T ]T instead of LV B like Etkin. The navigation kinematic
equation is given by

VA|V = RBV
TVA|B
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 λ̇R
τ̇R cosλ

−Ṙ

 = LV B

uv
w


18.5 Representation of Uncertainties in Aircraft Model
18.5.1 Center of Gravity Shift

Start with the nonlinear 6-DOF equations of motion for flat earth. We could show the effect of the CG
shift as well using the equations of motion for a spherical, rotating earth, but essentially its the same thing.
Looking at the force and moment equations from Stevens and Lewis page 110, and shown as equations 6
and 7 above, these are just Newtons second law. In these equations, there is no specification to where the
origin of the body-fixed coordinate system is. So, when it comes to the moment equations with moment M
and moment of inertia terms J, we haven’t yet specified about which point this moment is to be taken. This
moment M is the entire moment on the vehicle? Aerodynamic, thrust, and gravity? Need to look what the
convention is for moment in body axes. Should be CG. Then, after I figure out how the moment changes
when the CG shifts in the body axis frame, need to convert to stability axes and show where the uncertain
terms are in stability axis representation. See Yechout page 153 for transformation matrix from body axes
to stability axes. Look at pitch equation

Q̇ =
M

Jyy

Consider taking moments about a fixed point on the aircraft given by the aircrafts nominal CG location.
This moment has terms due to aerodynamics, thrust, and gravity. When the CG shifts to a new location, if
we take moments about the nominal CG location, the new moment M will change, as well as Jyy. The new
Jyy can be found using parallel axis theorem. The only change in this moment is that due to gravity. So we
can write this as

Q̇ =
Mnew

Jyy,new

where

Jyy,new = Jyy +m(∆x2 + ∆z2)

where ∆x and ∆z are the CG shift, and

Mnew = M −mg(∆x cos θ + ∆z sin θ)

giving

Q̇ =
M −mg(∆x cos Θ + ∆z sin Θ)

Jyy +m(∆x2 + ∆z2)

Linearizing this equation where Q = Qeq + q and Θ = Θeq + θ and taylor series expansion for sin and
cosine

cos Θ ≈ cos Θeq − sin Θeqθ

sin Θ ≈ sin Θeq + cos Θeqθ
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[Jyy +m(∆x2 + ∆z2)]q̇ = M −Mmg

where

Mmg = mg[∆x(cos θeq − sin θeq∆θ) + ∆z(sin θeq + cos θeq∆θ)]

= mg[∆z cos θeq −∆x sin θeq]∆θ +mg[∆x cos θeq + ∆z sin θeq]

[Jyy +m(∆x2 + ∆z2)]q̇ = M −Mmg

when we linearize, will do Taylor Series expansion, drop higher order terms. Note that the moment M at
equilibrium is zero. Taylor Series expansion is given by

f(X) ≈ f(Xeq) +
∂f

∂X1

∣∣∣∣
eq
x1 +

∂f

∂X2

∣∣∣∣
eq
x2 + . . .

So using the Taylor Series expansion to get the new linearized M we have

M = Meq +
∂M

∂u
u+

∂M

∂w
w +

∂M

∂ẇ
ẇ +

∂M

∂q
q +

∂M

∂q̇
q̇ +

∂M

∂δe
δe

so

Jyy,newq̇ =

(
∂M

∂u
u+

∂M

∂w
w +

∂M

∂ẇ
ẇ +

∂M

∂q
q +

∂M

∂q̇
q̇ +

∂M

∂δe
δe

)
−Mmg

Throwing out small terms

Jyy,newq̇ =

(
∂M

∂w
w +

∂M

∂ẇ
ẇ +

∂M

∂q
q +

∂M

∂δe
δe

)
−Mmg

18.5.2 Thinking About CG Shift and Doing Moment About New CG Location
model aircraft as a lift and drag force acting at the center of pressure. Consider moments about the CG.

At equilibrium flight condition, the moment about the CG is zero. If the CG shifts to a new location and
we take moments about that new location, the pitching moment effect of the wing is still the same, but there
is additional moment due to the lift acting along a nonzero lever arm. Assume that the moment of inertia
doesn’t change due to CG shift. Then the moment about the new CG is the following, where M is moment
about the original CG location.

Q̇ =
M − L∆x cosα−D∆x sinα+D∆z cosα− L∆z sinα

Jyy

18.5.3 CG Shift

[
α̇
q̇

]
=

[
Zα
V0

1 +
Zq
V0

Mα Mq

] [
α
q

]
+

[
Zδe
Mδe

]
δe (18.21)

We wish to use the method described above to design a pitch-rate tracking adaptive controller, when only
the pitch-rate measurement is available.
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M = M(α, q, δe)

In the conventional aircraft model, the total moment about aircraft center of gravity, in the longitudinal
direction, is due to lift and drag contributions from the wing and horizontal tail. Looking at the equation for
α̇, and with the total lift for Z independent of the CG location, no uncertainty will result in this equation
due to CG shift. In the q̇ equation the moment about the y-axis M is dependent on the CG location. The
moment change due to a longitudinal CG shift ∆x is

∆M =
{

(Lw + Lt) cosα+ (Dw +Dt) sinα
}

∆x

The lift and drag terms are linear in α, and the tail contributions linear in δe. Taking the partial derivatives
of M , to determine the stability derivatives, we see perturbation in Mα and Mδe . We then see with Zδe ≈ 0[

Zα
V0

1 +
Zq
V0

Mα Mq

]
+

[
Zδe
Mδe

]
Λ
[
wp1 wp2

]
[
Zα
V0

1 +
Zq
V0

Mα Mq

]
+

[
0 0

MδeΛwp1 MδeΛwp2

]

18.5.4 Stability Derivative Uncertainties
CMα and CNβ have already shown this for pitching moment coefficient, can show same thing on lateral-

directional equations of motion for yawing moment coefficient and several others as well

18.5.5 Control Surface Effectiveness
Λ

18.5.6 Actuator Saturation
18.5.7 Guidance Control Research

Consider the following linear model describing the longitudinal flight dynamics of an aircraft, where α
is the angle-of-attack, q the pitch rate, θ is pitch angle, and h is the altitude. It is assumed in this problem that
α is not measurable, but acceleration sensors aligned with the vehicle body axes are, where az is the vertical
acceleration. The follow equations show the dynamics of this system with the available system outputs.

α̇
q̇

θ̇

ḣ

 =


Zα
Veq

1 +
Zq
Veq

0 0

Mα + Mα̇Zα
Veq

Mq +Mα̇ 0 0

0 1 0 0
−Veq 0 Veq 0



α
q
θ
h

+


Zδe
Veq

Mδe

0
0

 δe

az
q
θ
h

 =


Zα 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



α
q
θ
h

+


Zδe
0
0
0

 δe
The control goal is to design an adaptive controller which will allow the vehicle to accurately track a

reference altitude trajectory in the presence of uncertainties.
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Analysis of Open-Loop Dynamics

Transfer function from elevator to acceleration is relative degree zero, non-minimum phase. The altitude
is essentially the acceleration twice integrated.

az
δe

=
−18.6(s+ 4.894)(s− 4.354)

s2 + 0.9414s+ 1.816

18.6 Linear Aircraft Models
In the previous chapter, simple linear models describing the longitudinal and lateral-directional dynam-

ics of a flight vehical were derived from general equations of motion by linearization, decoupling, and order
reduction.

[
α̇
q̇

]
=

[
Zα
V0

1 +
Zq
V0

Mα Mq

] [
α
q

]
+

[
Zδe
V0
Mδe

]
δe

Az = Zαα+ Zδeδe


β̇

ṗ

ṙ

φ̇

 =


Yβ 0 −1 g

Ueq

Lβ Lp Lr 0

Nβ Np Nr 0

0 1 0 0



β

p

r

φ

+


0 Yδr

Lδa Lδr

Nδa Nδr

0 0


[
δa

δr

]

18.7 Actuator Models
This note shows the block diagram representation for a second order actuator with rate and limit sat-

urations. The second order transfer function describing the deflection of the actuator due to an actuator
command is:

δ

δcmd
=

ωn
2

s2 + 2ζωns+ ωn2

Cross multiplying:

δs2 + δ2ζωns+ δωn
2 = δcmdωn

2

δ̈ + 2ζωnδ̇ + δωn
2 = δcmdωn

2

Solving for δ̈

δ̈ = ωn
2(δcmd − δ)− 2ζωnδ̇

This expression can be used to begin the block diagram representation. Once δ̈ is had, it is integrated to get
δ̇ and fed back to complete the block diagram.
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δcmd
ΣΣ
−−

ωn

2 δ̈ 1

s

1

s

δ̇

2ζωn

rate
saturation

δ

deflection
saturation

δ

Figure 18.1: Second order actuator block diagram

140



Part III

Linear Systems

141





Chapter 19

Real Analysis

19.1 Notation and Preliminaries

YY

X

XX

S

Figure 19.1: From left to right: X ∩ Y , X ∪ Y , and Xc

19.1.1 Random Stuff
• Zero (0) is even

• Rational numbers are countable

19.2 Chapter 1
• associativity: (x+ y) + z = x+ (y + z) and (xy)z = x(yz)

• commutativity: x+ y = y + x and xy = yx

• distributivity: x(y + z) = xy + xz

Definition 5 Fundamental theorem of arthimetic Every positive integer ≥ 2 can be written as a prod-
uct of primes in exactly one way up to rearrangements. See Hully and Wright Introduction to the Theory of
Numbers sec 2.11.

Remark 1 A set is completely characterized by the elements in it. That is to say if X and Y are sets then
X = Y if and only if, for all x, x ∈ X if and only if x ∈ Y .

Definition 6 Proper subset A set X is a proper subset of Y if X ⊂ Y but X 6= Y .
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Example 10 Pythagorean Proposition There exists no such rational number r such that
r2 = 2.

PROOF By contradiction. Suppose r = m/n is a rational number, that r2 = 2, and that m
and n have no common factor.

r =
m

n

r2 =
m2

n2
= 2

Rearranging the fraction
m2 = 2n2

Any integer n when squared remains an integer. When this integer n2 is multiplied by two,
the resulting quantity 2n2 is an even number. Thus m2 is an even number, and thus m must
be even as well. Since m is an even number, it can be expressed as the following, for some
integer k.

m = 2k

Substituting this expression into the above gives

2k2 = n2

By the same argument as before, n is also an even number. With m and n both even, they
have a common factor, 2, and the beginning supposition is contradicted.

Definition 7 1.5 - Order If S is a set, a relation < is an order on S if:

(i) for any x, y ∈ S exactly one of the following holds

x < y x = y x > y

(ii) For any x, y, z ∈ S x < y and y < z implies x < z

The relation < acts on the elements of the set S. Some examples of sets on which the order is defined are N,
Z, and Q, where < is the usual relation, that is < means for r, s ∈ Q that r < s means s − r is a positive
rational number.

Another example is the set L = {strings of letters} where the relation < is lexicographic order. That is,
the order operation is defined on L that puts strings of letters (words) in order as they are found in the
dictionary: alphabetical order.

A non-example is subsets of N under C? That {1, 2} not comparable to {3, 4}? It is important to think
beyond the traditional greater than or less than. We will see later a way in which the complex numbers can
be an ordered set, although the complex numbers cannot be an ordered field.

Definition 8 1.6 - Ordered set An ordered set is a set S in which an order relation is defined.

Definition 9 1.7 - Bounded above / upper bound if S is an ordered set and E ⊂ S then E is bounded
above if there is a β ∈ S such that β ≥ γ ∀γ ∈ E. Such a β is called an upper bound for E.
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Definition 10 1.8 - Least upper bound / supremum If E ⊂ S is bounded above and if α ∈ S obeys both
of the following

(i) α is an upper bound for E

(ii) If γ < α then γ is not an upper bound of E

then α is the least upper bound of E, and we write α = supE. The supremum α need not be a member of
E.

Similarly define: bounded below/lower bound, and greatest lower bound/infimum.

Definition 11 1.10 - Least upper bound property An ordered set S has the least upper bound property
if any set E ⊂ S which is bounded above has a least upper bound. That is that supE exists in S.

Example 11 N or Z under <.

Example 12 The following is a counterexample. Q under <. The set E = {p ∈ Q|p2 <
2} is bounded above but has no least upper bound.

Theorem 1 1.11 If S is an ordered set with the least upper bound property, and B ⊂ S is nonempty and
bounded below, then L = {β ∈ S : β is a lower bound for B} is bounded above and supL = inf B

PROOF Recall the definition for least-upper-bound property which states that the supB exists in S.

S

L B

α = supL = inf B

1. Since B is bounded below, L is not empty.

2. By 1.7 Definition for lower bound, L ⊂ S consists of all y ∈ S such that y ≤ x for every x ∈ B.

L = {y ∈ S | y ≤ x ∀x ∈ B}

3. Every x ∈ B is an upper bound of L by 1.7 Definition.

4. Thus L is bounded above

5. Because S is an ordered set with the least-upper-bound property, L ⊂ S, and L is bounded above, by
definition α = supL exists in S.

6. If we take a value γ with γ < α, then γ is not an upper bound of L, and γ /∈ B.
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7. Every x ∈ B is an upper bound for L, but we don’t know yet that the least upper bound of L lives in
B. All we know is that the least upper bound α is equal to or less than the smallest upper bound that
lives in B. That is α ≤ x for every x ∈ B.

8. From step (2) where the definition for a bound was used to define L, we see that α ∈ L.

9. If we pick a β > α, then β /∈ L since α is an upper bound for L, so picking something larger cannot
be in L.

10. Since L is the set of lower bounds of B, and that if we take a value β > α that β /∈ L then β is not a
lower bound. But we already showed that α ∈ L was a lower bound for B. Therefore α is the greatest
lower bound.

11. α = inf B

19.2.1 Fields
Remark 2 The neutral element 0 defined in the A4 the field axiom for addition is unique.

PROOF Proof strategy: assume there exists another neutral element 0̂ and then show that the two neutral
elements must be equal. The definition of neutral element is a 0 such that 0 + x = x ∀x ∈ F. Following
this definition:

0 + x = x ∀x ∈ F
0̂ + x = x ∀x ∈ F

Using these definitions for our two neutral elements, both of the following must hold

0 + 0̂ = 0̂

0̂ + 0 = 0

giving
0̂ = 0̂ + 0 = 0

and so the two neutral elements must be in fact the same

0̂ = 0

Remark 3 The additive inverse element defined in the A5 the field axiom for addition is unique.

PROOF Proof strategy: assume there exists another inverse element of a and show that the two inverse
elements of a must be the same.

Some notes on fields. Given the field axioms, the neutral elements for addition and multiplication are
unique. In addition, the additive and multiplicative inverse elements are also unique.

Theorem 2 1.20 - Archimedean Principle For every x, y ∈ R and x > 0 there exists n ∈ N such that

nx > y
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R

x 2x 3x
. . .

(n− 1)x y nx

PROOF (By contradiction) Let A = {nx | n ∈ N}. To prove that nx > y we want to assume the opposite,
and show how this leads to a contradiction. So, the opposite of nx > y is to assume that

nx ≤ y

for all n ∈ N. If this was true, then y would be an upper bound of A. By 1.19 Theorem, R has the least
upper bound property, giving, with 1.10 Definition, that the least upper bound of A must be in R. This is
stated

α = supA α ∈ R

So, since x > 0 and α = supA, we can say

α− x < α

Since we defined α to be the least upper bound, and x > 0, then taking a value α − x will not be an upper
bound of A. Since A is the set of mx where m ∈ N, with an upper bound α, if we take a value α− x which
is less than α, we know there will be some m ∈ N such that mx ∈ A. This means then that for some m ∈ N

α− x < mx

Rearranging this expression we get
α < x(m+ 1)

We see that x(m + 1) lives in A since m + 1 is a natural number. However, we said that α was the least
upper bound of A. That is, no value which lives in A can possibly be larger than α. This is a contradiction
to our original assumption that nx ≤ y ∀n ∈ N, so we know then that

nx > y

Corollary That is, for every x ∈ R, x > 0 there is n ∈ N such that

0 < 1/n < x

PROOF Assume there is an x ∈ R with x > 0 such that x < 1/n for all n ∈ N. If this were true, we would
get 0 < x < 1/n, and cross-multiplying would give 1/x > n for all n ∈ N.

Corollary For every real number x there is an integer n such that x < n ≤ x+ 1.

PROOF

Corollary This corollary to the Archimedean Principle states that between any two real numbers there is
a rational number.

PROOF Start with two real numbers x, y ∈ R on the number line, with y > x. We want to show that
somewhere between x and y there is a rational number, no matter how close x and y are together. If
y = x + 1, than we know there will be an integer on this interval. The thought process is: as x and y get
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closer together, we can scale the interval up by an integer and stretch it out until x and y are a distance of 1
apart, find the integer that is between x and y, and then divide this integer by how much we had to scale up
the interval, giving us a natural number.

The quantity z = y − x is a real number. We know from the corollary that states there are no infinitely
small numbers that 1/n < z. Or, 1/n < y − x. We then “stretch” this interval by n, multiplying both sides
of the inequality.

1 < ny − nx

rearranging
1 + nx < ny

Now it is also clear that nx < nx + 1 and we also know there must be an integer m in between nx and
nx+ 1.

nx < m < 1 + nx < ny

Now divide back through by n
x < m/n < (1 + nx)/n < y

and the proof is complete

x <
m

n
<
x+ 1

n
< y

Theorem 3 1.21 Theorem - Extraction of nth roots / uniqueness of nth roots
Definition 12 Axiom of Completeness Every set of real numbers that is bounded above has a least upper
bound.

Definition 13 Well-Ordering Principle Every non-empty set of natural numbers has a least element.

Theorem 4 1.35 - Cauchy-Schwartz Inequality For complex numbers a1, . . . , an; b1, . . . , bn ∈ C, or
aj , bj ∈ C then ∣∣∣∣ n∑

j=1

ajbj

∣∣∣∣2 ≤ n∑
j=1

|aj |2
n∑
j=1

|bj |2

For real vectors in Rn this is expressed as

|xTy| ≤ ‖x‖‖y‖

PROOF First define the following quantities. Let

A =
n∑
j=1

|aj |2 ∈ R B =
n∑
j=1

|bj |2 ∈ R C =
n∑
j=1

ajbj ∈ C

and let both A > 0 and B > 0, or the Cauchy-Schwartz inequality is trivial. Start by evaluating the
following expression

n∑
j=1

|Baj − Cbj |2 =?
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Letting z = Baj − Cbj this can be written

n∑
j=1

|z|2 =?

Using Rudin Theorem 1.32 the absolute value of a complex number z is given by |z| = (zz)1/2, allowing
the above expression to be written

n∑
j=1

|z|2 =
n∑
j=1

[(zz)1/2]2 =
n∑
j=1

zz

Substituting back in z = Baj − Cbj
n∑
j=1

|Baj − Cbj |2 =
n∑
j=1

(Baj − Cbj)(Baj − Cbj)

Using the property from Rudin Theorem 1.31 for complex numbers z and w that z + w = z+w, zw = z w
, and Definition 1.30 that the conjugate of a real number is just itself gives

n∑
j=1

|Baj − Cbj |2 =

n∑
j=1

(Baj − Cbj)(Baj − Cbj)

n∑
j=1

|Baj − Cbj |2 =

n∑
j=1

(Baj − Cbj)(B aj − C bj)

n∑
j=1

|Baj − Cbj |2 =
n∑
j=1

(Baj − Cbj)(Baj − C bj)

Multiplying out
n∑
j=1

|Baj − Cbj |2 =

n∑
j=1

B2ajaj −BajC bj − CbjBaj + CbjC bj

n∑
j=1

|Baj − Cbj |2 =

n∑
j=1

B2ajaj −
n∑
j=1

BajC bj −
n∑
j=1

CbjBaj +

n∑
j=1

CbjC bj

n∑
j=1

|Baj − Cbj |2 = B2
n∑
j=1

ajaj −BC
n∑
j=1

ajbj − CB
n∑
j=1

bjaj + CC
n∑
j=1

bjbj

Using Rudin Definition 1.32 for the absolute value of a complex number
n∑
j=1

|Baj − Cbj |2 = B2
n∑
j=1

|aj |2 −BC
n∑
j=1

ajbj − CB
n∑
j=1

bjaj + CC
n∑
j=1

|bj |2

Substituting in the expressions for A, B, and C
n∑
j=1

|Baj − Cbj |2 = B2A−BCC − CB
n∑
j=1

bjaj + CCB
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n∑
j=1

|Baj − Cbj |2 = B2A− CB
n∑
j=1

bjaj

Because C =
∑n

j=1 ajbj then C =
∑n

j=1 ajbj allowing the above to be written

n∑
j=1

|Baj − Cbj |2 = B2A− CBC

n∑
j=1

|Baj − Cbj |2 = B2A−B|C|2

n∑
j=1

|Baj − Cbj |2 = B(AB − |C|2)

Because (by Rudin Theorem 1.33) the absolute value of a complex quantity is always non-negative, the left
hand side of the above equation is non-negative. Therefore

B(AB − |C|2) ≥ 0

Since B > 0 then
AB − |C|2 ≥ 0

Finally, substituting back in the expressions for A, B, and C

n∑
j=1

|aj |2
n∑
j=1

|bj |2−
∣∣∣∣ n∑
j=1

ajbj

∣∣∣∣2 ≥ 0

rearranging ∣∣∣∣ n∑
j=1

ajbj

∣∣∣∣2 ≤ n∑
j=1

|aj |2
n∑
j=1

|bj |2

which is the desired inequality.

Example 13 Prove the following inequality for vectors x and y∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x+ y‖

PROOF First start by expressing x as

x = x+ y − y

with norm
‖x‖ = ‖x+ y − y‖

using a = x+ y and b = −y
‖x‖ = ‖a+ b‖
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By the triangle inequality

‖x‖ = ‖a+ b‖ ≤ ‖a‖+ ‖b‖ = ‖x+ y‖+ ‖ − y‖

‖x‖ ≤ ‖x+ y‖+ ‖y‖

giving

‖x‖ − ‖y‖ ≤ ‖x+ y‖

Next express y as
y = y + x− x

with norm
‖y‖ = ‖y + x− x‖

now using a = x+ y and c = −x

‖y‖ = ‖a+ c‖

By the triangle inequality

‖y‖ = ‖a+ c‖ ≤ ‖a‖+ ‖c‖ = ‖x+ y‖+ ‖ − x‖

‖y‖ ≤ ‖x+ y‖+ ‖x‖

giving

‖y‖ − ‖x‖ ≤ ‖x+ y‖

If ‖x‖ > ‖y‖ then
∣∣‖x‖ − ‖y‖∣∣ = ‖x‖ − ‖y‖ and the inequality is satisfied by the first

boxed equation. If ‖y‖ > ‖x‖ then
∣∣‖x‖ − ‖y‖∣∣ = ‖y‖ − ‖x‖ and the inequality is then

satisfied by the second equation. That is, for real numbers a and b

|a− b| =


a− b if a > b

0 if a = b

b− a, if a < b

so saying |a − b| < x is the same as saying a − b < x and b − a < x. So another way
to think about the proof is to prove two things: Prove both of the following inequality for
vectors x and y

‖x‖ − ‖y‖ ≤ ‖x+ y‖

and
‖y‖ − ‖x‖ ≤ ‖x+ y‖

Which is what was done.
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19.2.2 Problems

Example 14 Rudin Ch1 Prob 8 No order can be defined in the complex field that turns it
into an ordered field.

PROOF In order to attempt a solution to this problem, review 1.17 Definition on page 7
of what an ordered field is. An ordered field, which is also an ordered set, must therefore
satisfy 1.5 Definition of an order relation. Note that the neutral element is 0 ∈ C = (0, 0)
and begin with a complex number z ∈ C, with z 6= 0. By trichotomy, one and only one of
the following statements can hold

z > 0 or z < 0

Then state that the complex number i = (0, 1) is not equal to the neutral element, and
therefore must either be greater than or less than the neutral element. Examine both of
these cases. Suppose first that i > 0

i > 0

ii > 0i

i2 > 0

−1 > 0

Now examine the case when i < 0. Then

−i > 0

(−i)(−i) > 0

i2 > 0(−i)

−1 > 0

19.3 Chapter 2
• Injective = one-to-one

• Surjective = onto

• Bijective = both injective and surjective

Proposition 1 A set is infinite if and only if it may be put into one-to-one correspondence with a proper
subset of itself.

PROOF Assume the set X is finite, and has n elements where n ∈ N, and assume the set Y is a proper
subset of X . Then, because X is finite and Y is a proper subset of X , Y must have fewer elements in it
than X . That is, Y will have m elements, where m ∈ N with m < n. The only way to put two finite sets
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in one-to-one correspondence is if they have the same number of elements, which X and Y do not. This
proves the “if” part of the statement, concluding that...

Theorem 5 2.12 Let {En}, n = 1, 2, 3, . . . , be a sequence of countable sets, and put

S =
∞⋃
n=1

En

Then S is countable.

PROOF Basically take each set Ei and write its elements in a row. This will arrange all of the elements of
each set Ei in an infinite array. Then form a sequence by ordering the elements along the diagonals. If any
two of the sets Ei have elements in common, these will appear more than once in the sequence. Hence there
is a subset T of the set of all the positive integeres such that S ∼ T , which shows that S is at most countable
by 2.8 Theorem. Since E1 ⊂ S and E1 is infinite, S is infinite, and thus countable.

Theorem 6 2.14 Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is
uncountable.

PROOF Here is the set A, whose members themselves are infinite sequences of 0 and 1.

A = {{1, 0, 0, 1, . . . }︸ ︷︷ ︸
s1

, {1, 0, 1, 0, . . . }︸ ︷︷ ︸
s2

, {0, 1, 1, 0, . . . }︸ ︷︷ ︸
s3

, {1, 1, 1, 0, . . . }︸ ︷︷ ︸
s4

, . . . }

Let E be a countable subset of A.

E = {s1, s2, s3, s4, . . . }

Arrange the elements of E by stacking the rows formed by the sequences si on top of each other, making an
array. Then define a sequence s by taking the diagonal values from this array, but switching 0 to 1 and vice
versa.

1 2 3 4

s1 1 0 0 1
s2 1 0 1 0
s3 0 1 1 0
s4 1 1 1 0

So the sequence s is

s = {0, 1, 0, 1, . . . }

Because at least one element in each sequence si was changed, this new sequence s is different from all of
the si ∈ E. The existence of this sequence which is in A but not in E shows that E is a proper subset of
A. Because we took an arbitrary countable subset of A and showed that it is a proper subset of A, then A is
uncountable (for otherwise A would be a proper subset of A which is absurd).

Definition 14 2.18a - Neighborhood A neighborhood around a point p. . .
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p

r E

Figure 19.2: Rudin 2.18 Definition neighborhood of point p

Theorem 7 2.19 Every neighborhood is an open set.

PROOF First reviewing some definitions:

• By 2.18 Definition (a) a neighborhood about the point p is the set of all points within some radius r
of p

• A set E is open if all of the points of E satisfy the definition of interior point

• A point p is an interior point of the set E if there is a neighborhood N of point p that is entirely
contained in E: N ⊂ E.

Now continue with the proof.

p

r

E = Nr(p)

s

S

h

q

d(p, q)

d(p, s)

d(q, s)

Figure 19.3: Rudin 2.19 theorem

1. Start with a neighborhood E = Nr(p) around the point p.
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2. Pick a point q which is inside this neighborhood E.

3. Then define a radius h around the point q, where the radius h exists such that the following is true

d(p, q) = r − h

4. Then, we have by the triangle inequality that there is a point s such that

d(p, s) ≤ d(p, q) + d(q, s)

5. But if we consider the points s ∈ S such that d(q, s) < h, we can write

d(p, s) ≤ d(p, q) + d(q, s) < d(p, q) + h

6. But earlier we defined d(p, q) = r − h so we can substitute this in to get

d(p, s) ≤ d(p, q) + d(q, s) < r − h+ h

finally giving
d(p, s) < r

and the point s is in E.

7. This proof shows that if we start with a set E, any point q inside E has a neighborhood around it
which is entirely contained in E. This neighborhood we called S, and all of the points s ∈ S are in
E, so the neighborhood S ⊂ E, and the neighborhood E is an open set.

Theorem 8 2.23 A set E is open if and only if its complement is closed.

PROOF Insert figure.

1. Suppose Ec is closed

2. Pick x ∈ E

3. By definition x /∈ Ec

• Also, x is not a limit point of Ec. This is because we supposed Ec was closed, which means Ec

contains all its limit points. And since x /∈ Ec it is not a limit point of Ec.

4. Because x is not a limit point, that means we can put any size neighborhood Nr(x) of radius r around
the point x that will not intersect Ec anywhere. That means this neighborhood is entirely in E. By the
definition of an interior point, because we found a neighborhood Nr(x) around the point x that was
entirely in E, the point x is an interior point.

Because this point x was picked arbitrarily and found to be an interior point of E, that means that every
point of E is an interior point of E, and by definition, E is open.

1. Now suppose E is open

2. Let x be a limit point of Ec (without saying whether or not x is in Ec)
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3. By definition of limit point, every neighborhood Nr(x) around x contains a point y ∈ Ec with y 6= x

4. Therefore x is not an interior point of E

• Because for x to be an interior point of E there has to exist some neighborhood around x that is
entirely contained in E.

• However, no matter how small we pick this neighborhood, it will always contain a y ∈ Ec with
y 6= x

• This means that neighborhood is not a subset of E

5. By definition, for E to be open, every point of E must be an interior point of E

• Since x is not an interior point of E x /∈ E
• Thus x ∈ Ec

Thus for an arbitrarily selected limit point in Ec, it is contained in Ec. This shows that Ec contains all of its
limit points, so Ec is closed.

Theorem 9 2.24 Page 34.

(a) For any collection {Gα} of open sets, ∪αGα is open

(b) For any collection {Fα} of closed sets, ∪αFα is closed

(c) For any finite collection G1, . . . , Gn of open sets, ∪ni=1Gi is open

(d) For any finite collection F1, . . . , Fn of closed sets, ∪ni=1Fi is closed

PROOF proof

19.3.1 Convex Sets and Functions
Definition 15 Line segment A line segment connecting points y and x which belong to the set Ω ⊂ Rn
is shown in the figure below. The point z can be described as z = y + λm where λ ∈ [0, 1]. The set of all
points z is a line segment L. That is L = {y + λm | λ ∈ [0, 1]}.

y

x

m = x− y

Ω

z

Figure 19.4: Line segment in subset Ω ⊂ Rn
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Every point between y and x can be written z = y + λm | λ ∈ [0, 1] where y +m = x→ m = x− y.

z = y + λm

z = y + λ(x− y)

z = y + λx− λy

z = λx+ (1− λ)y

Definition 16 2.17 - Segment, interval, k-cell, ball, convex set See Rudin page 31.
Ball If x ∈ Rk and r > 0 the open (or closed) ball B with center at x and radius r is defined to be the

set of all y ∈ Rk such that |y − x| < r (or |y − x| ≤ r).
Convex set A set Ω ⊂ Rn is convex if for two points x and y that belong to Ω, all points on the line

segment L also belong to Ω. That is:

[∀x, y ∈ Ω ⊂ Rn]→ [z = λx+ (1− λ)y ∈ Ω] ∀ 0 ≤ λ ≤ 1

convex not convex

Figure 19.5: R2 examples

PROOF (Balls are convex) A ball with center at x and radius r is given by |y − x| < r where the equality
is possible for a closed ball. In order to prove that a ball is convex, pick two arbitrary points within the
ball, and show that the line between these points is in the ball, by showing that it satisfies the definition for
convex set. The points we will pick are a and b, and in order to be in the ball must satisfy

|a− x| < r

|b− x| < r

any point z between these two points must then satisfy

|z − x| < r

Since z is given by the line segment between a and b, this can be written using z = λa + (1 − λ)b as the
following, where we want the inequality to hold, but have not yet proved that it does.

|λa+ (1− λ)b− x| < r

Now we start manipulating this expression

|λa− λx+ (1− λ)b− x+ λx| < r
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|λ(a− x) + (1− λ)b− (1− λ)x| < r

|λ(a− x) + (1− λ)(b− x)| < r

By the triangle inequality we have that

|λ(a− x) + (1− λ)(b− x)| ≤ |λ(a− x)|+ |(1− λ)(b− x)|

|λ(a− x) + (1− λ)(b− x)| ≤ λ|a− x|+ (1− λ)|b− x|

And because the points a and b were in our open ball to begin with |a− x| < r and |b− x| < r hold.

|λ(a− x) + (1− λ)(b− x)| ≤ λ|a− x|+ (1− λ)|b− x| < λr + (1− λ)r

|λ(a− x) + (1− λ)(b− x)| < r

|λa+ (1− λ)b− x| < r

which is the inequality we were trying to prove.

19.3.2 Convex Function
A function f : Rn → R is convex if the graph of the function lies below the line segment joining any

two points of the graph. That is:

f(z) ≤ λf(x) + (1− λ)f(y) ∀0 ≤ λ ≤ 1

x yz

f(x)

f(y)

f(z)

Figure 19.6: Convex function

Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function)
is a convex set.

PROOF (Every norm is a convex function) For a function f(z) to be a convex function, it must satisfy the
following:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀0 ≤ λ ≤ 1
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For f(z) = ‖z‖ with z = λx+ (1− λ)y we have f(z) = ‖λx+ (1− λ)y‖.

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖

by the triangle inequality.
‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖

by homogeneity, giving
‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

which is the condition we needed to satisfy for the function f(z) = ‖z‖ to be convex.

PROOF (Norm squared is a convex function) For a function f(z) to be a convex function, it must satisfy the
following:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀0 ≤ λ ≤ 1

For f(z) = ‖z‖2 with z = λx+ (1− λ)y the following must be satisfied.

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2

Rearranging this expression

‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 =?

writing out the norms using the definition for Euclidean norm from Rudin page 16 that ‖a‖ = (a •a)1/2 and
then ‖a+ b‖ = [(a+ b) •(a+ b)]1/2. So ‖a+ b‖2 = (a+ b) •(a+ b)

‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 = [λx+ (1− λ)y] • [λx+ (1− λ)y]− λ‖x‖2 − (1− λ)‖y‖2

= λ2x •x+ 2λ(1− λ)x •y + (1− λ)2y •y − λ‖x‖2 − (1− λ)‖y‖2

= λ2‖x‖2 + 2λ(1− λ)x •y + (1− λ)2‖y‖2 − λ‖x‖2 − (1− λ)‖y‖2

= λ(λ− 1)‖x‖2 + 2λ(1− λ)x •y + (1− λ)[(1− λ)− 1]‖y‖2

= −λ(1− λ)‖x‖2 + 2λ(1− λ)x •y − λ(1− λ)‖y‖2

= −λ(1− λ)
(
‖x‖2 − 2x •y + ‖y‖2

)
Using the inner product definition in Rudin ‖a− b‖2 = (a− b) •(a− b) = a •a− 2a •b+ b •b = ‖a‖2− 2a •

b+ ‖b‖2 giving

‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 = −λ(1− λ)‖x− y‖2

The quantity λ(1− λ) is non-negative for 0 ≤ λ ≤ 1, and ‖x− y‖2 is also always non-negative, so

‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 = −λ(1− λ)‖x− y‖2 ≤ 0

‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 ≤ 0

which is rearranged to yield what we were originally trying to prove

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2
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19.4 Chapter 3 - Numerical Sequences and Series
Definition 17 3.12 - Complete A metric space in which every Cauchy sequence converges.

Example 15 Complete metric spaces All Euclidean metric spaces and all compact metric
spaces are complete.

19.5 Chapter 4 - Continuity
The following definition of continuity of a function is known as a δ− ε definition. Other definitions can

be given in terms of limits of functions or limits of sequences. This definition is like that found in Slotine
pg 123.

19.5.1 Continuous Function
Roughly speaking, a continuous function is one in which “small” changes in the input to the function

result in “small” changes in the output of the function. In other words, when the input to the function is
changed an infinitesimal amount, there should be no “jumps” in the output of the function. The definition is
given below.

Definition 18 Continuous function (Rudin Page 85) A function f(x) : E ⊂ X → Y is continuous at the
point p if:

∀ε > 0, ∃δ(ε, p) > 0 such that ∀x, dX(x, p) < δ ⇒ dY (f(x), f(p)) < ε

What this says is that for all p in the domain of the function, and any value of ε that we would like to
pick, for the function to be continuous there must exists a δ such that for any x value we pick that is within δ
of p, this implies that the function value f(x) is within ε of f(p). The following figure shows a continuous
function.

f

f(p) + ε

f(p) f(p)

f(p)− ε

f(x)

p− δ p p+ δ

Figure 19.7: Continuous function
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When the function f(x) : R→ R is continuous at the point p if:

∀ε > 0, ∃δ(ε, p) > 0 such that ∀x, |x− p| < δ ⇒ |f(x)− f(p)| < ε

We pick an arbitrary point p in the domain of the function. We then sweep across all possible values of
ε. Regardless of how we pick ε, there is always a δ such that if x is within this δ, that f(x) will be inside ε.
No matter how p, ε, and x are picked, we can always find a δ that satisfies the definition. This may be more
clear with an example of a discontinuous function.

f

f(p) + ε

f(p)
f(p)

f(p)− ε

f(x)

p− δ p p+ δ

Figure 19.8: Discontinuous function

In this example, a value of p is selected. For all values of ε we want to pick (such as the one shown here)
and all x (such as the one shown here), we must be able to find a δ such that f(x) is within ε on f(c). From
this figure, regardless of how big or small of a δ that is picked, f(x) will never be inside the ε region shown.
Therefore this function is not continuous.

19.6 Uniform Continuity
For a continuous function, we said that once we selected an ε, we simply needed to be able to find a δ

such that if x was inside the δ region, that f(x) would be inside the ε region. Nothing was ever stated how
large or small the value of δ could or needed to be, only that one existed.

For a function to be uniformly continuous, the value of δ does not depend on p. In particular, δ does not
shrink as p→∞.

Definition 19 Uniformly Continuous function A function f(x) : R→ R is uniformly continuous if:

∀ε > 0, ∃δ(ε) > 0 ∀p, ∀x : |x− p| < δ ⇒ |f(x)− f(p)| < ε
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Example 16 The following example shows a continuous function which is not uniformly
continuous. Take the function f(x) : R→ R below:

f(x) = x2

Example 17 The following example shows a continuous function which is not uniformly
continuous. Take the function f(x) : R→ R below:

f(x) = ex
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Chapter 20

Preliminaries

20.1 Introduction
20.1.1 Complex Numbers

Any complex number can be represented in exponential form, recalling Euler’s formula ejθ = cos(θ) +
j sin(θ). Considering this representation of a complex number rejθ = r cos(θ) + jr sin(θ) we can see that
in the complex plane r represents the magnitude of the complex number, and θ is the angle. Additionally,
the angle of a product of two complex numbers is the sum of the angles of each complex number. That is

∠c1c2 = ∠c1∠c2

20.1.2 Inverting a 2×2 Matrix
For the following 2× 2 matrix A

A =

[
a b
c d

]
the inverse A−1 is:

A−1 =
1

det(A)

[
d −b
−c a

]

20.2 Norms
20.2.1 Introduction

In this note several types of norms will be explained. Given two real numbers, the notion of the “size”
of these numbers is apparent. However, given quantity such as a vector or a matrix, we may by interested
in how “big” they are when compared to another vector or matrix, respectively. A norm is a strictly positive
measure of the ”magnitude” of such a quantity. In particular, a norm is an operation on a vector that returns
a non-negative quantity.

In the following section, the capital letter A will be reserved to denote matrices, while the lower case
letter x will be used for vectors, and time dependency will be added to imply time-varying vector-values
signals. H(t), g(t) and G(s) for systems described by transfer functions? Vectors are assumed to be
columns. The four types of norms described in this section are:

1. Vector

2. Matrix
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3. Signal

4. System

Properties of Norms

Norms satisfy three basic properties below, where x, y, z ∈ Rn, and α ∈ R.

1. Norms are always non-negative: ‖x‖ ≥ 0, and the norm of the zero element is zero: ‖x‖ = 0 if and
only if x = 0

2. Norms are scalable: ‖αx‖ = |α|‖x‖
3. Norms satisfy the triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

There are some more properties of norms which can be constructed from these four.

20.2.2 Vector Norms
There are several common norms which are used to determine the “length” of a given vector, described

below. Often vector norms are denoted by the lowercase letter lp.

p-Norm Denoted ‖x‖p, and defined as follows.

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

2-Norm The 2-norm, or Euclidean-norm is denoted ‖x‖2 = ‖x‖. This is basically an extension of Eu-
clidean length to n-dimensional spaces. Taken by squaring each entry of the vector, adding up all the
squares, and then taking the square root.

‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

=

√√√√ n∑
i=1

|xi|2

‖x‖2 =
√
xHx

1-Norm The 1-norm, or Taxicab norm is denoted ‖x‖1. This norm corresponds to distance in a similar
way as the Euclidean norm, but is given by the length of the vector that a taxicab driver would have to drive
along a rectangular street grid. It is taken by adding up the absolute value of each entry of the vector and
adding them all up.

‖x‖1 =

n∑
i=1

|xi|

∞-Norm Denoted ‖x‖∞. The infinity norm of a vector x is the largest magnitude of an entry of the
vector.

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}
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Examples

Example 18 Vector norms Let v =
[
3 0 −4

]>. The following norms are

‖v‖2 =
√
v>v =

√
9 + 0 + 16 = 5

‖v‖1 = 3 + 4 = 7

‖v‖∞ = 4

20.2.3 Matrix Norms
Matrix norms are an extension of vector norms. After having been introduced to vector norms, it is not

immediately intuitive how to extend this concept to a meaningful measure of the “size” of a given matrix.
Two matrix norms described below are induced norms and entry wise norms.

Induced Norms

Induced norms are norms on a matrix A which require multiplication of the A by a vector x, and then
evaluate the norm of the resulting vector, normalized by ‖x‖p.

Induced p-Norm The general definition for an induced norm is given below.

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

= max {‖Ax‖p : x ∈ Kn with ‖x‖p = 1}

where p ∈ N+. Depending on what particular value of p is used for evaluating this norm, there are different
interpretations, some of the common ones which are described below.

Induced 1-Norm For the induced taxicab, or 1-norm, this corresponds to taking the maximum absolute
column sum of the matrix.

Induced∞-Norm For the induced infinity norm, it is calculated by taking the maximum absolute row
sum of the matrix.

Induced 2-Norm The induced Euclidean, or 2-norm for a square matrix A is given by the largest singular
value of A. The singular values of A are given by taking the square root of the eigenvalues of AHA. That is:

‖A‖1 =
√
λmax(AHA) = σmax(A)

Entrywise Norms

Entrywise norms are matrix norms which are taken directly on a matrix A itself, without first requiring
multiplication by a vector x.
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Frobenius Norm The Frobenius norm is calculated by taking the absolute value of each entry of the
matrix A, squaring it, adding them all together, and then taking the square root.

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|Ai,j |2 =
√

tr(AHA) =
√

tr(AAH)

Examples

Example 19 Matrix norms Let A =

[
3 0
2 −4

]>
. The following norms are

‖A‖2 = 4.76

‖A‖1 = 5

‖A‖∞ = 6

‖A‖F = 5.39

20.2.4 Signal Norms
The next quantity which we apply the concept of a norm to is that of a signal. Given a signal (either

vector-valued or scalar), we wish to determine some measure of its magnitude. Perhaps the signal is very
large at one instance of time, and small everywhere else, or maybe it is moderately large for all time.
Whatever the case may be, we wish to have some way to quantify these varying degrees of the “largeness”
of a signal.

Often signal norms are denoted using the capital letter Lp. The notation L in Lp refers to the fact that
the integrand in (2.7) should be Lebesgue-integrable for the integral to exist. This is a generalization of the
standard (Riemann) integral to a more general class of functions. See DDV Chapter 15. Signals norms are
generalizations of vector norms. The signal norms we consider in this subsection are the following:

• 1-norm: action

• 2-norm squared: signal energy

• ∞-norm: peak signal magnitude

• signal power (average energy)

For the vector valued signal x(t) the following norms are given.

Lp Norm

‖x(t)‖Lp =

(∫ ∞
−∞
‖x(t)‖pdt

) 1
p
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L1 Norm
‖x(t)‖L1 =

∫ ∞
−∞
‖x(t)‖dt

L2 Norm

‖x(t)‖L2 =

√∫ ∞
−∞
‖x(t)‖2dt

L∞ Norm
‖x(t)‖L∞ = sup

t
‖x(t)‖

Examples

Example 20 Signal norms Let x(t) =. The following norms are

‖x(t)‖L2 =

‖x(t)‖L1 =

‖x(t)‖L∞ =

Existence of Signals in Normed Spaces?

Explain here what notation e(t) ∈ L∞ and so on.

20.2.5 System Norms
In addition to the H2 norm, which we have seen gives a characterization of the average gain of a system,

a perhaps more fundamental norm for systems is the H∞ norm, which provides a measure of a worst-case
system gain. the H∞ norm is simply a measure of the largest factor by which any sinusoid is magnified by
the system.

L1 Induced Norm

L2 Induced Norm

‖G(s)‖2 =

√∫ ∞
0

tr[g(t)Tg(t)]dt

‖G(s)‖2 =

√
1

2π

∫ ∞
−∞

tr[G(jω)HG(jω)]dω

‖G(s)‖2 = sup
ω

(σmaxG(jω))

‖G(s)‖2 =
√

tr(BTQB) where QA+ATQ+ CTC = 0

‖G(s)‖2 =
√

tr(CPCT) where AP + PAT +BBT = 0
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L∞ Induced Norm

20.3 Canonical State-Space Forms
There are four standard, or canonical state space forms into which a transfer function can be written. Two

of these forms, namely the observable canonical form and the controllable canonical form, are often called
companion forms. The other two canonical forms are modal and Jordan canonical forms. Each of these
four different state space realizations has its own uses and benefits, which will be outlined below. The form
of controllable and observable canonical forms will be shown below, where the former will contain a row
whose coefficients are that of the transfer function denominator polynomial, and the latter a column. If the
row of coefficients is on the bottom of the system A matrix, this is sometimes referred to as controllability,
and on the top referred to as controller. Likewise the column of coefficients on the left is called observer,
and on the right observability. See Kailath (1980).

Often the easiest way to demonstrate the process of writing a transfer function in state space form is by
example. The following examples will illustrate the conversion process for small systems, but this proce-
dure will extend to systems with arbitrarily large numerators and denominators. For these first examples,
assume every transfer function is strictly proper, ie. the order of the numerator is less than the order of the
denominator. See the following section for proper transfer functions.

Controller Canonical Form

Given the following transfer function, convert to controller canonical form. Converting this transfer
function to a state space representation in controller canonical form will result in a system that is guaranteed
to be controllable.

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

A transfer function is an expression of an output/input. If y is used to indicate an output, u an input, and x
a state, the above transfer function can be written:

G(s) =
y

u
=
y

x

x

u

Using this representation, the transfer function can be split into two products:

y

x
= b2s

2 + b1s+ b0

and:
x

u
=

1

s3 + a2s2 + a1s+ a0

Rearranging each of these equations and taking the inverse Laplace transform:

y = b2ẍ+ b1ẋ+ b0x

and:
...
x + a2ẍ+ a1ẋ+ a0x = u

The order of the system, ie. the number of state variables needed is equal to the order of the transfer function
denominator. For this example, 3 state variables are needed. Define x1 to be the first state variable, and build
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each subsequent state variable as a derivative of the first one.

x1 = x

x2 = ẋ1 = ẋ

x3 = ẋ2 = ẍ

Plugging in these state variable definitions:

y = b2x3 + b1x2 + b0x1

and:
ẋ3 + a2x3 + a1x2 + a0x1 = u

Rearranging the above:
ẋ3 = −a2x3 − a1x2 − a0x1 + u

Rearranging the state variable definitions and assembling the above into matrix form gives:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −a0x1 − a1x2 − a2x3 + u

and: ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

x1

x2

x3

+

0
0
1

u
y =

[
b0 b1 b2

] x1

x2

x3


Observer Canonical Form

G(s) =
y

u
=

b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0

y(s3 + a2s
2 + a1s+ a0) = u(b2s

2 + b1s+ b0)

...
y + a2ÿ + a1ẏ + a0y = b2ü+ b1u̇+ b0u

...
y = b2ü− a2ÿ + b1u̇− a1ẏ + b0u− a0y

ẏ = b2u− a2y +

∫
(b1u− a1y) +

∫∫
(b0u− a0y)

y = x1
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ẋ1 = b2u− a2x1 +

∫
(b1u− a1x1) +

∫∫
(b0u− a0x1)

x2 =

∫
(b1u− a1x1) +

∫∫
(b0u− a0x1)

ẋ2 = (b1u− a1x1) +

∫
(b0u− a0x1)

x3 =

∫
b0u− a0x1

ẋ3 = b0u− a0x1

ẋ1 = −a2x1 + x2 + b2u

ẋ2 = −a1x1 + x3 + b1u

ẋ3 = −a0x1 + b0uẋ1

ẋ2

ẋ3

 =

−a2 1 0
−a1 0 1
−a0 0 0

x1

x2

x3

+

b2b1
b0

u
y =

[
1 0 0

] x1

x2

x3


Modal Canonical Form

G(s) =
b2s

2 + b1s+ b0
(s+ a1)(s+ a2)(s+ a3)

G(s) =
b2s

2 + b1s+ b0
(s+ a1)(s+ a2)(s+ a3)

=
r1

(s+ a1)
+

r2

(s+ a2)
+

r3

(s+ a3)

b2s
2 + b1s+ b0 = (s+ a2)(s+ a3)r1 + (s+ a1)(s+ a3)r2 + (s+ a1)(s+ a2)r3

b2s
2 + b1s+ b0 = [s2 + (a2 + a3) + a2a3]r1 + [s2 + (a1 + a3) + a2a3]r2 + [s2 + (a2 + a3) + a1a2]r3

Equating polynomial coefficients:

b2 = r1 + r2 + r3

b1 = (a2 + a3)r1 + (a1 + a3)r2 + (a1 + a2)r3

b0 = a2a3r1 + a1a3r2 + a1a2r3
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For the arbitrarily large transfer function, this will give n equations in n unknowns, where n is the order of
the denominator polynomial, allowing the partial fraction expansion to be completed.

G(s) =
y

u
=

r1

(s+ a1)
+

r2

(s+ a2)
+

r3

(s+ a3)

y

u
=
y

x

x

u
=

r1

(s+ a1)
+

r2

(s+ a2)
+

r3

(s+ a3)

x

u
=
x1

u
+
x2

u
+
x3

u
=

r1

(s+ a1)
+

r2

(s+ a2)
+

r3

(s+ a3)

x1

u
=

r1

(s+ a1)

x2

u
=

r2

(s+ a2)

x3

u
=

r3

(s+ a3)

ẋ1 = −a1x1 + r1u

ẋ2 = −a2x2 + r2u

ẋ3 = −a3x3 + r3uẋ1

ẋ2

ẋ3

 =

−a1 0 0
0 a2 0
0 0 −a3

x1

x2

x3

+

r1

r2

r3

u

y =
[
1 1 1

] x1

x2

x3


ẋ1

ẋ2

ẋ3

 =

−a1 0 0
0 a2 0
0 0 −a3

x1

x2

x3

+

1
1
1

u

y =
[
r1 r2 r3

] x1

x2

x3



Jordan Canonical Form

Lec. 7-6
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20.3.1 Proper Transfer Functions
20.4 Singular Values

A measure of the “smallness” of the matrix is needed: the singular values. The singular value de-
composition of a matrix M is the following factorization, where (·)∗ denotes the Hermitian, or conjugate
transpose.

M = UΣV ∗

where U and V ∗ are real or complex unitary matrices, i.e. U∗U = UU∗ = I , and Σ is diagonal matrix with
nonnegative real numbers on the diagonal. The diagonal entries of Σ are the singular values of M . Taking
the Hermitian transpose of M gives M∗ = (UΣV ∗)∗ = V Σ∗U∗. Both pre- and post- multiplying M with
its Hermitian transpose:

MM∗ = UΣV ∗V Σ∗U∗ = UΣΣ∗U∗

M∗M = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗

Since Σ is diagonal, this can be rearranged into the following eigenvalue problems, allowing the singular
values to be found as the non-zero eigenvalues of M∗M or MM∗.

(MM∗)U = U(ΣΣ∗)

(M∗M)V = V (Σ∗Σ)

When the matrixM is a transfer function matrixH(jω), the magnitude at a any frequency ω will depend
on the direction of the input. Different singular values will be excited depending on the input. However, for
any input the magnitude of H(jω) is bounded above by its maximum singular value σ(H(jω)) and below
by its minimum singular value σ(H(jω)). For performance and stability robustness σ(H(jω)) should be
large at low frequencies and σ(H(jω)) should be small at high frequencies.

To generate the singular value plot for the linear system ẋ = Ax + Bu with output given by y = Cx,
the transfer function matrix H must first be calculated:

H(s) = C(sI −A)−1B

When the linear system ẋ = Ax+Bu is augmented with integral error states, and full state feedback control
law u = −Kx is used, the linear system becomes ẋ = (A−B1K)x+B2xi,r, y = Ix, with transfer function
matrix

H(s) = I(sI − (A−B1K))−1B2

The singular values for each transfer function matrix H above can then be plotted versus frequency.

20.5 Positive Definiteness
The matrix BBT = (BBT)T is symmetric for all B. In addition, BBT > 0 is positive definite. Def-

inition of positive definiteness: xTBBTx > 0. x ∈ Rn×1 and B ∈ Rn×m. Define C = BTx, where
C ∈ Rm×1 giving CTC = ‖C‖22 > 0 ∀C 6= 0
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20.6 Sensitivity Analysis
20.6.1 Introduction
The system ẋ = f(x,u) describing the dynamics of the GHV was previously linearized and written

ẋ = Ax+Bu

where the state vector x for the model is in body axes as shown in previous work. It is desired to transform
this linear system to use a new state which describes the GHV dynamics in stability axes. The subscript (·)s
indicates stability axes, and the state vector is shown below.

xs = [ VT α β p q r φ θ ψ λ τ R ]T

After completing the transformation from body to stability axes, it was verified that the system poles had
not changed between A and As. Next, a linear transformation was needed in order to rearrange the states
in xs so that the longitudinal and lateral/directional states would be grouped together, and any states which
did not influence the flight dynamics could be truncated. This transformation was accomplished using
the transformation matrix O. The entries of O are zero everywhere, with the exception of ones placed to
rearrange the states as described above.

x′s = [ VT α q θ R β p r φ ψ λ τ ]T

Defining the transformation
x′s = Oxs
xs = O−1x′s

ẋs = O−1ẋ′s

ẋs = Asxs +Bsu

O−1ẋ′s = AsO−1x′s +Bsu

ẋ′s = OAO−1x′s + OBsu

A′s = OAsO−1

ẋ′s = A′sx
′
s +B′su

20.6.2 Examining Modal Decomposition
After rearranging the original state-space system with state vector x into system with state vector x′s,

the system was examined to check the validity of decoupling the lateral and longitudinal dynamics, and the
truncation of the navigation states. Looking at the following transformed state-space system shown above,
and considering only the initial condition response, the following autonomous system results

ẋ′s = A′sx
′
s

The following transformation is introduced
x′s = Vq

where V is the matrix of eigenvectors V , [ v1 ... vn ] giving

ẋ′s = Vq̇
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q̇ = V−1A′sVq

The matrix VA′sV−1 must be examined.

A′sV = A′s[ v1 ... vn ] = [ A′sv1 ... A′svn ] = [ v1λ1 ... vnλn ] = VΛ

giving
q̇ = Λq

where Λ is the diagonal matrix of eigenvalues. The solution is given by

q(t) = eΛtq(0)

Selecting an initial condition as a scalar multiple of an eigenvector vi, i.e. x(0) = αivi then q(0) =
V−1x(0) = αiV−1vi. But since V−1vi = I where I is the identity matrix, V−1vi is just the ith column of I.
In other words, the initial condition q(0) will have zeros everywhere, and α in the ith row.

q(t) = αeλit

This shows that only the mode corresponding to λi will be present in the response from an initial condition
along the ith eigenvector. The response in terms of x′s corresponding to λi is then given by

x′s(t) = αie
Λitvi

Based on this unforced modal response, if any entries in vi are “small” relative to the others, the correspond-
ing states are thus not influential in determining the initial condition response.

20.6.3 The Sensitivity Matrix
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Chapter 21

State Feedback Control

21.1 Introduction
21.2 The Regulation Problem

The plants for which we will seek to design controllers will be represented in the following form.

ẋp = Apxp +Bpu

The LQR controller will be explained in this section. The LQR control is a full state feedback, static gain
controller. That is, the control input is calculated using the entire plant state xp, and multiplied by a constant
gain matrix Kp to get the control input u. The control law for the LQR controller is

u = K>p xp

The method of obtaining the gain matrix will not be discussed here. There is a lot of information available
about the process of obtaining Kp, but for the purposes of this section, what needs to be known is only that
given a controllable plant, we can use MATLAB to generate Kp that will stabilize a given plant, and place
the closed-loop poles in a “good” way. This command is: Kp = -lqr(Ap,Cp,Qlqr,Rlqr)’

The LQR controller as described above is of little use for the control applications we are interested in,
as it eliminates the ability to provide external reference commands, and serves only to regulate the system
to the origin.

21.3 The Tracking Problem
This control architecture is known as the LQR-servomechanism, LQR-PI control, or LQR with integral

action. This structure uses LQR control where the plant is augmented with an integrator to ensure tracking
of a reference command. This is done by adding states to the state-space representation, and adding an
additional input matrix through which the reference command enters. Given the following open-loop plant

ẋp = Apxp +Bpu

z = Cpzxp +Dpzu
(21.1)

whereAp ∈ Rnp×np ,Bp ∈ Rnp×m, and Cp ∈ R`×np and z ∈ Rne is the regulated output, where the number
of regulated outputs is not to exceed the number of inputs, that is ne ≤ m. Given that the state is available
for measurement, the control goal is to design a control input u so that the closed-loop system has bounded
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solutions and z tends to the reference command zcmd asymptotically. In order to ensure command tracking,
we introduce integral action, and for this purpose an additional state xe is defined as

ẋe = zcmd − z

and the plant in (21.1) is augmented to lead to the following extended open-loop dynamics[
ẋp
ẋe

]
=

[
Ap 0
−Cpz 0

] [
xp
xe

]
+

[
Bp
−Dpz

]
u+

[
0
I

]
zcmd (21.2)

The system in (21.2) can be written more compactly as

ẋ = Ax+Bu+Bcmdzcmd (21.3)

where A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , and C ∈ Rp×n are the known matrices given by

A =

[
Ap 0np×ne
−Cpz 0ne×ne

]
B =

[
Bp
−Dpz

]
Bcmd =

[
0np×m
Ine×ne

]
Thus, when the augmented system in Equation (21.2) reaches steady state, ẋe will be zero, and z = zcmd.
The following control law will be used:

u = K>x x (21.4)

Substituting the control law (21.4) into (21.3)

ẋ = Ax+BK>x x+Bcmdzcmd

=
(
A+BK>x

)
x+Bcmdzcmd

The gain K>x is selected to ensure the closed loop matrix A+BK>x is a Hurwitz.

Example 21 Integral Augmented LQR Control Synthesis: Longitudinal Aircraft Dy-
namics Consider the following state-space model describing the longitudinal short-period
dynamics of an aircraft. Given this system, the goal is to design a state feedback controller
to track pitch rate commands.[

α̇
q̇

]
=

[
Zα
V 1
Mα Mq

] [
α
q

]
+

[ Zδe
V
Mδe

]
δe

where α is the angle of attack, q the pitch rate, and δe the elevator deflection angle. The
state vector is xp =

[
α q

]>. With pitch rate as an output his system can be expressed
more compactly as

ẋp = Apxp +Bpu

z = Cpzxp

where
Cpz =

[
0 1

]
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To enforce reference tracking we augment the system with an integrator as described above,
and get the following extended open-loop dynamics α̇q̇

q̇e

 =

 Zα
V 1 0
Mα Mq 0
0 −1 0

αq
qe

+

 Zδe
V
Mδe

0

 δe +

0
0
1

 qcmd

As shown above, these extended open-loop dynamics can be written more compactly as

ẋ = Ax+Bu+Bcmdzcmd

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % makeLQRPI.m
3 % Flight Control Tools: Make LQR-PI Controller
4 % Written by: Daniel Wiese, Wednesday 15-October-2014
5 % Updated by: Daniel Wiese, Sunday 18-October-2015
6 %--------------------------------------------------------------------------
7 %
8 % This script makes an LQR-PI controller given a system A and B matrices,
9 % and Q and R weights. Additionally the user must specify which (up to two)

10 % state variables should be augmented with an integral error state. Specify
11 % which state variable(s) are to be integrated using a scalar parameter
12 % corresponding to the ith state variable. If only one integrator is to be
13 % used, specify only the first 'e', and it doesn't matter what the second
14 % 'e' is. Pass the weighting matrices Q and R to the function as vectors,
15 % which will act as the diagonal entries of the weights.
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 function [Kx, P, A, Am, B, Bcmd, C, D, n] = makeLQRPI(Ap, Bp, Cp, Cpz, Dpz, ...
Qlqr, Rlqr)

20

21 % Find number of states and inputs of \dot{x} = Ax + Bu
22 [np, m] = size(Bp);
23 [l, ¬] = size(Cp);
24 [ne, ¬] = size(Cpz);
25

26 % The total size of the augmented system will be original size plus error
27 n = np + ne;
28 p = l + ne;
29

30 if rank(ctrb(Ap,Bp)) 6= np
31 error('The plant is not controllable!')
32 end
33

34 if rank([Ap, Bp; Cpz, Dpz]) 6= n
35 error('Selection of regulated output destroys controllability!')
36 end
37

38 % Augment the system with the integral error state
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39 A = [Ap, zeros(np,ne); -Cpz, zeros(ne,ne)];
40 B = [Bp; -Dpz];
41 Bcmd = [zeros(np,ne); eye(ne,ne)];
42 C = [Cp, zeros(l,ne); zeros(ne,np), eye(ne,ne)];
43 D = zeros(p,m);
44

45 % Solve for the LKQ feedback gain
46 [Kx, P, ¬] = lqr(A, B, diag(Qlqr,0), diag(Rlqr,0));
47 Kx = -Kx';
48 Am = (A + B*Kx');
49

50 end
51

52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21.3.1 State-Space Controller Representation
Now that the fundamental loop transfer functions are found, we now want to be able to actually apply

this when using LQR-PI full state feedback controllers. Thus, it is important to show an example of how
to represent an LQR-PI controller in state space form, and from there be able to calculate the loop transfer
functions.

K(s)

Controller

G(s)

Plant
zcmd

r + e
u x

−

Figure 21.1: System block diagram

The LQR-PI controller is represented as the following, where the subscript (·)c is used to denote “con-
troller”, and the only state in the controller is the integral error state xe.

ẋe = Acxe +Bc

[
zcmd
−xp

]
u = Ccxe +Dc

[
zcmd
−xp

]

The control law is a gain matrix multiplied by the state x =
[
x>p x>e

]> which is an augmentation of the
plant state xp with error state xe.

ẋe = zcmd − z
u = K>x x

=
[
K>p K>e

] [xp
xe

]
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ẋe = zcmd − Cpzxp −Dpzu

u = K>e xe +K>p xp

ẋe = zcmd − Cpzxp −Dpz(K
>
e xe +K>p xp)

u = K>e xe +K>p xp

ẋe = −DpzK
>
e xe + zcmd − (Cpz +DpzK

>
p )xp

u = K>e xe +K>p xp

ẋe = −DpzK
>
e xe +

[
1 Cpz +DpzK

>
p

] [zcmd
−xp

]
u = K>e xe +

[
0 −K>p

] [zcmd
−xp

]
Looking at this we can see that

Ac = −DpzK
>
e

Bc =
[
1 Cpz +DpzK

>
p

]
Cc = K>e

Dc =
[
0 −K>p

]

LQR Controller State-Space Model

(21.5)

Example 22 Integral Augmented LQR Controller State-Space Representation: Lon-
gitudinal Aircraft Dynamics The general form of the plant as shown above, but repeated
here for the longitudinal subsystem is

ẋp = Apxp +Bpu

yp = Cpxp

z = Cpzxp +Dpzu

For this longitudinal subsystem the plant states are angle of attack α, and pitch rate q, with
the plant input being the elevator deflection angle δe. That is, xp =

[
α q

]>.[
α̇
q̇

]
=

[
Zα
V 1
Mα Mq

] [
α
q

]
+

[ Zδe
V
Mδe

]
δe
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Plugging in some numbers

Ap =

[
1 0
0 1

]
Bp =

[
1
0

]
Cp =

[
1 0
0 1

]
Cpz =

[
1 0

]
Dpz =

[
0
]

The general form of the controller is

ẋe = Acxe +Bc

[
zcmd
−xp

]
u = Ccxe +Dc

[
zcmd
−xp

]
Inputs to controller are zcmd = αcmd and e = −xp =

[
−α −q

]>. Combining these two

inputs into one input
[
αcmd −α −q

]> we get

ẋe =
[
1 1 0

] αcmd
−α
−q


u = kexe +

[
0 −kα −kq

] αcmd
−α
−q


Ac = 0 Bc =

[
1 1 0

]
Cc =

[
ke
]

Dc =
[
0 −kα −kq

]
This state space representation was then converted to a transfer matrix representation for
frequency domain analysis. This transfer matrix was 1× 3: controller input αcmd, −α, and
−q and the output was the elevator deflection angle δe.

21.3.2 Properties of Extended Open-Loop Dynamics
Controllability

Hautus controllability test Hespanha book page 113.

Theorem 10Popov-Belevitch-Hautus Test for Controllability The pair (A,B) is controllable if and only
if

rank
([
A− λI B

])
= n, ∀λ ∈ C

If we apply this test to the extended open-loop dynamics, we get

rank
([
Ap − λI 0 Bp
−Cpz −λI −Dpz

])
= np + ne

for all λ 6= 0. So we just need to check the rank when λ = 0 giving the following:

rank
([

Ap Bp
−Cpz −Dpz

])
= np + ne
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Observability

Consider the observability matrix for Σp. Since this system is observable, it has full rank.

rank


Cp
CpAp
CpA

2
p

...
CpA

np−1
p

 = np

Now look at the controllability matrix for the augmented system

[
Cp 0
0 I

]
[
Cp 0
0 I

] [
Ap 0
−Cpz 0

]
[
Cp 0
0 I

] [
Ap 0
−Cpz 0

]2

...[
Cp 0
0 I

] [
Ap 0
−Cpz 0

]n−1


Note that [

Ap 0
−Cpz 0

]2

=

[
Ap 0
−Cpz 0

] [
Ap 0
−Cpz 0

]
=

[
A2
p 0

−CpzAp 0

]
Note that [

Ap 0
−Cpz 0

]n
=

[
Anp 0

−CpzAn−1
p 0

]
So the observability matrix for the extended open-loop dynamics becomes

[
Cp 0
0 I

]
[
CpAp 0
−Cpz 0

]
[
CpA

2
p 0

−CpzAp 0

]
...[

CpA
n−1
p 0

CpzA
n−2
p 0

]


And we can see that the ne columns that were added to the observability matrix for the extended open-

loop dynamics are linearly independent. So the augmented controllability matrix is full rank.

Rank of B, C, and CB

The proof is trivial.

181



Transmission Zeros

Given system Σp = (Ap, Bp, Cp) show that integral augmentation does not add any transmission zeros
to the system. The Rosenbrock system matrix for Σp is

Rp(s) =

[
sI −Ap −Bp
Cp Dpz

]
The transmission zeros are the values of s which make Rp(s) lose rank. For the augmented system the
Rosenbrock matrix is

R(s) =


sI −Ap 0 −Bp
Cpz sI Dpz

Cp 0 0
0 I 0


The augmented Rosenbrock matrix has 2ne rows added and ne columns. When the Σp is tall, that is m ≤ `,
then the maximum rank of R(s) is np + ne + m. The rank of R(s) only drops for values of s which are
transmission zeros of Σp due to the extra ne columns being added are linearly independent for all s, due to
the identity at the bottom.

21.3.3 Using Feed Forward
Finish this section, see 16.31 notes.

K(s)

Controller

G(s)

Plant
zcmd

r + e
u x

−

Figure 21.2: System block diagram
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Chapter 22

Output Feedback Control

22.1 Introduction
When doing full state feedback pole placement problems, it is often the case that the desired pole loca-

tions can be achieved without using all of the gains. When this happens, the question may arise regarding
what values to assign to these “extra” gains. In regards to stability (that is, the closed-loop eigenvalue lo-
cations) they can be assigned arbitrarily. However, one may postulate that these gains may be assigned in
such a way that will improve the closed-loop performance of the system. Additionally, the idea of designing
a control system with only some of the state variables being fed back to the controller should seem like a
reasonable idea.

22.2 Projective Output Feedback
It can be shown that assignment of these “extra” gains allows the eigenvectors to be selected, in addition

to only the eigenvalues. These performance benefits may manifest themselves as increased robustness???

Example 23 Pole placement Put an example here indicating a full-state feedback pole
placement problem with extra degrees of freedom.

22.2.1 Static Projective Output Feedback
The full-state feedback LQR controller is a design which selects feedback gains optimally, based on

some user specified performance weights. Such a design results in good closed-loop performance, but relies
on the entire state vector being accessible. In cases where the entire state is not accessible, projective output
feedback will allow an LQR like full state feedback design to be achieved, without requiring full state
accessibility. The following notes are based on Eugene’s book Chapter 6, page 165.

Given a state-space plant of the following form

ẋp = Apxp +Bpu

yp = Cpxp
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A full state feedback LQR controller can be designed, with control law

u = K>p xp

giving the following full-state feedback closed loop system

ẋp = (Ap +BpK
>
p )xp

yp = Cpxp

Acl,fs = Ap +BpK
>
p

ẋp = Acl,fsxp

Now it is desired to design an output feedback controller, using gain feedback on only the output yp
instead of the entire state xp. That is

u = K>y yp

giving the following output feedback closed loop system

ẋ = (Ap +BpK
>
y Cp)xp

Acl,op = Ap +BpK
>
y Cp

ẋp = Acl,opxp

The idea is to make the closed loop “A” matrix when using output feedback as close to the closed-loop “A”
matrix when using full state feedback. This can be done by requiring that ny eigenvalues of Acl,op are equal
to those of Acl,fs, where ny is the number of outputs.

The eigenvalue problem can be written

Acl,fsV = V Λ

We can require that ny eigenvalues of Acl,fs are maintained in Acl,op. That is, taking these ny values of Λ
gives Λny . In other words, this requirement gives ny eigenvectors Vny that satisfy

Acl,fsVny = Acl,opVny

Solving this equation we can find Ky

(Ap +BpK
>
x )Vny = (Ap +BpK

>
y Cp)Vny

K>x Vny = K>y CpVny

K>y = K>x Vny(CpVny)
−1

To implement this procedure, first design the full-state feedback LQR controller. Then pick the eigen-
values and corresponding eigenvectors of this full-state feedback design “A” matrix Acl,fs which should be
kept in the output feedback design. This gives you Vny and Λny . Using Vny and Kx, solve for the output
feedback gain Ky.
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22.2.2 Dynamic Projective Output Feedback
Finish this section using the example problem in Eugene’s book.

22.2.3 Comparing Full State and Output Projective Feedback
gain margins? phase margins? what happens to these margins if the output feedback gain is increased?

what about an output feedback design which simply takes the full-state feedback gain matrix and deletes the
feedback gains corresponding to states which are not accessible? If output feedback is done by just zeroing
out gains corresponding to state variables which are not available for feedback, the system may not be stable.

22.3 State Observer/Estimator
Another way of dealing with control problems in which the full state is not available for feedback is to

design a state observer or estimator. The general block diagram for a closed-loop estimator is shown in the
figure below.

u

Plant

Observer

Plant Model

Kf

yp

ŷp

x̂

+

−

Figure 22.1: Closed loop estimator

The idea is that an estimator contains a linear model of what the plant is expected to be. In reality, the
parameters assigned within the observer’s plant model may not be perfect, but hopefully they are close. The
feedback gain Kf is then used to correct the plant model based on differences between the actual output
y and estimated output ŷ. Then, as this output error is reduced, the state estimate x̂p is improved, and this
estimate can then be used for feedback control.

22.3.1 LQE Estimator Design: Kalman Filter
Plant given by the LTI state space system. State-space form of plant

ẋp = Apxp +Bpu+Bp2w

yp = Cpxp +Dpu

Explain the input disturbance term Bp2 that is up there later, but use this one for now.

ẋp = Apxp +Bpu

yp = Cpxp +Dpu
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The following figure shows a more detailed block diagram of the closed loop estimator, and how one might
construct the block diagram in SIMULINK using basic gains, integrators, and summing blocks.
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ŷp
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Figure 22.2: Closed loop estimator

A closed-loop estimator will then be used to reconstruct the plant state xp. We will call this full state
estimate x̂p. The state-space representation for the closed-loop estimator as shown in the block diagram
above is given by

˙̂xp = Apx̂p +Bpu+Kf (ŷp − yp)
ŷp = Cpx̂p +Dpu

Inserting the known expression for the plant output

˙̂xp = Apx̂p +Bpu+Kf (Cpx̂p +Dpu− yp)
ŷp = Cpx̂p +Dpu

Combining terms gives the following closed-loop estimator state-space equations below

˙̂xp = (Ap +KfCp)x̂p + (Bp +KfDp)u−Kfyp

ŷp = Cpx̂p +Dpu

Where the inclusion of the state estimate as an output in the above equations is to emphasize that these
are the equations which would be used to implement an estimator to use, as possibly part of a controller,
in simulation. The input to the estimator block would be the control u, measured plant output yp, and
the output of the estimator would be the estimated state x̂p. This estimated state would then be used in a
feedback control law where ordinarily the actual state xp would have been used, if it were accessible. Such
a control architecture is known as a dynamic output feedback compensator, and is described in more detail
in following sections.
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How to obtain the Kalman filter gain is not covered here, but Kf is given by

Kf = PfC
>R−1

0

0 = APf + PfA
> +Q0 − PfC>R−1

0 CPf

The Kalman filter gain Kf can be found by using the MATLAB function lqr. In order to implement the
Kalman filter as given in these equations, the command would be: Kf=-lqr(Ap’,Cp’,Qf,Rf)’.

22.4 The Regulation Problem
Now it is desired to add the integral error state of the LQR-PI controller to the DOFB architecture. This

will allow external reference commands to be given and followed with zero steady-state error, as well as
using only the output, and not the full state, for feedback.

ẋp = Apxp +Bpu

yp = Cpxp +Dpu
(22.1)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, and Cp ∈ R`×np . Given that the state is available for measurement,
the control goal is to design a control input u so that the closed-loop system has bounded solutions and the
system is regulated to the origin. Now we would like to improve on this idea of using the estimated state x̂p
in feedback, just like in the case of full-state LQR feedback control. We would now like to use this same
procedure, but instead of feeding back on the actual state xp, we will use a state estimator to generate an
estimate of the state x̂p. The combining of an optimal state estimator and optimal controller is known as
LQG control. “For LTI systems with Gaussian models for disturbances and measurement noise, the Kalman
filter is the optimal state estimator. When optimal control (LQR) is combined with optimal state estimation
(Kalman filter) the control design is called the Linear Quadratic Gaussian (LQG) problem.” [2] The control
law is given by

u = K>p x̂p

We design a state estimator as described above, and with the proposed control law the combined system,
called the compensator, is described by the following equations

˙̂xp = Apx̂p +Bpu+Kf (ŷp − yp)
ŷp = Cpx̂p +Dpu

u = K>p x̂p

Substituting the control law and output equation in

˙̂xp = Apx̂p +BpK
>
p x̂p +Kf [Cpx̂p +DpK

>
p x̂p − yp]

u = K>p x̂p

Expanding

˙̂xp = Apx̂p +BpK
>
p x̂p +KfCpx̂p +KfDpK

>
p x̂p +Kf (−yp)

u = K>p x̂p
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Grouping terms

˙̂xp = (Ap +BpK
>
p +KfCp +KfDpK

>
p )x̂p +Kf (−yp)

u = K>p x̂p

Output Feedback Regulator

The basic block diagram which describes this combination of an estimator with controller looks just like
the LQR controller, and is shown below. However, now the output yi is being fed back to the controller,
instead of the full state xi, and the compensator K(s) is of increased complexity.

K(s)

Controller

G(s)

Plant
zcmd

r + e
u y

−

Figure 22.3: System block diagram

The following diagram shows a little bit more clearly the internal workings of the DOFB-regulator.
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+
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s
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Bp Cp

Dp

u

−yp

ŷp

x̂p
K⊤

p

Kf

Observer
Compensator

Plant

It doesn’t matter if the estimator feedback term is ŷp − yp or yp − ŷp. All this does is change the sign
of Kf . We will use the representation shown above to facilitate representation of these equations in the
block diagram form with negative feedback at the summing junction for input r2. In addition, the feedback
control law can be written with a positive or negative sign. All of the terms can be combined and substituted
and rearranged within these above equations revealing that this dynamic output feedback compensator takes
as its input the plant output y, and uses it with an LQR full state feedback control law operating on the
estimated state x̂ to generate the output u. This is called a dynamic output feedback compensator. This can
be implemented as shown in the following block diagram, where the compensator K(s) will contain these
additional dynamics, instead of just the integrator and proportional gains as in the LQR-PI controller case.
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This representation is also good because the only input to the compensator is the output feedback e = −yp,
as is represented in the equations.

22.5 The Tracking Problem
Now it is desired to add the integral error state of the LQR-PI controller to the DOFB architecture. This

will allow external reference commands to be given and followed with zero steady-state error, as well as
using only the output, and not the full state, for feedback.

ẋp = Apxp +Bpu

yp = Cpxp +Dpu

z = Cpzxp +Dpzu

(22.2)

whereAp ∈ Rnp×np ,Bp ∈ Rnp×m, and Cp ∈ R`×np and z ∈ Rne is the regulated output, where the number
of regulated outputs is not to exceed the number of inputs, that is ne ≤ m. Given that the state is available
for measurement, the control goal is to design a control input u so that the closed-loop system has bounded
solutions and z tends to the reference command zcmd asymptotically. In order to ensure command tracking,
we introduce integral action, and for this purpose an additional state xe is defined as

ẋe = zcmd − z

and the plant in (22.2) is augmented to lead to the following extended open-loop dynamics[
ẋp
ẋe

]
=

[
Ap 0
−Cpz 0

] [
xp
xe

]
+

[
Bp
−Dpz

]
u+

[
0
I

]
zcmd (22.3)

The system in (22.3) can be written more compactly as

ẋ = Ax+Bu+Bcmdzcmd

y = Cx+Du
(22.4)

where A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , and C ∈ Rp×n are the known matrices given by

A =

[
Ap 0np×ne
−Cpz 0ne×ne

]
B =

[
Bp
−Dpz

]
Bcmd =

[
0np×m
Ine×ne

]
C =

[
Cp 0`×ne

0ne×n Ine×ne

]

In the tracking problem for state feedback, the control law was u = K>x x where x =
[
x>p x>e

]>. In the
case of output feedback xp must be replaced by the estimate as

u =
[
K>p K>e

] [ x̂p
xe

]
= K>p x̂p +K>e xe

We now need to design an observer to generate the state estimate.
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22.5.1 Non-Augmented Observer
We would now like to use this same procedure, but instead of feeding back on the actual state xp, we

will use the estimated state x̂p. The integral error term will be the difference between the commanded output
value ycmd and the measured value yp. It can also be defined as the difference between commanded output
and estimated output, but that will give different results. I don’t really know what the advantages/disad-
vantages of doing it either way are yet. The basic closed-loop estimator equation, with integral error, and
feedback control law The more detailed block diagram is shown in the following figure.
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Figure 22.4: Observer controller and plant

Propose the following observer

˙̂xp = Apx̂p +Bpu+Kf (ŷp − yp)
ŷp = Cpx̂p +Dpu

Combining this observer with the integral error equation and the control law

˙̂xp = Apx̂p +Bpu+Kf (ŷp − yp)
ŷp = Cpx̂p +Dpu

ẋe = zcmd − z
u = K>p x̂p +K>e xe

˙̂xp = Apx̂p +Bp(K
>
p x̂p +K>e xe) +Kf [Cpx̂p +Dp(K

>
p x̂p +K>e xe)− yp]

ẋe = zcmd − z
u = K>p x̂p +K>e xe

˙̂xp = Apx̂p +BpK
>
p x̂p +BpK

>
e xe +KfCpx̂p +KfDpK

>
p x̂p +KfDpK

>
e xe −Kfyp

ẋe = zcmd − z
u = K>p x̂p +K>e xe
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˙̂xp = (Ap +BpK
>
p +KfCp +KfDpK

>
p )x̂p + (BpK

>
e +KfDpK

>
e )xe −Kfyp

ẋe = zcmd − z
u = K>p x̂p +K>e xe

Combining into a state space representation gives the dynamic output feedback compensator with ser-
vomechanism: DOFB-Servo.[

˙̂xp
ẋe

]
=

[
Ap +BpK

>
p +KfCp +KfDpK

>
p BpK

>
e +KfDpK

>
e

0 0

] [
x̂p
xe

]
+

[
0
I

]
zcmd +

[
Kf

0

]
(−yp) +

[
0
I

]
(−z)

u =
[
K>p K>e

] [ x̂p
xe

]
Combining both inputs into one the final state-space representation for the DOFB-Servo compensator is had,
and will now be used for evaluation of the loop transfer functions.

[
˙̂xp
ẋe

]
=

[
Ap +BpK

>
p +KfCp +KfDpK

>
p BpK

>
e +KfDpK

>
e

0 0

] [
x̂p
xe

]
+

[
0 Kf 0
I 0 I

]zcmd
−yp
−z


u =

[
K>p K>e

] [ x̂p
xe

]

Non-Augmented Observer (Full Compensator)

22.5.2 Augmented Observer
The plant for which we will design a dynamic output feedback compensator for is given by

ẋp = Apxp +Bpu

yp = Cpxp +Dpu

z = Cpzxp +Dpzu

where xp ∈ Rnp , u ∈ Rm, yp ∈ R` and z ∈ Rne is the regulated output. The integral error state is defined
by

ẋe = zcmd − z (22.5)

Using the error description in (22.5), the state vector xp is augmented to include this error by including xe
as a state variable [

ẋp
ẋe

]
=

[
Ap 0np×ne
−Cpz 0ne×ne

] [
xp
xe

]
+

[
Bp
−Dpz

]
u+

[
0np×ne
Ine×ne

]
zcmd (22.6)

Writing the linear state-space representation in (22.6) more compactly using x =
[
x>p x>e

]> as

ẋ = Ax+Bu+Bcmdzcmd

y = Cx+Du
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where x ∈ Rn, zcmd ∈ Rne , A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne and where

A =

[
Ap 0
−Cpz 0

]
B =

[
Bp
−Dpz

]
Bcmd =

[
0
I

]
C =

[
Cp 0`×ne

0ne×np Ine×ne

]
D =

[
Dp

0ne×m

]
and where y ∈ Rp where p = ` + ne. The difference in this case versus the non-augmented observer
approach is that now we will generate an estimator for the augmented system, and use that entire estimate
for feedback. This includes an estimate of the error state.Consider the following observer with control law

˙̂x = Ax̂+Bu+Bcmdzcmd + L(ŷ − y)

ŷ = Cx̂+Du

u = K>x x̂

˙̂x = Ax̂+BK>x x̂+Bcmdzcmd + LCx̂+ LDK>x x̂− Ly
u = K>x x̂

˙̂x = (A+BK>x + LC + LDK>x )x̂+Bcmdzcmd − Ly
u = K>x x̂

˙̂x = (A+BK>x + LC + LDK>x )x̂+
[
Bcmd L

] [zcmd
−y

]
u = K>x x̂

Augmented Observer (Observer Only)

(22.7)

The above is a representation only of the observer, and not the whole compensator, as the integral error
state is also a part of the compensator and needs to be included in the dynamics

L =
[
Lp Le

]
y =

[
yp
z

]
[
zcmd −yp −z

]>
˙̂x = (A+BK>x + LC + LDK>x )x̂+Bcmdzcmd − Lpyp − Lez
ẋe = zcmd − z
u = K>x x̂

[
˙̂x
ẋe

]
=

[
A+BK>x + LC + LDK>x 0

0 0

] [
x̂
xe

]
+

[
Bcmd Lp Le

1 0 1

]zcmd
−yp
−z


u = K>x x̂

Augmented Observer (Full Compensator)

(22.8)
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Figure 22.5: System block diagram

22.5.3 Loop Transfer Recovery
See Lavretsky, Wise page (184) 193. In analyzing the compensator and understanding loop transfer

recovery, we consider two control systems: one state feedback and one output feedback. If the state feedback
system is designed using LQR, then it will have excellent margins. If the output feedback system is designed
using LQG, its margins may be arbitrarily bad. The process of loop transfer recover attempts to make the
LQG controller like the LQR controller. While this statement is rather vague, the two systems will never be
the same, as the LQG controller has many states, whereas the LQR controller without integral action has no
states. However, what we mean by making the LQG controller look like the LQR is that the loop shapes in
the frequency domain will be the same over a frequency range of interest, thus recovering the LQR margins.

To do this comparison, we break the loop at the input of both the LQR and LQG controllers. We look at
the transfer function from ui to uo and see how we can change the observer gain so that these two transfer
functions start to look the same. The plant has state-space representation

ẋp = Apxp +Bpui

The transfer function from the plant input to its output is given by

xp
ui

= (sI −Ap)−1Bp

The LQR compensator is described by

uo = −K>p xp
Multiplying the two transfer functions together gives the transfer function through the control loop when it
is broken at the plant input for the LQR controller

uo
ui

= −K>p (sI −Ap)−1Bp

Now let’s analyze the output feedback compensator. In this case the plant equation must include the
output. If we dont use a D term the plant is described by

ẋp = Apxp +Bpui

yp = Cpxp

The transfer function from the plant input to its output is given by

yp
ui

= Cp(sI −Ap)−1Bp
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The LQG compensator is described by

˙̂xp = (Ap −KfCp −BpKx)x̂+Kfyp

uo = −K>p x̂p
This gives the following transfer function from the input to the compensator (which is the plant output) to
the compensator output (the control)

uo
yp

= −K>p (sI −Ap +KfCp +BpK
>
p )−1Kf

Multiplying the two transfer functions together gives the transfer function through the control loop when it
is broken at the plant input

uo
ui

= −K>p (sI −Ap +KfCp +BpK
>
p )−1KfCp(sI −Ap)−1Bp

22.5.4 An LTR Alternative to Output Feedback
Consider the following MIMO uncertain open-loop system

ẋp = Apxp +Bpu

yp = Cpxp

z = Cpzxp +Dpzu

(22.9)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈ R`×np , Cpz ∈ Rne×np are constant known matrices. z is the
regulated output, and the number of regulated outputs cannot exceed the number of inputs, that is ne ≤ m.
The goal is to design a control input uwhich will make z tend to the reference command zcmd asymptotically.

In order to ensure command tracking, we introduce integral action, and for this purpose an additional
state xe is defined as

ẋe = zcmd − z

and the plant in (22.9) is augmented to lead to the following extended open-loop dynamics[
ẋp
ẋe

]
=

[
Ap 0
−Cpz 0

] [
xp
xe

]
+

[
Bp
−Dpz

]
u+

[
0
I

]
zcmd[

yp
xe

]
=

[
Cp 0
0 I

] [
xp
xe

] (22.10)

The system in (22.10) can be written more compactly as

ẋ = Ax+Bu+Bcmdzcmd

y = Cx
(22.11)

where A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , and C ∈ Rp×n are the known matrices given by

A =

[
Ap 0np×ne
−Cpz 0ne×ne

]
B =

[
Bp
−Dpz

]
Bcmd =

[
0np×m
Ine×ne

]
C =

[
Cp 0`×ne

0ne×n Ine×ne

]
Note that p = `+ ne. We make the following assumptions about the system Σ = (A,B,C, 0) in (22.11).
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Assumption 1

a) (A,B) is controllable.

b) (A,C) is observable.

c) B, C, and CB are full rank.

d) Any transmission zeros of Σ are strictly stable.

e) Σ is tall: p ≥ m.

Remark 4 Assumptions 1a and 1b are standard. Assumption 1c implies that inputs and outputs are not
redundant, as well as a MIMO equivalent of relative degree unity. Assumption 1d is a standard requirement
for adaptive control. Assumption 1e can be considered without loss of generality as the case of wide systems
p < m holds by duality.

Remark 5 Given a system Σp = (Ap, Bp, Cp, 0) which satisfies

• (Ap, Bp) is controllable.

• (Ap, Cp) is observable.

• Bp, Cp, and CpBp are full rank.

• Any transmission zeros of Σp are strictly stable.

• The rank of the following matrix is full

rank
([

Ap Bp
−Cpz −Dpz

])
= np + ne

when augmented with the integral error state as shown in (22.10) also satisfies Assumption 1a-d. In other
words, under these assumptions, integral error augmentation does not destroy controllability or observability,
the rank conditions, nor does it add any transmission zeros[3].

22.6 PI-Observer and Controller
Consider again the same plant as before, but this time with a constant sensor bias dout on the output as

represented in the figure below.

Plant
u z̄p +

dout

+ zp

The equations describing this system are

ẋp = Apxp +Bpu

z̄p = Cpxp

zp = ȳp + dout
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First augment this state-space representation with an integral error state ẋe = zcmd − z̄p for the controller[
ẋp
ẋe

]
=

[
Ap 0
−Cp 0

] [
xp
xe

]
+

[
Bp
0

]
u+

[
0
I

]
zcmd

This system can be represented more compactly as follows

ẋ = Ax+Bu+Bcmdzcmd

From which we write the regulated output z̄p and the corresponding biased regulated output zp as follows,
and also we can define the measured outputs in the same way as ȳp and yp where the measured outputs
contain the regulated outputs, but also include as additional outputs the integral error state.

z̄p =
[
Cp 0

]
x

= Czx

zp =
[
Cp 0

]
x+ dout

= Czx+ dout

and the measured outputs are

ȳp =

[
Cp 0
0 I

]
x

= Cx

yp =

[
Cp 0
0 I

]
x+

[
I
0

]
dout

= Cx+BDdout

Together these equations are

ẋ = Ax+Bu+Bcmdzcmd

ȳp = Cx

yp = Cx+BDdout

z̄p = Czx

zp = Czx+ dout

Using the control law
u = K>x x

And substituting in, the compact form of the plant augmented with the integral error state, and closed loop
with control law is

ẋ = Arefx+Bcmdzcmd

ȳp = Cx

yp = Cx+BDdout
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So, at this point we have basically assumed the state xp was available for measurement and the plant
was completely known in determining the above system. We can now write these dynamics in a different
form to include the disturbance as a state.[

ẋ

ḋout

]
=

[
Aref 0
0 0

] [
x
dout

]
+

[
Bcmd

0

]
zcmd

This system can be represented more compactly as follows

ẋf = Afxf +Bfzcmd

Outputs

z̄p =
[
Cz 0

]
xf

=
[
Cp 0 0

]
xf

= C̄zfxf

zp =
[
Cz 1

]
xf

=
[
Cp 0 1

]
xf

= Czfxf

and the measured outputs are

ȳp =

[
Cp 0 0
0 I 0

]
xf

= C̄fxf

yp =

[
Cp 0 I
0 I 0

]
xf

= Cfxf

So everything is

ẋf = Afxf +Bfzcmd

ȳp = C̄fxf

yp = Cfxf

z̄p = Czfxf

zp = Czfxf

where
xf =

[
x>p x>e d>out

]>
So now we have the plant with a closed-loop LQR-PI controller and disturbance with integrator all expressed
in a single system. The problem is that we cannot implement the above controller as the state xp which was
used in the control law is unavailable. We attempt to estimate not only this state, but also the error state and
disturbance. That is

˙̂xf = Af x̂f +Bfzcmd +Kf (ŷp − yp)
ˆ̄yp = C̄f x̂f

ŷp = Cf x̂f

197



where
x̂f =

[
x̂>p x̂>e d̂>out

]>
Expanding this estimator representation we get the following[

˙̂x
˙̂
dout

]
=

[
Aref 0
0 0

] [
x̂

d̂out

]
+

[
Bcmd

0

]
zcmd +

[
Lv
LI

]
(ŷp − yp)

giving

˙̂xf = Arefx̂f +Bcmdzcmd + Lv(ŷp − yp)
˙̂
dout = LI(ŷp − yp)

ˆ̄yp = C̄f x̂f

Design PI-Observer First, Then Control Later Dealing with an output bias is a dual problem to that of
dealing with an input bias using an input integrator like in LQR-PI control. The first step is to represent the
system equations to include the disturbance as an augmented state as shown below. Mathematically, these
equations are exactly the same as above, just represented in a different way.[

ẋp
ḋout

]
=

[
Ap 0
0 0

] [
xp
dout

]
+

[
Bp
0

]
u

zp =
[
Cp 1

] [ xp
dout

]
+Dpu

More compactly these equations can be written

ẋ = Ax+Bu

zp = Cx+Dpu

Now we design an estimator for this new system. The state z and corresponding estimated state ẑ are

z =

[
xp
dout

]
ẑ =

[
x̂p
d̂out

]
This allows the biased output yp and the non-biased output ȳp to be estimated, and thus the estimate of the
bias to be determined.

˙̂z = Aẑ +Bu+Kf (ŷp − yp)
ŷp = Cẑ +Dpu

ˆ̄yp = C̄ẑ +Dpu

where the output matrix for the estimate of the unbiased output is

C̄ =
[
Cp 0

]
Can also have output matrix for disturbance estimate

Cd̂ =
[
0 1

]
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To make the proportional and integral components of this observer more clear, represent the observer above
by splitting up Kf and writing

˙̂xp = Apx̂p +Bpu+KP (ŷp − yp)
˙̂
dout = KI(ŷp − yp)
ŷp = Cpx̂p + d̂out

ˆ̄yp = Cpx̂p

where

Kf =

[
KP

KI

]
The thinking here is a little bit different than when creating the integral error state in LQR-PI controller.
In LQR-PI control, this error state is constructed by considering measurements which are available, and
asking ourselves what signals should be differenced to make an error which should then be driven to zero.
That is, if we have an unbiased output measurement which we want to drive to some reference value, we
difference these, then call this difference the derivative of the error state. Then, by augmenting the state-
space description with this error state, we convince ourselves that at steady state this error derivative must
become zero, requiring the measurement to be equal to the command.

With the PI observer it is a little bit different. That ŷp will track yp at steady state in the presence of
an output disturbance is not what we are interested in, but rather that this process gives convergence of x̂p
to xp. It is from this estimated state which we can then construct an estimate of the unbiased output ˆ̄yp. In
thinking of this problem it is convenient to think always of the plant as the system which includes the output
bias, and concern ourselves only with estimating x̂p.

From here we can design a controller. Here we will use an LQR-PI controller, which has control law

u = K>p x̂p +K>e xe

where the integral error state is defined as

ẋe = r −Hx̂p
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Chapter 23

Frequency Domain Analysis

23.1 Introduction
Frequency response method: give a system a sinusoidal input. The output (will always be?) a sinusoid,

with a magnitude and phase which may be different than the input, but the frequency will be the same. Then,
sweep the input frequency across a wide range, and observe how the gain and phase shift of the measured
output change with frequency.

23.2 Compensator Analysis Using Loop Transfer Functions
References: see [2] (Chapter 5) and Astrom and [4] (Chapter 11).

Relative Stability

This block diagram below encompasses the types of controller designs we want to consider. If zcmd = 0,
this is the classical block diagram, where the error signal e is the only input to the controller. When r = 0,
the input is given directly through zcmd, as is the case with the LQR-PI controller.

K(s)

Controller

G(s)

Plant
yi

zcmd

r + e
uo +

din

+ ui yo +

dout

+

+

n−
w

−

Figure 23.1: General MIMO feedback control block diagram

The following section will explain how to determine the various transfer functions of interest which
describe a plant and compensator in the block diagram form shown in Figure 23.1. In order to find the
different loop transfer functions, the control loop will be broken at different points, and the transfer function
at this broken point evaluated. This is used to analyze what happens if noise or disturbances are injected
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at these different loop break points. The following show how to find the loop transfer functions for MIMO
plants and controller. This is important because unlike SISO systems, multiplication of matrices is not
commutative.

Note also:
L(I + L)−1 = (I + L)−1L

23.2.1 Input
Loop Transfer Function Breaking the loop at the plant input u means to evaluate the transfer function
from “input” ui to “output” uo while all other signals are zero.

y = G(s)ui

e = −y
uo = K(s)e = −K(s)y

uo = −K(s)G(s)ui = −Lu(s)ui

Lu(s) = K(s)G(s)

Return Difference Transfer Function Differencing the “input” ui and “output” uo using the expression
for output from above:

ui − uo = ui −K(s)e

ui − uo = ui +K(s)G(s)ui

ui − uo = (I +K(s)G(s))ui

ui − uo = (I + Lu(s))ui

I + Lu(s)

When plotting this loop shape, it will be large at low frequencies and tend to unity at high frequencies, since
the loop transfer function Lu → 0 at high frequencies. This loop will dip below 0 dB, before leveling out,
and the more it dips below 0 dB the worse the gain margin is.

Input Sensitivity Transfer Function Su(s) The input sensitivity transfer function is from din to ui while
all other signals are zero.

ui = uo + din

uo = K(s)e = −K(s)y

y = G(s)ui

ui = −K(s)G(s)ui + din

(I +K(s)G(s))ui = din

ui = (I +K(s)G(s))−1din

ui = (I + Lu(s))−1din

Su(s) = (I + Lu(s))−1
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Complementary Input Sensitivity Transfer Function Tu(s) Unlike the Ty(s), the input complemen-
tary sensitivity transfer function does not represent an relationship between any of the system inputs and
outputs. This transfer function is given by using the identity Su(s) + Tu(s) = I , hence the name com-
plementary sensitivity transfer function, but otherwise there is little intuition regarding what this transfer
function represents.

Su(s) + Tu(s) = I

(I + Lu(s))−1 + Tu = I

I + (I + Lu(s))Tu = I + Lu(s)

Tu = (I + Lu(s))−1Lu(s)

Tu = Su(s)Lu(s)

With L(I +L)−1 = (I +L)−1L, which can be shown by pre- and post- multiplying both sides by (I +L),
we can also write Tu(s) as

Tu(s) = Lu(I + Lu(s))−1

Stability Robustness
1 + L−1

u

At low frequencies L−1
u → 0, so this loop shape will be unity for low frequencies and large at high fre-

quencies, since at high frequencies L−1
u →∞. It will dip below 0 dB before going up, and the more it dips

below 0 dB, the worse the gain margin will be.

23.2.2 Output
Loop Transfer Function Ly(s) Breaking the loop at the plant output y means to evaluate the transfer
function from “input” yi to “output” yo while all other signals are zero.

e = −yi

ui = uo = K(s)e = −K(s)yi

yo = G(s)ui

yo = −G(s)K(s)yi = −Ly(s)yi

Ly(s) = G(s)K(s)

Return Difference Transfer Function Differencing the “input” yi and “output” yo using the expression
for output from above:

yi − yo = yi +G(s)K(s)yi

yi − yo = (I +G(s)K(s))yi

yi − yo = (I + Ly(s))yi

I + Ly(s)
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Output Sensitivity Transfer Function Sy(s) The output sensitivity is from dout to yi with all other
signals are zero. ”The sensitivity function tells how the variations in the output are influenced by feedback”
[4]

yi = yo + dout

yo = G(s)ui = G(s)uo

uo = K(s)e = −K(s)yi

yi = −G(s)K(s)yi + dout

(I +G(s)K(s))yi = dout

yi = (I +G(s)K(s))−1dout

yi = (I + Ly(s))
−1dout

Sy(s) = (I + Ly(s))
−1

At frequencies where plant disturbances are to be rejected, we want Sy(s)→ 0.

Complementary Output Sensitivity Transfer Function Ty(s) Unlike Tu(s), this transfer function rep-
resents the relationship between the noise n and the output yi = yo. This transfer function also satisfies the
identity Sy(s) + Ty(s) = I , hence the name complementary sensitivity transfer function.

e = r − w
w = yi − n
yi = G(s)K(s)e

e = r − yi + n

e = r −G(s)K(s)e+ n

(I +G(s)K(s))e = r + n

e = (I +G(s)K(s))−1n

yi = G(s)K(s)e

yi = G(s)K(s)(I +G(s)K(s))−1n

Ty(s) = Ly(s)(I + Ly(s))
−1

This transfer function is the same as that between r and the output yi = yo.

23.2.3 The Gang of Six
Now that the basic transfer functions have been found for a generic plant and controller feedback system,

and an example of how to find the transfer function for the LQR-PI has been presented, we want to explain
how to use the transfer functions to create some plots that will aid in control system analysis and design.
The following figure shows singular value plots of the “gang of six”.
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23.2.4 Margins for MIMO System
23.3 Stuff
23.3.1 Gain and Phase of Poles and Zeros

These two examples that follow connect the transfer function representation of the integrator and differ-
entiator to a differential equation and show how, when the system is given a sinusoidal input, that the zero
causes the output to lead the input, and the pole causes the output to lag behind the input.

x

u
=

1

s

The differential equation is

ẋ = u

This whole thing of gain and phase is for a given sinusoidal input, so u(t) = A sin(ωt) and then we want to
see how that will affect the output x(t) for this system.

dx

dt
= A sin(ωt)

separate and integrate back ∫ x

x0

dx =

∫ t

t0

A sin(ωt)dt

giving

x− x0 = −A
ω

cos(ωt) +
A

ω
cos(ωt0)

x(t) = −A
ω

cos(ωt) +
A

ω
cos(ωt0) + x0

x(t) = −A
ω

cos(ωt)

but − cos(x) = sin(x− 90◦) so the input and corresponding output can be written

u(t) = A sin(ωt)

x(t) =
A

ω
sin(ωt− 90◦)

So we can see that the magnitude of the output depends inversely on ω, getting smaller as ω gets larger.
More importantly we can see clearly that there is a 90◦ phase lag from the input to the output. Consider now
a differentiator.

x

u
= s

gives

x = u̇
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and with u(t) = A sin(ωt) we have

x(t) = Aω cos(ωt)

together the input and output are

u(t) = A sin(ωt)

x(t) = Aω cos(ωt)

But we have cos(x) = sin(x+ 90◦) giving

u(t) = A sin(ωt)

x(t) = Aω sin(x+ 90◦)

and here we can see that there is a positive phase shift, or say that the output leads the input by 90 degrees.

23.3.2 How to Make Bode Plots
first normalize the transfer function, so all the factors look like (1 + sai)

23.3.3 Nyquist Plots
23.3.4 Output Filters
Types of Filters

Talk about the different types of filters here, including elliptical filter. Talk about why I want to use any
particular one, and which ones work best.

First Order Low-Pass Filter

Filters can be used to condition an output signal which is to be used in feedback. A low pass filter is
given by the following transfer function, where the input to the filter is u and the output is y.

y

u
=

10

s+ 10

Such a filter is best implemented in SIMULINK by representing it in state-space form, thus allowing the
initial conditions to be set, which cannot be done using a transfer function representation.

y

u
=
y

x

x

u
=

10

s+ 10

x

u
=

1

s+ 10
y

x
= 10

ẋ+ 10x = u

ẋ = −10x+ u

y = 10x
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A = −10 B = 1 C = 10 D = 0

This state-space representation of a low-pass filter can now be implemented in SIMULINK, but the initial
conditions must be specified. The filter takes as its input the unfiltered state x and outputs the filtered state
xf . When the simulation begins, if the initial conditions are not set, the filter will cause an abrupt spike in
the state before settling down. The initial conditions must be set such that when the simulation begins, at
the first time step the output signal is the same as the input signal, and the filter state derivative should be
zero. That is, ẋ(0) = 0 and xf (0) = x(0). Using the state as the input u = x, the filtered state as the output
y = xf , and the actual internal filter state x = xs...

0 = −10xs(0) + x(0)

xf (0) = 10xs(0)

We see xs(0) = x(0)/10 = (0) will make the filter state derivative ẋs = 0 and the filtered output the same
as the input.

207



208



Chapter 24

Linear System Stuff

24.1 The Matrix Exponential
24.1.1 General System Stability

Given a linear ODE of the following form

any
(n) + · · ·+ a2ÿ + a1ẏ = bmu

(m) + · · ·+ b2ü+ b1u̇

with a specified input function u(t), the solution is the output function y(t). We say the system is BIBO
stable if, given a bounded input function u(t), the output function y(t) is bounded for all time. That is
|y(t)| < α <∞. Considering the Laplace transform of this system

Y (s)(ans
n + · · ·+ a2s

2 + a1s) = U(s)(bms
m + · · ·+ b2s

2 + b1s)

Y (s)

U(s)
=

(bms
m + · · ·+ b2s

2 + b1s)

(ansn + · · ·+ a2s2 + a1s)
=
N(s)

D(s)
= G(s)

And for BIBO stability this corresponds to the denominator D(s) having all of its roots have real part that
is negative. When taking the inverse Laplace transform of G(s) if any of the roots were positive, this would
result in the output taking the input and multiplying it by some increasing exponential. So, regardless of
which bounded input was fed to the system, the output would grow unbounded. That is why stability requires
the roods of D(s) be negative. Considering the transfer function representation of a stable system such as

Y (s)

U(s)
=
N(s)

D(s)
= G(s)

Now, although the system is stable, we may want to know how stable it is. We do this by looking at the roots
of the denominator (which must all be all in the LHP for stability) and see how far they have to go before
they become in the right half plane.

24.1.2 Stability Margins
Stability margins for a system have no meaning when considered outside the context of feedback. Take

a stable system G(s). If an additional gain or time delay is introduced between the input and the system, the
output will be delayed, and scaled by this gain. The same goes for delays or gains at the output. But these
will not effect the stability of the system. Likewise if the system G(s) is unstable, regardless of how the
input is magnified or time-shifted, the resulting output will always “blow up”. Stability margins for a system
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G(s) have to do with placing the system in feedback, and then determining how delays or gains added to the
system will affect stability for the closed-loop system. Consider the following system where the plant G(s)
is stable. (It doesn’t have to be) and we are designing a feedback controller to achieve some performance
objectives out of the closed-loop system. The input to the system is U(s) and the output Y (s).

Y (s)

U(s)
= H(s) =

KG

1 +KGH

Call the quantity

L = KGH

giving

Y (s)

U(s)
= H(s) =

KG

1 + L

Now the loop transfer function L simply takes as an input a complex frequency s, and the result is a complex
number with some magnitude and phase. It is not obvious what values of s would result in what complex
numbers from L, or even what a “good” or “bad” value of L is. However, we can see from this equation that
if L = −1 that the closed-loop system will “blow up”, which is bad.

Intuitively, we know that given an arbitrary input, if the system is amplifying the signal through the
feedback loop, the output will become larger and larger, indicating system instability. One way to think
about this is: after some initial amount of time with an arbitrary input, turn the input off. If the signal within
the loop eventually decays, the closed-loop system is stable. If the signal in the loop grows, the system is
unstable.

We consider the case when the input to the system is an arbitrary sinusoidal input.
Consider the block diagram of the system H above, with the loop broken at the output. Inject a signal

δin into H and see what happens when it goes through the blocks and comes out of the output y and call this
signal δout. Notice that the output signal is

δout = −Lδin

Again keeping in mind that the input and output are both sinusoidal signals, and if we consider sweeping
across all frequencies with our input signal δin, the output will be a sine wave of the same frequency that has
been phase shifted and scaled by some magnitude. When is L bad? What must L do to the input to be bad?

Consider the case where we find the frequency such that L has a phase shift of 180◦. This is equivalent
to flipping the sine wave, or multiplying it by a negative. When this happens the magnitude of L then must
be less than unity, otherwise the output will be the same phase as the input, but larger? Is this true?

What is the explanation for why |L(s)| can be larger than unity when its phase is −180◦? Finish this
explanation.

In any case, looking at the denominator, we know that L(s) = −1 is bad. So, we sweep across all input
frequencies and look at when |L(ω)| = 1, we then want to know, at this value of ω, how far is the phase
from being −180◦? This is called the phase margin.

For gain margin, sweep across all the frequencies ω and find the one such that ∠L(ω) = −180◦. Then,
for this value of ω, determine how far the magnitude of L is from being unity. This is gain margin.
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24.1.3 Time Delay Margin
s = σ + jω Considering sinusoidal inputs only, that is s = jω Considering a Bode plot of a transfer

function G(s), the phase margin is Consider an input u(t) and output y(t). The input and output of the
system can be represented as an exponential. That is consider the input

u(t) = est

The output will be of a similar form, of which we are trying to find the specifics when there is a delay
between the input and output

y(t) = u(t− τ)

and the input with this delay is

u(t− τ) = es(t−τ) = este−sτ

and we can write

y(t) = este−sτ

which is

y(t) = u(t)e−sτ

and so we can see given an output that is delayed by τ from the input is represented by e−sτ . Taking a
transfer function with delay

Y (s)

U(s)
= G(s)e−sτ

Now we want to know when this system is placed in feedback, how large would the delay have to get
before the closed-loop system becomes unstable? A delay does not affect the magnitude of the system, only
the phase. Look at the transfer function G(s) when its magnitude is 1. Then we want to know what the
relationship of the delay to phase is, where we are looking for how much phase shift can occur before G(s)
with the delay hits −1. Evaluating G with the delay at the frequency where its magnitude is 1.

G(jωcg)e
−jωcgτ = −1

∠(G(jωcg)e
−jωcgτ ) = −180◦

The magnitude of G is 1 and the magnitude of the delay is 1, so now we just need to check when the
combined phase of the two is −180◦.

∠(G(jωcg)e
−jωcgτ ) = ∠G(jωcg) + ∠e−jωcgτ = −180◦

and the angle of the delay is

∠e−jωcgτ = −ωcgτ

∠G(jωcg)− ωcgτ = −180◦

Recalling the definition of phase margin
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PM = 180◦ + ∠G(jωcg)

we get

PM = ωcgτ

and solving for the delay τ we get

τ =
PM

ωcg

Magnitude more than 1 OK only when phase is ±180◦ The maximum tolerable time delay is one which
causes the transfer function Y (s)

U(s) to become −1,

24.1.4 Introduction
Consider the following linear, time varying, autonomous state space equation where A(t) ∈ Rn×n and

x(t) ∈ Rn×1.

ẋ(t) = A(t)x(t)

We want to gain insight into solution of this matrix equation by first considering the time invariant scalar
equation

ẋ(t) = x(t)

Proposing a solution of the following form:

x(t) = 1 + t+
t2

2!
+
t3

3!
+ . . .

differentiating

ẋ(t) = 0 + 1 + t+
t2

2!
+ . . .

and notice that the function x(t) is in fact the derivative of itself, and satisfies the given equation. Define
this function x(t) = et, which is described by the following sum, to be the exponential function, noting that
0! = 1.

et =
∞∑
n=0

tn

n!
= 1 + t+

t2

2!
+
t3

3!
+ . . .

(See Rudin pg 63 for definition of e) Extending this function definition to the scalar first order differential
equation

ẋ(t) = ax(t)

where a ∈ R. We are looking for a function x(t) which, when differentiated, results in x(t) being multiplied
my a. We propose a solution x(t) = eat by replacing each t in the above definition by at. That is
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x(t) = eat = 1 + at+
(at)2

2!
+

(at)3

3!
+ . . .

which, when differentiated gives

ẋ(t) = 0 + a+ a2t+
a3t2

2!
. . .

= a

(
1 + at+

a2t2

2!
. . .

)
= aeat

= ax(t)

which solves the given differential equation. In general

x(t) = eatc

is a solution, where c = x(0)

x(t) = eatx(0)

Or more generally for t0 6= 0 the solution to the differential equation ẋ(t) = ax(t) is given by

x(t) = ea(t−t0)x(t0)

24.1.5 Matrix Exponential
Similarly, if the following solution is proposed for the matrix differential equation

x(t) = I +At+
(At)2

2!
+

(At)3

3!
+ . . .

it can be differentiated in the same way as the scalar case, thus defining the function known as the matrix
exponential.

eAt , I +At+
(At)2

2!
+

(At)3

3!
+ . . .

giving the following solution to the matrix differential equation ẋ(t) = Ax(t)

x(t− t0) = eA(t−t0)x(t0)

The quantity given by evaluating the matrix exponential is known as the state transition matrix:

x(t− t0) = Φ(t, t0)x(t0)

which is sometimes written Φ(t − t0) as well. The state transition matrix may be time varying, or time
invariant, depending on the system from which it resulted. The following examples will help show different
way in which the state transition matrix can be found by evaluating the matrix exponential.
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Diagonal A Matrix

eΛt =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt


Finding the State Transition Matrix

Example 24 Using the definition - Time Invariant For the system ẋ(t) = Ax(t) with A
given below, the matrix exponential can be evaluated using the series definition.

A =

[
0 1
0 0

]

eA(t−t0) =

[
1 0
0 1

]
+

[
0 1
0 0

]
(t− t0) +

1

2!

[
0 1
0 0

]2

(t− t0)2 + ...

but

An =

[
0 0
0 0

]
for n ∈ N ≥ 2

giving

eA(t−t0) =

[
1 0
0 1

]
+

[
0 1
0 0

]
(t− t0) =

[
1 (t− t0)
0 1

]
So the state transition matrix is given by:

Φ(t, t0) =

[
1 (t− t0)
0 1

]
and the solution to the state space equation is:

x(t) =

[
1 (t− t0)
0 1

]
x(t0)

Example 25 Using Inverse Laplace Transform - Time Invariant For the system ẋ(t) =
Ax(t) with A given below, the matrix exponential can be evaluated using inverse Laplace
transforms.

A =

[
0 1
0 0

]
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x(t) = L −1((sI −A)−1)x(t0)

where

Φ(t, t0) = L −1((sI −A)−1)

(sI −A) =

[
s −1
0 s

]
Using the formula to invert a 2× 2 matrix:

(sI −A)−1 =
1

det(sI −A)

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
Taking the inverse Laplace transform:

L −1

([
1
s

1
s2

0 1
s

])
=

[
1 (t− t0)
0 1

]
So the state transition matrix is given by:

Φ(t, t0) =

[
1 (t− t0)
0 1

]
which matches the answer we got in the first example by using the series definition.

Example 26 Using the definition - Time Invariant The last example showed how the
series definition could be used to find the state transition matrix for a simple linear time
invariant system. This example was made particularly easy because the series terminated
after the first two terms. In this example, the entire series will have to be considered, and
recognized as a series representation of a commonly known trigonometric function. For the
system ẋ(t) = Ax(t) A is given by:

A =

[
0 1
−a2 0

]
Evaluating the first terms in the series definition of the matrix exponential:

A2 =

[
0 1
−a2 0

] [
0 1
−a2 0

]
=

[
−a2 0

0 −a2

]
A3 = A2A =

[
−a2 0

0 −a2

] [
0 1
−a2 0

]
=

[
0 −a2

a4 0

]
A4 = A3A =

[
0 −a2

a4 0

] [
0 1
−a2 0

]
=

[
a4 0
0 a4

]
A5 = A4A =

[
a4 0
0 a4

] [
0 1
−a2 0

]
=

[
0 a4

−a6 0

]
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Assembling these components using the series definition of the matrix exponential, the state
transition matrix becomes

Φ(t, t0) =

[
1− a2 t2

2! + a4 t4

4! − ... t− ...
−a2t+ ... 1− ...

]
Recognizing the series in the entries of the state transition matrix, it can be simplified to:

Φ(t, t0) =

[
xxx xxx
xxx xxx

]
and the solution to the state space equation is:

x(t) =

[
xxx xxx
xxx xxx

]
x(t0)

See Hogan’s notes Unforced LTI Response.pdf

Example 27 Directly fromAMatrix - Time Varying 6.241 notes Wed. 2/29

A =

[
0 t
0 0

]

ẋ1(t) = tx2(t)

ẋ2(t) = 0

ẋ1(t) = tx2(t0)

ẋ2(t) = 0

Example 28 Using Inverse Laplace Transform - Time Varying 6.241 HW 3.4. Find an
expression for Φ(t2, t0) for the system ẋ(t) = A(t)x(t) given

A =

[
0 1
−k 0

]
when
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{
k = 0 for t < 0

k = 1 for t ≥ 0

for t0 < 0 to t2 > 0. Since the matrix A(t) is time varying and described for two different
cases of k, only on state transition matrix Φ will not be able to be used. Two state transition
matrices are needed.

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)

The first one will go from t = t0 < 0 to t = t1 = 0, and is given by:

Φ(t1, t0) = exp

([
0 1
0 0

]
(t1 − t0)

)
= exp

([
0 1
0 0

]
(−t0)

)
Using the series definition of the matrix exponential, the state transition matrix is calcu-
lated. The series definition can be used because the series terminates after the first two
terms. That is all powers of A greater than 1 are zero.

exp

([
0 1
0 0

]
(−t0)

)
=

[
1 0
0 1

]
+

[
0 1
0 0

]
(−t0) +

1

2!

[
0 1
0 0

]2

(−t0)2 + ...

=

[
1 −t0
0 1

]
+

[
0 0
0 0

]
+ ...

Φ(t1, t0) =

[
1 −t0
0 1

]
Now, the second state transition matrix Φ(t2, t1) must be calculated from t = t1 = 0 to
t = t2 > 0:

Φ(t2, t1) = exp

([
0 1
−1 0

]
(t2 − t1)

)
= exp

([
0 1
−1 0

]
(t2)

)
The series definition can not be used to evaluate the state transition matrix in this case, since
it does not terminate after two terms like it did before. Another way to evaluate the state
transition matrix is the following:

x(t2) = L −1((sI −A)−1)x(t1)

where
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Φ(t2, t1) = L −1((sI −A)−1)

= L −1

((
sI −

[
0 1
−1 0

])−1
)

= L −1

(([
s −1
1 s

])−1
)

Using the formula for the inverse of a 2× 2 matrix:

(sI−A)−1 =

[
s −1
1 s

]−1

=
1

det(sI −A)

[
s 1
−1 s

]
=

1

s2 + 1

[
s 1
−1 s

]
=

[ s
s2+1

1
s2+1

−1
s2+1

s
s2+1

]
Now, taking the inverse Laplace transform of (sI − A)−1 (which only depends on t2 and
not t1) using a Laplace transform table, by hand:

L −1

[ s
s2+1

1
s2+1

−1
s2+1

s
s2+1

]
=

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
Combining the two state transition matrices:

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) =

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

] [
1 −t0
0 1

]
=

[
cos(t2) sin(t2)− t0 cos(t)
− sin(t2) cos(t2) + t0 sin(t2)

]
Several other state transition matrices Φ(t2, t0) would exist for different conditions of t2
and t0. For instance, if t2 and t0 were both greater than zero, the state transition matrix
would only be calculated for k = 1 giving:

Φ(t2, t0) =

[
1 t2 − t0
0 1

]

24.1.6 Non-Autonomous Systems
In order to find the state of a state space model at time t1 based on initial conditions at t0 and in input

u(t), the methods of the state transition matrix can still be used, although they must be extended to include
the input.

x(t1) = Φ(t1, t0)x(t0) +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ
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Example 29 Non-Autonomous System - Time Varying QR10B from 6.241 midterm
review Given the following differential equation, find y(2π). The initial conditions are
y(0) = 1 and ẏ(0) = 1. The input u(t) = 1 for all time.

ÿ(t) + k(t)y(t) = u(t) wherek(t) =

{
1 for sin(t) > 0

0 for sin(t) ≤ 0

Putting this information into the differential equation, and based on the final time at which
we are asked to calculate y, this problem can be broken into two parts, and solved separately
using the formula above. That is, with t0 = 0 and t1 = π, we will first find the value of
y(t1) and ẏ(t1). Over this time interval k(t) = 1 is a constant, and the problem can be
solved as a time invariant one. Once the values of y and ẏ are had at t1, the problem will
be repeated with t2 = 2π.

The given differential equation will be rewritten for the first interval over which it will be
solved, and the corresponding state space model for this system must be found.

ÿ + y = 1

Define the following state vector x(t):

x(t) =

[
y(t)
ẏ(t)

]
with the state vector derivative

ẋ(t) =

[
ẏ(t)
ÿ(t)

]
Using this state vector, the system equation can be expressed using the following state space
model [

ẏ(t)
ÿ(t)

]
=

[
0 1
−1 0

] [
y(t)
ẏ(t)

]
+

[
0
1

]
From this state space model, the state transition matrix Φ(t1, t0) must be found.

Φ(t1, t0) = exp

([
0 1
−1 0

]
(t1 − t00

)
This state transition matrix may be more difficult to evaluate using the series definition of
the matrix exponential, so the inverse Laplace transform method will be used:

Φ(t1, t0) = L −1((sI −A)−1)

= L −1

((
sI −

[
0 1
−1 0

])−1
)

= L −1

(([
s −1
1 s

])−1
)

= L −1

(
1

s2 + 1

([
s 1
−1 s

]))
= L −1

([ s
s2+1

1
s2+1

−1
s2+1

s
s2+1

])
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Using a Laplace transform table, or by evaluating the inverse Laplace transforms by hand:

Φ(t1, t0) =

[
cos(t1 − t0) sin(t1 − t0)
− sin(t1 − t0) cos(t1 − t0)

]
With the initial conditions plugged into the state vector:

x(t0) = x(0) =

[
1
1

]
All of the components to use the equation are had. Plugging them in:

x(π) =

[
cos(π) sin(π)
− sin(π) cos(π)

] [
1
1

]
+

∫ π

0

[
cos(π − τ) sin(π − τ)
− sin(π − τ) cos(π − τ)

] [
0
1

]
dτ

=

[
−1 0
0 −1

] [
1
1

]
+

∫ π

0

[
sin(π − τ)
cos(π − τ)

]
dτ

=

[
−1
−1

]
+

[
cos(π − τ)
sin(π − τ)

]∣∣∣∣∣
π

0

=

[
−1
−1

]
+

[
cos(0)− cos(π)
sin(0)− sin(π)

]
=

[
−1
−1

]
+

[
2
0

]
=

[
1
−1

]
This procedure must now be repeated for the second time interval, from t1 = π to t2 = 2π,
using the following state space model[

ẏ(t)
ÿ(t)

]
=

[
0 1
0 0

] [
y(t)
ẏ(t)

]
+

[
0
1

]
with the “initial” conditions:

x(t1) = x(π) =

[
1
−1

]
Again, using the inverse Laplace transform method to find the state transition matrix
Φ(t2, t1):

Φ(t2, t1) = L −1((sI −A)−1)

= L −1

((
sI −

[
0 1
0 0

])−1
)

= L −1

(([
s −1
0 s

])−1
)

= L −1

(
1

s2

([
s 1
0 s

]))
= L −1

([
1
s

1
s2

0 1
s

])
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Using a Laplace transform table, or by evaluating the inverse Laplace transforms by hand:

Φ(t2, t1) =

[
1 t2 − t1
0 1

]

x(t1) = x(π) =

[
1
−1

]
All of the components to use the equation are had. Plugging them in:

x(2π) =

[
1 π
0 1

] [
1
−1

]
+

∫ π

0

[
1 2π − τ
0 1

] [
0
1

]
dτ

=

[
1 π
0 1

] [
1
−1

]
+

∫ π

0

[
2π − τ

1

]
dτ

=

[
1− π
−1

]
+

[
2πτ − 1

2τ
2

τ

]∣∣∣∣∣
π

0

=

[
1− π
−1

]
+

[
3
2π

2

π

]
=

[
1− π
−1

]
+

[
3
2π

2

π

]
=

[
3
2π

2 − π + 1
π − 1

]

24.2 Controllability, Reachability, and Observability
24.2.1 Introduction

The concepts of controllability, reachability, and observability will be explained, as well as the weaker
conditions of stabilizability and detectability. The differences between these terms will be explained for
continuous and discrete time. In a broad sense, the concept of controllability is the ability to command a
system to do what we want it to do through the action of a control input. The concept of observability is the
ability to see what is going on inside a dynamical system given the sensor outputs. To better illustrate these
concepts, eigenvalue decomposition will be used, and is explained next.

24.2.2 Eigenvalue Decomposition
Eigenvalue decomposition is the representation of a matrix A in terms of its eigenvalues and eigenvec-

tors. Only diagonalizable matrices can be factored this way, and the result is a diagonal matrix with the
eigenvalues of A along the diagonal.

The matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. To check
whether A is diagonalizable, first find its characteristic equation δA = det(λI − A) = |λI − A| = 0.
From the characteristic equation, all of the eigenvalues λi can be found. Then find the eigenvectors by
plugging in each of the eigenvalues into (λiI − A)vi = 0 and solving for all of the eigenvectors vi. Once
all of the eigenvectors are obtained, their linear independence can be checked by combining them into an
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eigenvector matrix V . If the determinant of this matrix is nonzero, the eigenvectors are linearly independent
and the matrix A can be diagonalized. The diagonalizability of A can also be verified by attempting to do
so through row operations, although if it is verified this way that A is diagonalizable, the eigenvalues and
eigenvectors will have to be found anyway.

The eigenvalue problem, or eigenvalue equation can be stated as follows, and is the basis for finding the
eigenvalues and eigenvectors of A.

Avi = viλi

Assembling these n linearly independent eigenvectors in a matrix V , and the eigenvalues along the diagonals
of a matrix Λ, the eigenvalue equation can be written in matrix form.

AV =
[
Av1 Av2 . . . Avn

]
V Λ =

[
v1λ1 v2λ2 . . . vnλn

]
AV = V Λ

Since V is composed of the n linearly independent eigenvectors, it has full rank, and is thus invertible,
allowing the following to be written:

A = V ΛV −1

Λ = V −1AV

This is the process of diagonalizing a matrix A using its eigenvalues and eigenvectors.
Given the system ẋ = Ax+Buwith state vector x, a linear transformation z = Mx can be proposed, so

long asM is full rank. The requirement ofM to have full rank has to do with the necessity of all information
in x to be preserved under the transformation. Since M has full rank, it is invertible, and the state vector x
can be written

x = M−1z

with derivative
ẋ = M−1ż

substituting the transformed state into the system equation

M−1ż = AM−1z +Bu

ż = MAM−1z +MBu

looking at this representation, and recalling that we can select M to be any matrix with full rank, we select
M = V . The system can then be simplified and represented as follows

ż = Λz + V Bu

This shows that given a state space model ẋ = Ax + Bu, the system can be rewritten using a new state
z where the matrix A has been transformed into a diagonal matrix Λ with the eigenvalues of A along the
diagonal.

The following examples will help show the process of finding the eigenvalues and eigenvectors, checking
the diagonalizability of A, and then finding the representation ż = Λz + V Bu when possible.
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Example 30 Eigenvalue decomposition with distinct eigenvalues Given the matrix A
below, we would like to determine if it can be decomposed using its eigenvalues and eigen-
vectors.

A =

[
1 2
2 4

]
Find the characteristic equation δA = det(λI − A) = 0 of A. First, setting up the matrix
λI −A:

λI −A =

[
λ− 1 −2
−2 λ− 4

]
taking the determinant

(λ− 1)(λ− 4)− 4 = 0

λ2 − 5λ = 0

λ(λ− 5) = 0

giving the following eigenvalues

λ1 = 0

λ2 = 5

both eigenvalues are distinct, so we expect that the corresponding eigenvectors be linearly
independent. Finding the corresponding eigenvectors

(λiI −A)vi = 0[
λi − 1 −2
−2 λi − 4

] [
vi,1
vi,2

]
=

[
0
0

]
For λ1 = 0 [

−1 −2
−2 −4

] [
v1,1

v1,2

]
=

[
0
0

]
v1 =

[
−2a
a

]
For λ2 = 5 [

4 −2
−2 1

] [
v2,1

v2,2

]
=

[
0
0

]
v2 =

[
a
2a

]
It is verified that the two eigenvectors are in fact linearly independent, as we expected.
Eigenvectors are not true vectors... they are like a set of vectors... So any choice for
the eigenvectors will work. Choosing a = 1 gives the following eigenvectors, which are
arranged in the eigenvector matrix V .

v1 =

[
−2
1

]
v2 =

[
1
2

]
V =

[
−2 1
1 2

]
Since the matrix A is diagonalizable, and we all of the eigenvalues and eigenvectors of A,
we can write the following:[

0 0
0 5

]
=

[
−2 1
1 2

]−1 [
1 2
2 4

] [
−2 1
1 2

]
The significance of this will become clearer with further examples.
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Example 31 Eigenvalue decomposition with repeated eigenvalues Given the matrix
A below, we would like to determine if it can be decomposed using its eigenvalues and
eigenvectors.

A =

 1 0 1
0 1 0
0 0 2


This matrix has repeated eigenvalues, but is diagonalizable.

Example 32 Eigenvalue decomposition with repeated eigenvalues Given the matrix
A below, we would like to determine if it can be decomposed using its eigenvalues and
eigenvectors.

A =

[
1 1
0 1

]
Find the characteristic equation δA = det(λI − A) = 0 of A. First, setting up the matrix
λI −A:

λI −A =

[
λ− 1 −1

0 λ− 1

]
taking the determinant

(1− λ)(1− λ) = 0

(λ− 1)2 = 0

giving the following eigenvalues

λ1 = 1

λ2 = 1

With repeated eigenvalues there is no guarantee that the eigenvectors will be linearly inde-
pendent. Finding the corresponding eigenvectors

(λiI −A)vi = 0[
λi − 1 −1

0 λi − 1

] [
vi,1
vi,2

]
=

[
0
0

]
For λ1 = λ2 = 1 [

0 −1
0 0

] [
v1,1

v1,2

]
=

[
0
0

]
v1 =

[
a
0

]
There is only one linearly independent eigenvector of A, so A is not diagonalizable.
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24.2.3 Controllability, Reachability, and Stabilizability
Controllability and reachability are two concepts with relate to the ability to command a system to do

what we want it to do through the action of a control input. In continuous time (CT) systems, these terms
have the same meaning, given by the following definition:

Definition 20 Controllability (CT) A continuous time system is controllable if for all initial states x0 all
states x, and some time t1 which is greater than t0, there exists a control input which will take the state x
from x(t0) = x0 to x(t1) = x1.

∀x0, x ∈ Rn∀T > t0∃u(t)
∣∣
t0≤t≤T : x(t) : x(t0) = x0, x(t1) = x1

For discrete time systems, controllability and reachability are different, as given by the following defi-
nitions. (Kalman 1961)

Definition 21 Controllability (DT) A discrete time system is controllable if there exists a control input
which will take the state to the origin in finite time.

Definition 22 Reachability (DT) A discrete time system is reachable if there exists a control input which
will take the state from any initial state to any final state in finite time.

24.2.4 Controllability versus Reachability
The need for the two different, but similar definitions for the discrete time case is explained here. . . Examples:

x(t+ 1) =

[
0 0
0 1

]
x(t) +

[
0
1

]
u(t)

ẋ(t) =

[
0 0
0 1

]
x(t) +

[
0
1

]
u(t)

Include example of DT system which is controllable but not reachable

24.2.5 Applying the Concept of Controllability
Now that the definitions for controllability and reachability have been presented and explained, we

will focus our attention only on CT systems. The process of determining if a system is controllable will
be explained, and some examples using eigenvalue decomposition will be used to make the concept of
controllability clear.To investigate the controllability of a system, the controllability matrix must be found.
This matrix will serve as the basis for controllability calculations

• Explain how to derive the controllability matrix

Mc =
[
B AB A2B . . . An−1B

]
In order for a system to be controllable, the controllability matrix must have full rank. For a system sys-

tem with a single input this corresponds to the column vectors B, AB, A2B . . . being linearly independent.
That is to say the square controllability matrix Mc must be non-singular; its determinant must be non-zero.
The following examples show the process of determining the controllability for CT systems.
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Example 33 A controllable system ẋ = Ax+Bu

A =

[
−1 0
1 1

]
B =

[
2
1

]
Calculate the controllability matrix Mc:

Mc =
[
B AB

]
=

[
2 −2
1 3

]
The controllability matrix has full rank of 2, so the system is controllable.

Example 34 An uncontrollable system ẋ = Ax+Bu

A =

[
−1 0
−1 1

]
B =

[
2
1

]
Calculate the controllability matrix Mc:

Mc =
[
B AB

]
=

[
2 −2
1 −1

]
The controllability matrix has rank 1, so the system is not controllable.

Determining the controllability of a system by checking the rank of the controllability matrix is procedu-
ral operation which results in only a yes or no answer to the question: is this system controllable? However,
if a system is uncontrollable, this does not mean we must pack up and go home. We would like to gain some
more insight into systems which are not controllable to better understand what is going on.

When we say that a CT system is uncontrollable, this does not mean that we have zero influence over
the output of the system, but rather that not every state vector in the state space can be achieved. The range
of the controllability matrix Mc (the span of the columns of Mc) gives the possible state vectors that can
be achieved by the system by application of control. For a square matrix Mc, if its columns are linearly
independent, it will span Rn, and any state vector in the state space Rn can be achieved. The state vectors
that are achievable by application of control are called controllable primal states. We call a state vector a
primal state to differentiate it from individual state elements or components of the state vector.

If Mc does not have full rank, then there are primal states in the state space which are not spanned by
the columns of Mc.

So, we know that for a system that is not controllable, there may be some primal states which are
controllable, and some that are not. The uncontrollable states are best described in terms of uncontrollable
dual states. The concept of dual states may be best explained by first providing some examples.
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Example 35 Revisited: A controllable system Consider again the system ẋ = Ax + Bu
with the following A and B matrices.

A =

[
−1 0
1 1

]
B =

[
2
1

]
The controllability matrix was found before to have full rank, meaning the system is con-
trollable. Based on the definition of controllability for CT systems, we know it is possible
to to command the state vector x to any desired value. To better see this we will represent
this system using the transformed state z = V x. This results in the system

ż = Λz + V Bu

where Λ is given by
Λ = V −1AV

Finding V and Λ: Find the characteristic equation δA = det(λI − A) = 0 of A. First,
setting up the matrix λI −A:

λI −A =

[
λ+ 1 0
−1 λ− 1

]
taking the determinant

(λ− 1)(λ+ 1) = 0

giving the following eigenvalues

λ1 = 1

λ2 = −1

both eigenvalues are distinct, so we expect that the corresponding eigenvectors be linearly
independent. Finding the corresponding eigenvectors

(λiI −A)vi = 0[
λi + 1 0
−1 λi − 1

] [
vi,1
vi,2

]
=

[
0
0

]
For λ1 = 1 [

2 0
−1 0

] [
v1,1

v1,2

]
=

[
0
0

]
v1 =

[
0
a

]
For λ2 = −1 [

0 0
−1 −2

] [
v2,1

v2,2

]
=

[
0
0

]
v2 =

[
−2a
a

]
using a = 1

V =

[
0 −2
1 1

]
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allowing the system to be written

ż =

[
1 0
0 −1

]
z +

[
0 −2
1 1

] [
2
1

]
u

simplifying

ż =

[
1 0
0 −1

]
z +

[
−2
3

]
u

From this representation using the new state vector z, it may now be more clear that since
z1 and z2 are decoupled, and the control effort can effect both state variables, thus allowing
any state to be reached through application of a specific control input.

• How to find unreachable primal states? Is that even a thing?

• Explain what dual states are

• Do controllable dual states mean anything?

• Explain controllability of a system (fully controllable system) versus controllability of a mode

Example 36 Revisited: An uncontrollable system ẋ = Ax+Bu

A =

[
−1 0
−1 1

]
B =

[
2
1

]
The controllability matrixMc was calculated and found to be rank deficient (it did not have
full rank) and thus the system is not controllable. What else can we find out about this
uncontrollable system?

24.2.6 How Controllable?
condition number of controllability matrix

24.2.7 Observability and Detectability

Mo =


C
CA
CA2

...
CAn−1


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24.2.8 Reachable Primal States, Uncontrollable Dual States
Given a state-space model, be able to find the set of all reachable primal states, and uncontrollable dual

states.

A =

0 1 0
0 0 1
a 2 0

 B =

0
1
1

 C =
[
0 1 1

]
D =

[
0
]

• Reachable primal states are given by the span of the columns of the controllability matrix Mc

Computing the controllability matrix:

Mc =
[
B AB A2B

]
=

0 1 1
1 1 2
1 2 a+ 2


Reachable Primal States For this square 3 × 3 matrix, if it has full rank, its columns would span R3

and the entire states-space, i.e. R3 would be a reachable primal state. Because it is square, we can take the
determinant. When the determinant is zero, the controllability matrix loses rank, and then its columns would
not span R3.

det(Mc) = −a+ 1

So the controllability matrix is full rank for a 6= 1, and it loses rank when a = 1. With full rank, the
reachable primal states are anything in R3. This can be written:

for a 6= 1 the reachable primal state is: x = c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

 for c1, c2, c3 ∈ R

When a = 1 and the controllability matrix loses rank, we need to still find the set of reachable primal
states. That is, with a = 1, what is the span of the columns of Mc? In the case when a = 1, Mc becomes:

Mc =

0 1 1
1 1 2
1 2 3


By inspection, or through a series of row reductions, it is seen that only two of the columns are linearly
independent. Thus, the reachable primal states when a = 1 are given by a linear combination of any two of
the columns of Mc. That is:

for a = 1 the reachable primal state is: x = c1

0
1
1

+ c2

1
1
2

 for c1, c2 ∈ R

Uncontrollable Dual States Uncontrollable states are a linear combination of each of the entries of the
state vector x. That is, an uncontrollable state zi is given by:

zi = Px where P is a row vector
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The row vector P is such that:

PMc = 0 or, alternatively Mc
TP T = 0

Using the second expression this gives:0 1 1
1 1 2
1 2 a+ 2

p1

p2

p3

 =

0
0
0


When a 6= 1, P =

[
0 0 0

]
. The answer would be given as:

“when a 6= 1 the uncontrollable dual state is given by: z = Px, with P defined by: P =
[
0 0 0

]
.”

When a = 1, the following system would have to be solved for p1, p2, and p3.0 1 1
1 1 2
1 2 3

p1

p2

p3

 =

0
0
0


p2 = −p3

p1 + p2 + 2p3 = 0 → p1 + p3 = 0 → p1 = −p3

p1 + 2p2 + 3p3 = 0 → −p3 − 2p3 + 3p3 = 0 → 0p3 = 0

So, when a = 1, p3 can be selected arbitrarily, and then p1 = −p3 and p2 = −p3. The answer would be
given as:

“when a = 1 the uncontrollable dual state is given by: z = Px, with P defined by: P = k
[
−1 −1 1

]
for k ∈ R.”

Reachability of System A system is reachable if the entire state-space is reachable. That is, the only
uncontrollable dual state is z = 0.

24.2.9 Observable Dual States, Unobservable Primal States
Unobservable Primal States Unobservable primal states given by the nullspace of Mo, which is: Mox =
0.

Mo =

 C
CA
CA2

 =

0 1 1
a 2 1
a a+ 2 2


Take the determinant of Mo:

det(Mo) = a(a− 1)

The observability matrix loses rank when a ∈ {0, 1}.

• When the observability matrix Mo has full rank, the system has no unobservable primal states.

• When Mo loses rank, there will be some unobservable primal states
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To find the unobservable primal states, plug in each value of a which make Mo lose rank, and solve Mox =
0. For a = 0: 0 1 1

0 2 1
0 2 2

x1

x2

x3

 =

0
0
0


By inspection, x1 can be made anything, and x2 = x3 = 0.

for a = 0 the unobservable primal state is: x = k

1
0
0

 for k ∈ R

For a = 1: 0 1 1
1 2 1
1 3 2

x1

x2

x3

 =

0
0
0


Solving:

x2 = −x3

x1 + 2x2 + x3 = 0 → x1 − x3 = 0 → x1 = x3

x1 + 3x2 + 2x3 = 0 → x3 − 3x3 + 2x3 = 0 → 0x3 = 0

x3 can be selected arbitrarily, with x1 = x3, and x2 = −x3. This gives the following unobservable primal
state:

for a = 1 the unobservable primal state is: x = k

 1
−1
1

 for k ∈ R

Observable Dual States

• Observable dual states are given by linear combinations of Cx, CAx, CA2x and so forth.

To find the observable dual states expressed as z = Px where P is a row, transpose the observability matrix
and take the linearly independent columns. In the example above, when a /∈ {0, 1} the observability matrix
has full rank, and all of its rows and columns are linearly independent. Thus, when it is transposed, the span
of these linearly independent columns can be expressed as:

Observable dual state for a /∈ {0, 1}: x = c1

[
1 0 0

]
+ c2

[
0 1 0

]
+ c3

[
0 0 1

]
For a ∈ {0, 1} the observability loses rank, and the observable dual states are found by taking the linearly
independent columns of Mo

T. For a = 0:

Mo
T =

0 0 0
1 2 2
1 1 2


and only two of the columns are linearly independent, giving:

Observable dual state for a = 0: x = c1

[
0 1 1

]
+ c2

[
0 2 1

]
231



For a = 1:

Mo
T =

0 1 1
1 2 3
1 1 2


and only two of the columns are linearly independent, giving:

Observable dual state for a = 1: x = c1

[
0 1 1

]
+ c2

[
1 2 1

]
24.3 More Linear System Stuff
24.3.1 Zeros

Rosenbrock matrix

R(s) =

[
sI −A B
−C D

]
Let’s take D = 0 for now

R(s0) =

[
s0I −A B
−C 0

] [
x0

u0

]
=

[
0
0

]
s0 is a transmission zero if R loses rank and so there is a nonzero vector v0 = [ x>0 u>0 ]> such that

Rv0 = 0.

Zeros Introduced by Postcompensator

The zeros are s0 and v0 such that (s0)v0 = 0. So if we post compensate the output as

Rs(s0) =

[
s0I −A B
−S1C 0

] [
x0

u0

]
=

[
0
0

]
Then all of the zeros of R are also zeros of Rs, and there might be additional zeros. We can see by

looking at

C =

C1

C2

C3


and we know that C1x0 = C2x0 = C3x0 = 0. But if we square down using

S1 =
[
S11 S12 S13

]
S1C = [S11C1 + S12C2 + S13C3]

and

[S11C1 + S12C2 + S13C3]x0 = 0

S11C1x0 + S12C2x0 + S13C3x0 = 0

so there can be additional zeros.
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Chapter 25

Robust Control

25.1 H2 Optimization Using Completion of Squares
General state-space form of plant for which the optimal controller K(s) will be designed:

ẋ = Ax+B1w +B2u

e = C1x+D11w +D12u

y = C2x+D21w

The optimization setup has control singularity when either of the following matrices are not left invert-
ible for all ω ∈ [0,∞] and for D12 at ω =∞.

Ec(s) =

[
A− jωI B2

C1 D12

]
and D12

The optimization setup has sensor singularity when either of the following matrices are not right invertible
all ω ∈ [0,∞] and for D21 at ω =∞.

Em(s) =

[
A− jωI B1

C2 D21

]
and D21

A matrix A is right invertible if there is a matrix B such that AB = I . A matrix A is left invertible if there
is a matrix B such that BA = I . For a square matrix A, left and right invertibility are the same, and is just
regular invertibility.

Aright
−1 = AT(AAT)−1

Aleft
−1 = (ATA)−1AT

Finding the optimal controller K(s) with the general form:

ẋe = (A+ LC2 +B2F )xe − Ly
u = Fxe

General form of completion of squares used to find the optimal control and observer gains F and L, respec-
tively, where the vertical bar brackets mean 2-norm:

|C1x+D12u|2 + 2x′Pc(Ax+B2u) = |D12(u− Fx)|2
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|B1
′ψ +D21

′ξ|2 + 2ψPe(A
′ψ + C2

′ξ) = |D21
′(ξ − L′ψ)|2

where A+B2F and A+ LC2 are Hurwitz matrices.
Once the stabilizing solutions for Pc and Pe and thus F and L are found, the corresponding minimal

square of the closed loop H2 norm is given by:

Jmin = tr(B1
′PcB1) + tr(D12FPeF

′D12
′)

Also, once the matrices F and L are found, a transfer function for the controller can be written by
using. . .

K(s) = C(sI −A)−1B +D

Example 37 A state space plant of the general form has matrices:

A = a B1 =
[
0 1

]
B2 = 1

C1 = 0 D11 =
[
0 0

]
D12 = 1

C2 = 1 D21 =
[
b 0

]
Substituting these matrices into the first completion of squares equation:

|u|2 + 2x′Pc(ax+ u) = |u− Fx|2

Since the system is scalar, x′ = x, and also |n|2 = n2 allows this expression to be simplified
to:

u2 + 2xPc(ax+ u) = (u− Fx)2

u2 + 2xPc(ax+ u) = u2 − 2Fxu+ F 2x2

2Pcax
2 + 2xPcu = −2Fxu+ F 2x2

Equating coefficients on both sides:

2Pca = F 2 and Pc = −F

These equations need to be combined into the Riccati equation for Pc in terms of the plant
parameters. This equation will have multiple solutions for Pc, and the stabilizing one that
makes A+B2F a Hurwitz matrix should be selected.

2Pca = Pc
2

Pc(Pc − 2a) = 0

Pc = 0 , 2a

If a < 0, the plant is stable, and no control is even needed to stabilize it. That is, the
stabilizing solution is F = 0, giving Pc = 0. However, when a > 0 the plant is not stable,
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and the stabilizing solution F = −2a, and Pc = 2a is used. In general, the larger value of
Pc should be selected as the stabilizing solution.

for a < 0 F = 0 Pc = 0

for a > 0 F = −2a Pc = 2a

Substituting the plant matrices into the second completion of squares equation does not
simplify as easily as the first equation.

|B1
′ψ +D21

′ξ|2 + 2ψPe(A
′ψ + C2

′ξ) = |D21
′(ξ − L′ψ)|2

This equation is scalar, with ψ ∈ R and ξ ∈ R? Comparing the two completion of square
equations and looking at dimensions, ψ should have same dimensions as x, and ξ same
dimensions as y. So, for this problem ψ and ξ are scalars, and so are L and Pe.

I am pretty sure the absolute value sign that Magretski uses is actually the vector 2-norm,
making the completion of squares actually written:

‖B1
′ψ +D21

′ξ‖22
+ 2ψPe(A

′ψ + C2
′ξ) = ‖D21

′(ξ − Lψ)‖22

substituting values from problem:∥∥∥∥[01
]
ψ +

[
b
0

]
ξ

∥∥∥∥2

2

+ 2ψPe(aψ + ξ) =

∥∥∥∥[b0
]

(ξ − Lψ)

∥∥∥∥2

2∥∥∥∥[bξψ
]∥∥∥∥2

2

+ 2ψPe(aψ + ξ) = b2(ξ − Lψ)2

∥∥∥∥[bξψ
]∥∥∥∥

2

=
√

(bξ)2 + ψ2

b2ξ2 + ψ2 + 2ψPe(aψ + ξ) = b2(ξ − Lψ)2

b2ξ2 + ψ2 + 2aPeψ
2 + 2Peψξ = b2(ξ − Lψ)2

b2ξ2 + ψ2 + 2aPeψ
2 + 2Peψξ = b2(ξ2 − 2Lψξ + L2ψ2)

b2ξ2 + ψ2 + 2aPeψ
2 + 2Peψξ = b2ξ2 − 2b2Lψξ + b2L2ψ2

ψ2 + 2aPeψ
2 + 2Peψξ = −2b2Lψξ + b2L2ψ2

ψ2(1 + 2aPe) + 2Peψξ = −2b2Lψξ + b2L2ψ2

Equating coefficients on both sides:

1 + 2aPe = b2L2 and 2Pe = −2b2L

Again combining these equations to find an equation for Pe with multiple solutions by first
solving for L:

L = −Pe
b2
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L2 =
Pe

2

b4

1 + 2aPe = b2
Pe

2

b4

1 + 2aPe =
Pe

2

b2

Pe
2 − 2ab2Pe − b2 = 0

Solving this quadratic equation for Pe

Pe =
2ab2 ±

√
4a2b4 + 4b2

2

Pe =
2ab2 ±

√
4b2(a2b2 + 1)

2

Pe =
2ab2 ± 2b

√
a2b2 + 1

2

Pe = ab2 ± b
√
a2b2 + 1

In general, select the larger value of Pe to be the stabilizing solution.

Pe = ab2 + b
√
a2b2 + 1

Solve for L:

L = −a−
√
a2b2 + 1

b

Small Gain Theorem

For the feedback interconnection of LTI system P and ∆ a memoryless system, the small gain theorem
states that if the product of L2 gains for P and ∆ are less than one, that the closed loop L2 gain will satisfy
the following, where the L2 gains are denoted by γ, and the closed loop system is G

if γPγ∆ < 1 then: γG ≤
γP

1− γPγ∆

25.2 Q-Parameterization
In this note Q-parameterization is used to express a given feedback control structure in terms of a differ-

ent structure with feed-forward only. The closed-loop systemG is to be expressed using Q-parameterization,
where e can be any general output.
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w
+

y
K

u

e

P
q

G

Figure 25.1: General feedback control block diagram for closed-loop system G

25.2.1 General Form of Plant

The plant P in the block diagram is given in its general form by:

Continuous Time

ẋ = Ax+B1w +B2u

e = C1x+D11w +D12u

y = C2x+D21w

Discrete Time

x(t+ 1) = Ax(t) +B1w(t) +B2u(t)

e(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t)

Q-parameterization basically lets the closed loop plant from above be expressed as the following system.
Then, from the equations for S2 and S1, the blocks G0, G1, and G2 can be found.

w
S2

θ v

∆ w

Q

S1

e

Figure 25.2: Feedback control block diagram
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w
G2

G0

θ
Q

v
G1

+
e

Figure 25.3: Feedback control block diagram

S2 :

{
∆̇ = (A+ LC2)∆ + (B1 + LD21)w

θ = C2∆ +D21w

S1 :

{
ẋ = (A+B2F )x+B2(v − F∆) +B1w

e = (C1 +D12F )x+D12(v − F∆) +D11w

25.3 LQR-PI With Anti-windup

r

0

−

e
Σ

Σ ΣK(s) G(s)
uo ui xo xi

d n

Figure 25.4: MIMO Control Block Diagram for LQR-PI

The plant which we would like to control is given in state-space form as

ẋp = Apxp +Bpu

y = Cpxp +Dpu

where everything is scalar for the velocity plant subsystem. An LQR-PI controller can be represented in
state-space form as

ẋe = Acxe +Bce+Brr

u = KV e+Kexe

where e = −VT is the full state feedback. Since

ẋe = VT,cmd − VT
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and r = VT,cmd the controller can be rewritten

ẋe = 0xe −BcVT +BrVT,cmd

u = KV VT +Kexe

In order to implement anti-windup, logic needs to be written which will reset the integrator. This logic
will require that the actual velocity is greater than the commanded velocity, and the throttle input is saturating
for the integrator to be reset. This will keep integration error from accumulating, causing the throttle to
continue to saturate, even while the commanded velocity has been exceeded. The question is what to reset
the integrator to.

In a classical control feedback setup, where the integration error e = r − y needs only to be reset to
zero, with LQR-PI this is not the case. For LQR-PI the reset value is found by first determining the throttle
input required to maintain the commanded velocity in equilibrium, based on the plant parameters. That is

V̇T = ApVT +Bputh

0 = ApVT +Bputh

want VT = VT,cmd

uth =
−ApVT,cmd

Bp

Then, knowing the required throttle to maintain equilibrium, the value of xe that must exist at equilibrium
to maintain this condition (since VT , KV , and Ke are known) can be found

uth = KV VT +Kexe

again ith VT = VT,cmd

xe =
uth −KV VT,cmd

Ke

which is the value the integrator must be reset to.

25.4 MIMO Zeros: Introduction
MIMO zeros for non square systems, MIMO zeros for square systems, how many zeros there will be,

how squaring up by augmenting B moves existing zeros. Zeros of MIMO system not zeros of each TF in
the transfer matrix. See 16.31 Lecture 8.

Definition 23 MIMO zeros Zeros of a MIMO system are ζ0 such that lims→ζ0 (H(s)u(s)) = 0.

Example 38 The following system has a zero at s = 3.

H(s) =

[
1 1

s−3

0 1

]
u(s) =

[
−1
s− 3

]
u is finite.
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lim
s→3

([
1 1

s−3

0 1

] [
−1
s− 3

])
= lim

s→3

[
0

s− 3

]
=

[
0
0

]
H(s) has a pole at a frequency p0 if some entry of H(s) has a pole at s = p0.
From DDV book: H(s) has a zero at ζ0 if it drops rank at s = ζ0. This particular defnition corresponds

to what is termed a transmission zero.
H(s) has full column rank if there is no rational vector u(s) 6= 0 such that H(s)u(s) = 0. At a

transmission zero of H(s), it will drop rank, and then there is a u0 6= 0 such that H(ζ0)u0 = 0. The
problem with this is if the MIMO system has a pole at the same frequency as a zero, and so this zero may
not be detected.

MIMO transfer functions can have poles and zeros at the same frequency. So the refined zero definition
is the limit one above. The above example is from DDV. We can see there is a pole at 3, but if we look in
the limit as s→ 3 we see that the second column looks like the first one:[

1
0

] [
∞
1

]
(the ratio of the terms in each column are∞) So we use the updated definition text and find the zero.

The following matrix is the Rosenbrock matrix.

R(s) =

[
sI −A −B
C D

]
• sI −A is full rank, except at system poles

• Input decoupling zeros are where the following matrix loses rank, which can only happen when
sI −A loses rank.

RI(s) =
[
sI −A −B

]
Input decoupling zeros are a subset of system poles

• Output decoupling zeros are s where the following matrix loses rank

RO(s) =

[
sI −A
C

]
Output decoupling zeros are a subset of system poles

• Invariant zeros are values of s where rank(S(s)) < min{n+ rank(B), n+ rank(C)}

• For a controllable and observable system, the invariant zeros are the same as the transmission zeros

Difference between invariant zeros and transmission zeros?
Difference between a system’s transfer function G(s) = C(sI − A)−1B and its realization Σp =

{A,B,C}?
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Chapter 26

Passivity

The concept of passivity was first introduced by Popov. The essential feature of a passive system is
its inability to increase its own energy.[5] For example, a network of passive components, e.g. inductors,
resistors, and capacitors does not generate any energy and is therefore stable. Another example given in
Reference [6] is a gravity tank into which water flows in to the top of the tank and out through the bottom. It
is straightforward to show that the rate of change of stored energy in the tank is less than that supplied to it
by the inlet flow rate. Passivity relates a system’s input and output to the storage function and thus defines a
set of useful input-output properties.[6] The following document repeats some definitions from the literature
and presents an example of a passive and non-passive system using a mass-spring-damper.

Consider the following square system Σ:

ẋ = f(x, u)

y = h(x, u)
(26.1)

where x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm and u ∈ U ⊂ Rm. The Instantaneous Power Supply Rate is denoted[7]

w = w(u(t), y(t)) (26.2)

Assumption 2 [7], pp. 327 Given the system in (26.1) the instantaneous power supply rate w(t) satisfies∫ t1

t0

|w(τ)|dτ <∞ ∀t ≥ 0

Definition 24 Dissipative System and Storage Function [7], pp. 327. The system in (26.1) with supply
rate w is dissipative if there exists a positive semi-definite function S(x) : X → R+, called the Storage
Function such that

S(x(t1))− S(x(t0) ≤
∫ t1

t0

w(τ)dτ (26.3)

for all x ∈ X , u ∈ U and t ≥ 0.

The inequality in (26.3) is called the dissipation inequality, and says that the stored energy S(x(t1)) at
time t1 can never be greater than the sum of the initial energy in the system at time t0 plus the energy into
the system between t0 and t1. In other words, the system in (26.1) is dissipative if it is not generating any
internal power: the increase in energy (storage function) during the interval (t0, t1) is no greater than the
energy supplied (via the supply rate) to it.
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Definition 25 Passive System [8], pp. 1229 The system Σ in (26.1) in passive if it is dissipative with
respect to the following supply rate

w(u(t), y(t)) = y(t)>u(t) (26.4)

and the storage function S satisfies S(0) = 0.

Example 39 Mass-spring-damper Take a mass-spring-damper system, and let m = 1,
b = 1, and k = 1. The transfer function from force to velocity is given by the following:

V (s)

F (s)
=

s

s2 + s+ 1

Given a sinusoidal input
u(t) = f(t) = sin(ωt) (26.5)

we can show the particular solution has the following form

y(t) = v(t) = A sin(ωt+ φ) (26.6)

where the phase shift φ ∈ (0, π/2). With this input and choice of output we use Definition
24 and show that the system is dissipative with respect to the following supply rate, as given
in Definition 25.

w(u(t), y(t)) = A sin(ωt+ φ) sin(ωt) (26.7)

We evaluate the following integral from Definition 24 from t0 to t1∫ t1

t0

A sin(ωτ + φ) sin(ωτ)dτ

and using the identity

sin(a) sin(b) =
1

2
[cos(a− b)− cos(a+ b)]

we can rewrite and then evaluate the integral as follows∫ t1

t0

A sin(ωτ + φ) sin(ωτ)dτ =
1

2

∫ t1

t0

cos(φ)− cos(2ωτ + φ)dτ

=
1

2
cos(φ)τ

∣∣∣∣t1
t0

− 1

4ω
sin(2ωτ + φ)

∣∣∣∣t1
t0

=
1

2
cos(φ)(t1 − t0)−

[
1

4ω
sin(2ωt1 + φ)− 1

4ω
sin(2ωt0 + φ)

]
(26.8)

From this we can see the bracketed term is bounded and the first term is always positive
because the phase shift between force and velocity is φ ∈ (0, π/2). This example is not suf-
ficient to show that the mass-spring-damper with velocity as an output is or is not passive,
but is useful to see.
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However, if position is selected as the output, the transfer function is given by

X(s)

F (s)
=

1

s2 + s+ 1

If now this system is driven by a sinusoidal input as in (26.5) we can again show that the
output is given by (26.6) where now φ ∈ (0, π). As before, the supply rate in Definition
25 is given by (26.7). We evaluate the integral from Definition 24 with this supply rate
and get (26.8). The difference now is that φ ∈ (0, π) and so the first term in (26.8) for
the case where position is the output is negative for all φ > π/2, while the bracketed term
remains bounded. So we can see that when driving the system with a sufficiently large
input frequency, we can pick t0 and t1 such that no positive semi-definite storage function
exists satisfying the inequality (26.3). Thus the spring-mass-damper system with force as
an input and position as an output is not passive.

26.1 Difference Between Passive and Positive Real
For linear time invariant systems they are the same, as long as the system is detectable.[6] Passive

systems are positive real. “The notion of Positive Real system may be seen as a generalization of the
positive definiteness of a matrix to the case of a dynamical system with inputs and outputs” Reference [9]
Positive-realness is a property of a function of a complex variable s. From Reference [6], pp. 14-15. The
input-output property of passive systems is called positive realness. Passivity implies positive realness. For
a detectable LTI system passivity is equivalent to positive realness. For LTI systems passive and positive
real are the same.

Definition 26 Available Storage [7], pp. 327 The available storage, Sa of a dynamical system Σ with
supply ratew is the function fromX intoRe, whereRe is the extended real number system {−∞}∪R∪{∞},
is defined by

Sa(x) = sup
x→t1≥0

−
∫ t1

0
w(t)dt

where the notation x → denotes the supremum over all motions starting in state x at time 0 and where the
supremum is taken over all u ∈ U .

Theorem 11 [7], pp. 328 The available storage, Sa, is finite for all x ∈ X if and only if Σ is dissipative.

Example 40 Mass with velocity output Consider a mass m with force f as the input and
velocity v as the output. This system is represented as

f = mv̇

or in the form of (26.9) with x = v, u = f , y = v,f(x) = 0, g(x) = 1
m and h(x) = x.

This system is passive if it is dissipative with respect to w = fv. That is the inequality in
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Definition 24 must be satisfied for all x, u, and t ≥ 0. The mass starts from rest at time
t0 = 0 and is driven by a sinusoidal force input

f = sin(t)

The velocity of the system is given by

v =
1

m

∫ t

0
sin(τ)dτ

=
1

m
(1− cos(t))

Look at the inequality in (26.10) with this particular choice of f and the corresponding v,
the system is passive if it satisfies the following inequality

0 ≤ 1

m

∫ t

0
sin(τ)(1− cos(τ))dτ

This function is periodic and we can look at the integral over the first period and argue that
this inequality is always satisfied.

Example 41 Mass with position output If we go through the same process as in Example
40 only now taking the position output, it is easy to show that our choice of f does not
satisfy Definition 24 for all t, indicating that in this case the system is not passive.

f = mẍ

integrating, with zero initial conditions

ẋ =
1

m

∫ t

0
fdτ

This system is in the form of (26.1) with u = f and y = ẋ. we choose u = sin(t),

ẋ =
1

m

∫ t

0
sin(τ)dτ

= − 1

m
cos(τ)

∣∣t
0

= − 1

m

(
cos(t)− 1

)
Integrating again

x =
1

m

∫ t

0
1− cos(τ)dτ

=
1

m

(
t− sin(t)

)
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Now we can let m = 1 and calculate the supply rate w as

w = ux

= sin(t)
(
t− sin(t)

)
Using Definition 26 to determine the available storage

Sa(x) = sup
x→t1≥0

−
∫ t1

0
sin(t)

(
t− sin(t)

)
dt

Integrating this we get

Sa(x) = sup
x→t1≥0

−1

4

(
− 2t+ 4 sin(t) + sin(2t)− 4t cos(t)

)∣∣∣∣t1
0

which is not finite as t1 → ∞. Thus, by Theorem 11 this system is not dissipative. Since
it is not dissipative with respect to the supply rate w = uy, by Definition 25 this system is
not passive.

26.2 More Stuff
Reference [10] gives some definitions of passive and SPR. If the storage function in (26.3) is differen-

tiable, we can write (26.3) as

dS

dt
≤ w(t)

which says that the rate of increase of system energy is no greater than the input power.[6] Consider now a
special case of (26.1)

ẋ = f(x) + g(x)u

y = h(x)
(26.9)

If we look at Definition 24 and Definition 25, the system in (26.9) with x0 = 0 is passive if

0 ≤ S(x(t)) ≤
∫ t

0
y>(τ)u(τ)dτ (26.10)

for all x ∈ X , u ∈ U and t ≥ 0.

Definition 27 Positive-Real System [8], pp. 1230 The system in (26.9) is positive-real if for all t ≥ 0

0 ≤
∫ t

0
y>(τ)u(τ)dτ

whenever x(0) = 0.

Definition 28 Positive-Real System [11], pp. 63 A rational function H(s) of the complex variable s =
σ + jω is PR if
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(i) H(s) is real for real s

(ii) Re[H(s)] ≥ 0 for all Re[s] > 0

The essential feature of a passive system is its inability to increase its own energy.[5] Think about a
system that is just a mass. E is energy, P is power into the system, and power is the time rate of change of
energy

d

dt
[stored energy] = external power input + internal power generation

P =
d

dt
E

Integrating both sides

E(t) = E(0) +

∫ t

0
P (τ)dτ

A passive element is one for which E(t) ≥ 0 for all t. For if not, this would mean that the integral of power
is negative, even more negative than E(0), meaning the system increased its own energy. If we think about
our system that is a mass, power is given by force times velocity

E(t) = E(0) +

∫ t

0
f(τ)v(τ)dτ

And we know this is true. However, the definition for passive systems is more complicated than this, as it is
an input output property of a system, and thus depends on which inputs and outputs are used.

26.2.1 The Dissipation Inequality
We said before that a passive system is one that cannot deliver more energy than it has received. But

when we say “energy”, what we mean is the integral of an instantaneous power supply rate, which does not
have to correspond to physical energy.

The definition of passivity relates the change in storage along solutions to the total supply, which is
given by the integral of the supply rate, and the supply rate y>u involves only the input and output. The
supply, or instantaneous power supply rate w(u, y) is given by

w(u, y) = y>u

Ṡ = y>u− g

where g is used in Slotine’s book Reference [12] as the negative of the internal power generation term, i.e.
g ≥ 0 for passive system. S is a storage function, and is positive-semidefinite. Since S need only be positive
semi-definite, it does not make it necessarily a Lyapunov function. The storage function for a passive linear
system must be quadratic.
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26.2.2 How to Determine if a System is Passive
Definition 29 a strictly stable linear SISO is passive if and only if

∀ω ≥ 0, Re[h(jω)] ≥ 0

Definition 30 a strictly stable linear SISO is passive if and only if its phase shift in response to a sinusoidal
input is always less than or equal to 90◦.

Properties

1. Necessary conditions for passivity: system be minimum phase and relative degree 0 or 1.

2. Passive system are not necessarily stable. This is only the case if a positive-definite storage function
is used, but since the storage function only needs to be positive-semi-definite, stability is not always
ensured by passivity.[6]

The poles of LTI passive systems have negative real parts.

26.2.3 Interconnections of Passive Systems
Parallel and feedback interconnections of passive systems are passive.[9]
“If the system Z(s) is SPR, this implies that the system remains stable for any positive static gain, even

arbitrarily large, i.e. Z(s)/(1 + kZ(s)) is stable for any k ≥ 0.”

26.2.4 Positive Real Systems in Adaptive Control
“The choice of the Lyapunov function is simplified substantially when the transfer function of the rele-

vant linear time-invariant system is strictly positive real.” [13]

ėx = (A+ LC +BΨ>)ex +BΛΘ̃>xm

ey = Cex

26.3 Householder Transformation
A Householder transformation is a linear transformation that can be used to transform a given matrix into

one which is upper diagonal. This transformation is Hermitian and unitary. For operations on the matrices
describing a linear state space system, all entries will be real valued, and so in the rest of this document we
assume the Householder transformation matrixH is real valued, and give its properties with this assumption.

H> = H−1

When applying the Householder transformation we essentially want to find the matrix H ∈ Rn×n such
that given a vector x ∈ Rn, when multiplied by H gives the following

Hx = y

where

y =
[
x̂ 0 . . . 0

]>
= x̂e>1

where e1 is the standard basis vector
e1 =

[
1 0 . . . 0

]>
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26.3.1 Properties
The Householder matrix is a matrix of the following form

H = I − 2ww>

where w ∈ Rn×1 is a unit vector. Evaluate the following

H>H = (I − 2ww>)>(I − 2ww>)

= (I − 2ww>)(I − 2ww>)

= I − 2ww> − 2ww> + 4ww>ww>

= I − 4ww> + 4w(w>w)w>

= I

From this we see that the following property is in fact satisfied by H

H> = H−1

Suppose we pick the unit vector w as follows

w =
u

‖u‖

where

u = x− ‖x‖e1

giving

w =
x− ‖x‖e1

‖x− ‖x‖e1‖

This gives

Hx = (I − 2ww>)x

= x− 2

(
x− ‖x‖e1

‖x− ‖x‖e1‖

)(
x− ‖x‖e1

‖x− ‖x‖e1‖

)>
=

= ‖x‖e1

So we have defined H , showed that it is an orthogonal transformation, and showed how to pick w so that
Hx = x̂e1. The following section will clearly lay out the steps to code this algorithm for taking a matrix
and making it upper diagonal.
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26.3.2 Applying Householder Transformation
Given a matrix B ∈ RN×M

B =
[
B1 B2 . . . Bm

]
where each Bi ∈ RN×1. We apply the Householder transformation to the first column first, and the proceed
with the remaining columns. Define

e1 ∈ Rn×1

Let

x = Bi(i : N, i)

Note each x ∈ Rn×1, where n = N − i. Calculate

x̂ = ‖x‖

Calculate

w =
x− ‖x‖e1

‖x− ‖x‖e1‖

Basically the idea is that at transforming the columns of B in each step the calculated Householder matrix
decreases in size, but we need to keep the matrix N × N , so that when we multiply H2H1B, that H2 will
not alter the first column of H1B.

H1B =
[
x̂1e1 B2 . . . Bm

]

H2 =

[
1 0
0 Htemp,2

]
Then, to find the matrix T , which will transform B to an upper diagonal form, multiply the H matrices
together as

T = Hm · · ·H2H1

And we can show that T is also an orthogonal transformation. Because each H>i = H−1
i and so

T> = (Hm · · ·H2H1)>

= H>1 H
>
2 · · ·H>m

= H−1
1 H−1

2 · · ·H
−1
m

= (Hm · · ·H2H1)−1

= T−1
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26.4 Controls Quals Notes
26.4.1 Frequency Domain

Frequency response method: give a system a sinusoidal input. The output (will always be?) a sinusoid,
with a magnitude and phase which may be different than the input, but the frequency will be the same. Then,
sweep the input frequency across a wide range, and observe how the gain and phase shift of the measured
output change with frequency.

26.4.2 Gain and Phase of Poles and Zeros
Why do zeros add phase and poles reduce phase? These two examples that follow connect the transfer

function representation of the integrator and differentiator to a differential equation and show how, when the
system is given a sinusoidal input, that the zero causes the output to lead the input, and the pole causes the
output to lag behind the input.

x

u
=

1

s

The differential equation is
ẋ = u

This whole thing of gain and phase is for a given sinusoidal input, so u(t) = A sin(ωt) and then we want to
see how that will affect the output x(t) for this system.

dx

dt
= A sin(ωt)

separate and integrate back ∫ x

x0

dx =

∫ t

t0

A sin(ωt)dt

giving

x− x0 = −A
ω

cos(ωt) +
A

ω
cos(ωt0)

x(t) = −A
ω

cos(ωt) +
A

ω
cos(ωt0) + x0

x(t) = −A
ω

cos(ωt)

but − cos(x) = sin(x− 90◦) so the input and corresponding output can be written

u(t) = A sin(ωt)

x(t) =
A

ω
sin(ωt− 90◦)

So we can see that the magnitude of the output depends inversely on ω, getting smaller as ω gets larger.
More importantly we can see clearly that there is a 90◦ phase lag from the input to the output.

Consider now a differentiator.
x

u
= s

gives
x = u̇
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and with u(t) = A sin(ωt) we have
x(t) = Aω cos(ωt)

together the input and output are

u(t) = A sin(ωt)

x(t) = Aω cos(ωt)

But we have cos(x) = sin(x+ 90◦) giving

u(t) = A sin(ωt)

x(t) = Aω sin(x+ 90◦)

and here we can see that there is a positive phase shift, or say that the output leads the input by 90 degrees.

26.4.3 How to Make Bode Plots
first normalize the transfer function, so all the factors look like (1 + sai)
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Part IV

Adaptive Control
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Chapter 27

Introduction to Adaptive Control

What is adaptive control? Why adaptive control? Explain in simple terms some of the benefits of
adaptive control, and given an overview of some applications that are well suited to adaptive control. Provide
some neat and simple motivating examples.

Adaptive Control - the control of plants with unknown parameters. These notes will only cover continuous-
time adaptive control.

explain tracking error, and parameter error.
Also explain how our stability proofs are centered around driving the tracking error to zero (and the

parameter error too, if we can) and so our stability proofs look at stability of the origin.

27.1 Preliminaries
Include basic stuff here on set notation and more. Many students may not have seen this before.
R set of real numbers Rn set of real-valued vectors with length n. Taken by convention to mean column

vector? Rn×m set of real-valued matrices of size n×m.

27.1.1 Classes of Systems
In the following systems, x, y, and u are the state, output, and input, respectively. θ is an unknown

parameter. The following is a nonlinear time varying system

ẋ = f(x, u, θ, t)

y = h(x, u, θ, t)

The following is a linear time varying (LTV) system

ẋ = A(θ, t)x+B(θ, t)u

y = H(θ, t)x

The following is a linear time invariant (LTI) system.

ẋ = A(θ)x+B(θ)u

y = H(θ)x

In this class, we will mostly look at LTI systems
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27.1.2 Four/Five Classes of Adaptation
1. Passive

2. Input-Signal (Characteristic)

3. System-Variable

4. Extremum
(a) Parameter-perturbation method
(b) Sensitivity method

Gc(s)

Controller

G

Plant
v(t)

H

r(t) + u(t) xp(t) +

+

e(t)

d(t)

+

Extremum Adaptation

Idea in extremum adaptation: J cost function, θ is an adjustable parameter. Details regarding the deter-
mination of the gradient... The changing of theta changes the cost. θ like a knob, J like a gauge... dial the
knob to minimize the reading on the gauge... Adaptive law: (MIT Rule)

θ̇ ∝ ∂J

∂θ
(gradient)

27.1.3 Control Goal
Given unknown plant P with parameter θp, design controller C with parameter θc. C is kind of like the

inverse of P .

27.1.4 Direct and Indirect Adaptive Control
Why parameter estimation? In a control system, if a plant parameter is known, a suitable stabilizing

controller can be selected based on the known plant parameter. When the plant parameter is unknown, can
estimate the plant parameter, and then use this estimate to find the control gain. Essentially, direct and
indirect adaptive control are described by the following.

Indirect Adaptive Control: θp is unknown: estimate θp as θ̂p, then compute θc = f(θ̂p)

Direct Adaptive Control: θc unknown. Estimate θ̂c - direct adaptive control

27.1.5 Motivation for Reference Model
Consider the following transfer function representation first order plant with input u and output xp.

xp
u

=
kp

s− ap
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Our goal is to make the plant output xp follow some desired output xd. We define the tracking error, the
difference between the actual output and desired output as

e = xp − xd
This is represented in the following block diagram.

kp
s−ap

Plant

u xp +

xd

− e

In order to achieve the goal, we must choose the control input u so that e → 0. However, xp can
not follow any arbitrary command we would like, for example a series of steps, or some other non-smooth
commands. Instead, we must ask the system to do something which it can actually do, which in this case
a first order system can at best follow first order responses. This is where the need for the reference model
comes in. We transform the problem of shaping the input to shaping the reference model so that xm is as
close to xd as possible. The reference model is

xm
xd

=
km

s− am
Now we modify our goal slightly based on the statement above, where we don’t try to track xd, instead we
try to track xm. That is find u so that e goes to zero, where now the tracking error is

e = xp − xm
In the case of indirect adaptive control, we may not use the reference model output or the error signal above
in the process of controlling the plant, but we keep the reference model in mind as basically the model
describing where we want to put the poles of the closed-loop plant.

27.2 Direct and Indirect Adaptive Control
The following example talks a little bit about the difference between direct and indirect adaptive control.

Example 42 Direct and indirect adaptive control Consider the following transfer func-
tion representations of a plant and reference model below

xp
u

=
kp

s− ap

xm
xd

=
km

s− am
in state space these are represented as

ẋp(t) = apxp(t) + kpu(t)

ẋm(t) = amxm(t) + kmr(t)
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Assume for this example that kp = km = 1, ap = 1, am = −1 giving

xp
u

=
1

s− 1

xm
xd

=
1

s+ 1

With this knowledge, we can see that we need to shift the plant pole from 1 to−1 to match
the reference model. Fortunately we can do this through feedback. The goal is to find the
feedback gain θ that will place the pole of the plant so it matches the pole of the reference
model. This will ensure e→ 0.

1
s−1

Plant

1
s+1

Reference Model

θ

r

+

+

−

+

xm

xp

e

The closed loop transfer function is

xp
r

=
kp

s− ap − kpθ

∣∣∣∣
k∗θ∗

substituting numerical values we get

xp
r

=
1

s− 1− θ

From this expression, we can see that using a feedback gain of θ = −2 will place the
closed-loop plant pole to match the reference model pole, and will result in (after initial
conditions) perfect tracking. Basically, if we knew what ap was, we could then back-
calculate the required value of θ to place the pole where we wanted. This problem of trying
to identify ap and then using this estimate to determine θ is called indirect control.

In direct control, we need not know, or attempt to determine what the value of ap is, but we
know there exists a feedback gain θ that will put the pole in the right place. Once the pole
is in the right place, the tracking error e→ 0. The problem of direct control is to adjust θ
based on the tracking error output e alone.

If we wait and identify ap, we can then back-calculate what θ needs to be. This is indirect adaptive
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control. θ = −âp + am. In Direct adaptive control, all we need to know is that the ideal parameter that
results in perfect tracking exists, and we seek instead to identify θ. Identify θ as θ̂. to adjust DC gain. Define
θ∗ and k∗ as the values of θ, k so that plant + controller = reference model.

The closed loop transfer function of the following plant

xp
u

=
kp

s+ ap

with control law u = θxp+kr is given as follows, where the ideal values k∗ and θ∗ are used for the adaptive
gains

xp
r

=
kkp

s− ap − kpθ

∣∣∣∣
k∗θ∗

matching condition

k∗ =
km
kp

θ∗ =
ap − am
kp

so if ap and kp are unknown, then θ∗ and k∗ unknown.In the direct control approach, seek to identify control
parameters θ∗ and k∗ as θ and k. but we need to adjust θ(t) and k(t) so that θ(t)→ θ∗ and k(t)→ k∗. But
his is hard to realize since θ∗ and k∗ are unknown. So now modify the goal so that instead we adjust θ and
k so that e(t) → 0. Now that controller is time varying, no more transfer functions, no Laplace operator...
Laplace transforms don’t exist.

27.2.1 Direct Adaptive Control
This section will introduce direct adaptive control using the following example. In this example, there

is no attempt to identify the unknown plant parameter, and the feedback gain is adjusted using only the
tracking error between the reference model and actual plant responses.

Example 43 Direct adaptive control of a scalar system with one unknown The plant
and reference model are represented below

ẋp(t) = apxp(t) + kpu(t)

ẋm(t) = amxm(t) + kmr(t)

where

kp known
ap unknown

We would like to design a control input u such that the plant state xp follows the ref-
erence model state xm in the presence of the unknown parameter ap. That is, we want
limt→∞ e(t) = 0, where the error is defined as e(t) = xp − xm. The block diagram for
this problem is shown below.
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km
s−am
am < 0

Reference Model

kp
s−ap

Plant

r

u

xm
−

xp

+

e

We propose the following controller

u(t) = θ(t)xp(t) + k∗r(t)

which can be represented in the following block diagram

k∗
kp
s−ap

Plant

km
s−am
am < 0

Reference Model

θ

r

+

xm

−

xp
+

+

e

Substitute the proposed control law into the plant equation

ẋp(t) =
(
ap + kpθ(t)

)
xp(t) + kpk

∗r(t)

Recall that we define θ∗ as the fixed values of θ(t) such that the closed-loop plant matches
the reference model. This is known as the matching condition. That is, we compare the
plant to the reference model and solve the following expressions for θ∗. Since kp is known,
we know k∗ and can use that directly in the control law.

ap + kpθ
∗ = am

kpk
∗ = km

Solving, we obtain

k∗ =
km
kp

θ∗ =
am − ap
kp
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We define the parameter error as the difference between the actual parameter value, and the
“ideal” parameter value

θ̃(t) = θ(t)− θ∗

Using θ(t) = θ∗ + θ̃(t) and substituting we get

ẋp(t) = (ap + kpθ
∗ + kpθ̃(t))xp + kmr(t)

Using ap + kpθ
∗ = am we get

ẋp(t) = amxp(t) + kpθ̃(t)xp(t) + kmr(t)

Defining tracking error as
e(t) = xp(t)− xm(t)

and differentiating

ė(t) = ẋp(t)− ẋm(t)

= amxp(t) + kpθ̃(t)xp(t) + kmr(t)− amxm(t)− kmr(t)
= ame(t) + kpθ̃(t)xp(t)

And we can recognize this as error model 3, as shown in the following block diagram.

θ̃
1

s−am
xp e

We now propose the following candidate Lyapunov function in order to prove stability of
this adaptive system

V (e(t), θ̃(t)) =
1

2
e2(t) +

1

2
θ̃2(t)

Differentiating along system trajectories we get

V̇ (e(t), θ̃(t)) = e(t)ė(t) + θ̃(t)
˙̃
θ(t)

= e(t)
(
ame(t) + kpθ̃

>(t)xp(t)
)

+ θ̃(t)
˙̃
θ(t)

= ame
2(t) + e(t)kpθ̃

>(t)xp(t) + θ̃(t)
˙̃
θ(t)

We propose now the following adaptive parameter update law

˙̃
θ(t) = −e(t)kpxp(t)

Substituting this into V̇ we get

V̇ (e(t), θ̃(t)) = ame
2(t) + e(t)kpθ̃(t)xp(t)− e(t)kpθ̃(t)xp(t)

= ame
2(t)

And since am < 0, V̇ ≤ 0, i.e. negative semi-definite. While it may appear that V̇
is negative definite, as it is a negative quadratic, we must remember that V , and thus its
derivative are functions of both e and θ̃, and so V̇ may be zero when its inputs are nonzero.
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The previous example illustrated a basic adaptive law on a scalar plant with one unknown parameter. In
the next example, we will consider the case where the plant has two unknown parameters, but the sign of
the input parameter is known. This will require a modified Lyapunov function and parameter update law in
order to prove stability.

In addition, this introductory example to direct adaptive control showed only stability in the sense of
Lyapunov. That is, we showed only that the errors would remain bounded. In direct adaptive control
examples to follow, we will include more thorough stability analysis, and show that the tracking error does
tend to zero.

We return now to direct adaptive control to show more general adaptive controllers that can handle
additional unknown plant parameters, as well as introduce additional tuning tools. From this point onward,
explicit time dependency of different quantities will be dropped, only being used in order to emphasize this
dependency.

Example 44 Direct adaptive control of a scalar system with two unknowns The plant
and reference model are represented below, where ap and kp are unknown, but the sign of
kp is known.

ẋp = apxp + kpu

ẋm = amxm + kmr

where

kp unknown (but with known sign)
ap unknown

We would like to design a control input u such that the plant state xp follows the reference
model state xm in the presence of the unknown parameters ap and kp. That is, we want
limt→∞ e(t) = 0, where the error is defined as e(t) = xp − xm. The block diagram for
this problem is shown below.

km
s−am
am < 0

Reference Model

kp
s−ap

Plant

r

u

xm

−

xp

+

e

We propose the following controller

u = θxp + kr

which can be represented in the following block diagram
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k
kp
s−ap

Plant

km
s−am
am < 0

Reference Model

θ

r

+

xm

−

xp
+

+

e

Substitute the proposed control law into the plant equation

ẋp(t) = (ap + kpθ)xp + kpkr

Recall that we define θ∗ and k∗ as the fixed values of θ(t) and k(t), respectively, such
that the closed-loop plant matches the reference model. This is known as the matching
condition. That is, we compare the plant to the reference model and solve the following
expressions for θ∗ and k∗.

ap + kpθ
∗ = am

kpk
∗ = km

Solving, we obtain

k∗ =
km
kp

θ∗ =
am − ap
kp

We define the parameter error as the difference between the actual parameter value, and the
“ideal” parameter value

θ̃ = θ − θ∗

k̃ = k − k∗

Using θ = θ∗ + θ̃ and k = k∗ + k̃ and substituting we get

ẋp = (ap + kpθ
∗ + kpθ̃)xp + kp(k

∗ + k̃)r

Using ap + kpθ
∗ = am and kpk∗ = km we get

ẋp = amxp + kpθ̃xp + kmr + kpk̃r

Define the parameter θ̄ as the column vector which contains both parameters θ and k.
From this point forward we may drop the explicit time dependence on some terms for ease
of exposition.

θ̄> =
[
θ k

]
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and the error
˜̄θ> =

[
θ̃ k̃

]
=
[
θ k

]
−
[
θ∗ k∗

]
or ˜̄θ = θ̄ − θ̄∗. The regressor

φ> =
[
xp r

]
The plant equation can then be expressed as

ẋp = amxp + kmr + kp
˜̄θ>φ

Defining tracking error as
e = xp − xm

and differentiating

ė = ẋp − ẋm
= amxp + kmr + kp

˜̄θ>φ− amxm − kmr

= ame+ kp
˜̄θ>φ

which we again recognize as error model 3 as shown in the block diagram below.

˜̄θ>
1

s−am
xp e

We propose the following candidate Lyapunov function in order to prove stability of this
adaptive system

V (e, ˜̄θ) =
1

2
e2 +

1

2
|kp| ˜̄θ> ˜̄θ

Differentiating along system trajectories we get

V̇ (e, ˜̄θ) = eė+ |kp| ˜̄θ>
˙̄̃
θ

= e(ame+ kp
˜̄θ>φ) + |kp| ˜̄θ>

˙̄̃
θ

= ame
2(t) + ekp

˜̄θ>φ+ |kp| ˜̄θ>
˙̄̃
θ

We propose now the following adaptive parameter update law

˙̄̃
θ = −sgn(kp)eφ

Substituting this into V̇ we get

V̇ (e, ˜̄θ) = ame
2 + ekp

˜̄θ>φ− |kp|sgn(kp)e
˜̄θ>φ

= ame
2 + ekp

˜̄θ>φ− ekp ˜̄θ>φ

= ame
2

And since am < 0, V̇ ≤ 0, i.e. is negative semi-definite.
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Error Convergence

In the direct adaptive control example in this section and the previous section we have proposed stable
update laws, and used a Lyapunov function with V̇ ≤ 0 to show stability of the adaptive system. However,
in these two examples, we have said nothing about whether our control goal of e(t) → 0 as t → ∞ was
actually achieved. In this section, some additional tools are provided to allow us to show the convergence of
the error to zero.

Considering Example 44, we left off with V̇ ≤ 0. We now need to use Barbalat’s lemma to show that
limt→∞ e(t) = 0, and to do that, we need to find some various signal norms, described in what follows.
Since V > 0 and V̇ ≤ 0, we have V (t) ≤ V (0) <∞. Thus V (t) is bounded, and so its arguments e and θ̃
must be bounded also. Since r is bounded and the reference model is stable, xm is bounded, and so we get
that xp is bounded. This can be compactly stated as e, xp, ˜̄θ ∈ L∞.

To apply Barbalat’s lemma, all we have left to do is show e ∈ L2. To do this, note that∫ t

0
V̇ (τ)dτ = V (t)− V (0)

Since V is non increasing and positive definite, V (0)− V (t) ≤ V (0). This gives

−
∫ t

0
V̇ (τ)dτ ≤ V (0)

Substituting in our expression for V̇ = ame
2, remembering that am < 0

|am|
∫ t

0
e2(τ)dτ ≤ V (0)

which is equivalent to

|am|
∫ t

0
‖e(τ)‖2dτ ≤ V (0) <∞

which simplifies to √∫ t

0
‖e(τ)‖2dτ <∞

Recognize that this is just ‖e(t)‖L2 < ∞ we write e ∈ L2. Finally, we need to show the boundedness of
ė so we can apply Barbalat’s lemma. In addition to the boundedness of the signals shown above, we also
assume the reference input is bounded: r ∈ L∞. So, looking at the error dynamics with φ, ˜̄θ ∈ L∞ we see
that ė ∈ L∞, and so the conditions to apply Barbalat’s lemma are met, so limt→∞ e(t) = 0.

27.2.2 Indirect Adaptive Control
In indirect adaptive control, we will now create an identifier which we use to estimate the plant param-

eters. From these estimates of the plant parameters we determine the desired control gain. The structure
of the identifier is motivated by the standard linear observer below. Assuming the plant parameters were
known, the observer equation would be written as

˙̂xp = apx̂p + kpu+ kf (xp − x̂p)
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where kf is the observer gain that is selected to give stable observer dynamics. However, if we knew the
plant parameters we could pick the appropriate control gains to place the closed-loop poles as desired. The
observer equation is modified to use instead the plant parameter estimates, and we call the following the
identifier.

˙̂xp = âpx̂p + k̂pu+ kf (xp − x̂p)
= (âp − kf )x̂p + kfxp + k̂pu

We then choose kf so the identifier is stable. Choose kf = âp − am giving

˙̂xp = amx̂p + (âp − am)xp + k̂pu

So now the plant, identifier, and reference model are the following. Note that we won’t actually use the
reference model for control, but maintain it as a model as to where we would ultimately like to place the
closed-loop poles of the plant.

ẋp(t) = apxp(t) + kpu(t)

˙̂xp(t) = amx̂p(t) + (âp(t)− am)xp(t) + k̂p(t)u(t)

ẋm(t) = amxm(t) + kmr(t)

We now define the estimation error
ei(t) = xp(t)− x̂p(t)

and use the control law
u(t) = θ(t)xp(t) + k(t)r(t)

So now the identifier is used to determine parameter estimates âp and k̂p, and the problem becomes how to
use these parameter estimates to use in for finding θ(t) and k(t) to use in the control law.

Algebraic Parameter Adjustment The first method to determine the control parameters is algebraic.
Substituting the control law into the plant equation above, we recall that the matching condition is the
existence of the “ideal” adaptive gains such that the closed-loop plant matches the reference model. If we
knew what the plant parameters were, we could calculate θ and k in the control law using the matching
condition. In indirect adaptive control, we take the same approach, but use instead the parameter estimates.

k =
km

k̂p

θ =
am − âp
k̂p

Dynamic Parameter Adjustment Talk about dynamic adjustment of the control parameters here, and
refer to page 121. Use the following matching-like errors.

εθ = âp + k̂pθ − am
εk = k̂pk − km
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Identifier errors

ei = xp − x̂p
˙̂ap = eixp − εθ
˙̂
kp = eiu− θεθ − kεk

The plant and identifier equation are

ẋp = apxp + kpθxp + kpkr

˙̂xp = amx̂p + (âp − am)xp + k̂pu

Parameter errors

ãp = âp − ap
k̃p = k̂p − kp

Propose the following candidate Lyapunov function

V (ei, θ̃, k̃, ãp, k̃p) =
1

2

[
e2
i + |kp|(θ̃2 + k̃2) + ã2

p + k̃2
p

]
time differentiating

V̇ = eiėi+

27.2.3 Appendix
Previously, we have discussed only methods to identify unknown parameters in certain systems. As

control engineers, our primary goal is to stabilize and control a given system in some desirable way, even if
we are never able to determine exactly the values of the unknown parameters within the plant. To be more
specific about our control goal, and to guide stability analysis, we separate the goal of stability into two
portions.

1. Stability refers to the boundedness of tracking and parameter errors. That is, e, θ̃ ∈ L∞
2. Asymptotic stability refers to the tracking and parameter errors approaching zero asymptotically.

That is: e, θ̃ → 0 as t→∞

However, again, as control engineers, we may not be interested in the entirety of (2). That is, we are
primarily interested in driving e → 0. Convergence of the parameter error to zero is also good, and the
conditions required for θ̃ → 0 will be discussed more later.
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Chapter 28

Stability Theory

28.1 Lyapunov Stability
There are several ways in which the stability of equilibria can be defined which are outlined in these

notes. Only autonomous systems are covered, looking at both continuous and discrete time cases.
Lyapunov Stability Analysis gives two approaches can be taken to analyze a system and see what type

stability an equilibrium point satisfies. Lyapunov’s first, or indirect method can be used to prove whether a
system is stable, unstable, or draw no conclusion about stability. Lyapunov’s second, or direct method can
only prove system stability.

28.1.1 Stability of Autonomous Systems
When talking about the stability of autonomous systems, it is always done relative to an equilibrium

point. Equilibrium points must first be found, and it is the stability of these points which must be studied. For
linear systems there exists only one equilibrium, so the stability of this equilibrium point can be equivalently
described by saying the stability of the system.

28.1.2 Equilibrium Points
Given the following autonomous system, the system’s equilibrium points must first be found. (DDV

13.2)
ẋ(t) = f(x(t), t)

The point xeq is an equilibrium point of the continuous system if f(xeq(t), t) = 0,∀t ≥ 0. If the system
is started in the state xeq at time t0, it will remain there for all time. Nonlinear systems can have multiple
equilibrium points (or equilibria). For a linear time-invariant system

ẋ(t) = Ax

there is one equilibrium point (the origin) if A is nonsingular, otherwise there are an infinity of equilibrium
points, which are contained in the nullspace of A.

The key here is that for linear systems with multiple equilibrium points, these points are not isolated. But
for non-linear systems with multiple equilibrium points, there can be infinitely many isolated equilibrium
points, for example consider a pendulum.
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28.1.3 Stability Definitions
Consider the following dynamical system

ẋ(t) = f(x(t), t)

x(t0) = x0

Denote the equilibrium point as xeq.

Definition 31 Stability The equilibrium is stable if for all ε > 0 there exists a δ(ε, t0) > 0 such that
‖x0‖ ≤ δ implies ‖x(t)‖ ≤ ε for all t ≥ t0.

Stability is often referred to as stable in the sense of Lyapunov (ISL). A system that is stable is one
which the system trajectory can be kept close to an equilibrium point by starting sufficiently close to the
equilibrium. This is the weakest form of stability, and is also known as marginally stable. It is important to
make the point that this must hold for any ε that can be picked, not just one particular and carefully selected
special case. An equilibrium point that is not stable ISL is termed unstable. (DDV 13.2)

Definition 32 Attractive
Attractivity implies that all trajectories starting in a neighborhood of the equilibrium point eventually

approach the equilibrium point.

Remark 6 Attractivity does not imply stability.

1. Local asymptotic stability A system which is stable ISL, and satisfies the additional constraint below
is called locally asymptotically stable.

• ∃r such that if ‖x(t0)‖ < r, then x(t)→ x̄ as t→∞

This statement says that if the starting point x(t0) is inside the circle centered about x̄ with radius r,
that the system trajectories will actually converge to x̄. It is important to note that there exist systems
which satisfy only this additional constraint without satisfying the first constraint of being stable ISL.
Such systems are not asymptotically stable.

2. Global asymptotic stability A system which is globally asymptotically stable extends the definition
of local asymptotic stability from a circle of radius r to the entire state space. In other words, begin-
ning from any initial conditions x(t0) then x(t) → x̄ as t → ∞. This is discussed in further detail
using Lyapunov’s second method.

28.2 Lyapunov Stability Analysis
Using these three definitions of stability, tools are now needed which will allow a system to be analyzed

to determine if an equilibrium is stable, and if so, which type of stability the equilibrium point satisfies.

28.2.1 Lyapunov’s First (Indirect) Method
This method involves linearizing the nonlinear system about an equilibrium point x̄ in order to develop

a local conclusion about the stability of the nonlinear system. If the linearized system has poles that are all
strictly in the left-half complex plane, the equilibrium point is locally asymptotically stable. If the linearized
system has any poles that are strictly in the right-half complex plane, equilibrium point is unstable. If the
linearized system as any eigenvalues which are zero, no conclusion can be drawn about the stability of
the equilibrium point. In this case, essentially the higher order terms that were lost in linearization will
determine whether or not the equilibrium is stable or not. (DDV 14.3)
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28.2.2 Lyapunov’s Second (Direct) Method
Lyapunov’s second method requires the construction of a scalar, energy like Lyapunov function of the

state which satisfies the properties which follow. This function V (x(t)) is proposed as a “candidate Lya-
punov function”, and if the properties are satisfied, it becomes a Lyapunov function.

• V is locally positive definite

– V (0) = 0

– V (x(t)) > 0, 0 < ‖x(t)‖ < r for some r

• V̇ (x(t)) = d
dtV (x(t)) = d

dxV (x(t))dxdt is locally negative semidefinite

– V̇ (0) = 0

– V (x(t)) ≤ 0, 0 < ‖x(t)‖ < r for some r

Chain rule:

V̇ (x(t)) =
dV (x(t))

dt
=
∂V

∂x

dx

dt

dz(x(t), y(t))

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

The Lyapunov function which satisfies these three conditions proves the equilibrium point is locally
stable ISL.

The condition of stability can be further improved if V̇ (x(t)) is negative definite, i.e. V (x(t)) < 0,
0 < ‖x(t)‖ < r for some r. Satisfying this condition results in asymptotic stability. (DDV 13.4) Lyapunov’s
second method can be extended to prove global stability if the function |V (x)| → ∞ as ‖x‖ → ∞ (i.e.
V (x(t)) is radially unbounded) and V̇ (x(t)) is negative definite on the entire state space. If a Lyapunov
function cannot be found, this does not necessarily mean that the system is unstable, but only that a suitable
Lyapunov function could not be found. Therefore, Lyapunov’s direct method cannot be used to prove a
system is unstable. In the stability proof for the adaptive controllers presented in these notes, we get V̇ ≤ 0,
so from this alone all we have is stability ISL. However, we will show other tools we have to show that the
system is asymptotically stable without requiring V̇ < 0.

28.2.3 The Lyapunov Equation
To prove stability of the following continuous time, linear, autonomous system, a quadratic Lyapunov

function will suffice.

ẋ(t) = Ax(t)

Propose the following quadratic Lyapunov function, where P must be chosen such that it is positive definite
(i.e. x>Px > 0 ∀x 6= 0).

V (x(t)) = x>Px, x ∈ Rn

As long as P is positive definite V (x(t)) will be a suitable Lyapunov function. Taking the time derivative
of the Lyapunov function, and substituting ẋ = Ax gives:
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V̇ (x) = ẋ>Px+ x>Pẋ

= (Ax)>Px+ x>PAx

= x>A>Px+ x>PAx

= x>(A>P + PA)x

= −x>Qx

The resulting matrix Q = −(A>P + PA) is symmetric as well. By picking P such that it is not only
symmetric and positive definite, but such that Q is negative definite, the quadratic Lyapunov function will
prove the linear system is globally asymptotically stable. However, we cannot guarantee for any given
positive definite matrix P that when we solve for Q it will be positive definite. However, if we specify
Q > 0 and A is stable, there always exists P = P> > 0.

28.3 Barbalat’s Lemma
1. V is positive definite

2. V̇ is negative semi-definite

• With V positive definite and V̇ negative semi-definite, V is bounded. That is, at the initial time
t = 0 we have V (x(t = 0), θ(t = 0)) and from here (since V̇ is negative semidefinite) the
value of V can only decrease. V is bounded below by zero since it is positive definite. Finally,
we say that since V is bounded from above by V (t = 0) and bounded from below by 0, that
it is bounded. And because V is bounded and positive definite (actually probably some other
condition, but it is true for a quadratic function) then the arguments of V are bounded

3. V̇ is uniformly continuous, which follows from V̈ being bounded

• We evaluate V̈ and since now we know the arguments of V are bounded, we use this to bound
V̈ , thus showing uniform continuity of V̇

With these three conditions met Barbalat’s Lemma states that V̇ → 0 as t → ∞. We then look at V̇ and
since it is tending to zero, its arguments must go to zero. Since V̇ at this point is probably a function of the
state error only, we say the state error tends to zero, although we can’t necessarily say anything about the
parameter error (unless the parameters are in V̇ also... it is easiest to show this with examples).

Thus far, we have shown that e ∈ L∞ is bounded. Now the goal is to use Barbalat’s Lemma to prove
e→ 0. That is, show the system is asymptotically stable?

Lemma 1 Slotine pg 122 If the differentiable function g(t) =
∫ t

0 f(τ)dτ has a finite limit as t→∞, and
if ġ(t) = f(t) is uniformly continuous, then ġ(t) = f(t)→ 0 as t→∞.

Lemma 2 Lemma 2.12 Annaswamy pg 85 If f : R+ → R is uniformly continuous for t ≥ 0, and if the
limit of the integral

lim
t→∞

∫ t

0
|f(τ)|dτ

exists and is finite, then
lim
t→∞

f(t) = 0
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Comparing these two lemmas, f(t) = ġ(t). We want to use Barbalat’s lemma to show that e→ 0. The
steps are given in the next section.

Using Barbalat’s Lemma

• Show that e is uniformly continuous for t ≥ 0.

– To do this need to show that ė is bounded, which we did.

• Then show limt→∞
∫ t

0 |e(τ)|dτ exists and is finite

– To do this. . . ???

• Then we will have shown that limt→∞ e(t) = 0
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Chapter 29

Adaptive Parameter Identification

Section 3.2.1 from book.

29.1 Parameter Identification: Scalar Algebraic Systems
29.1.1 Non-Recursive Schemes
Method 1

Consider the scalar algebraic system with input u(t), unknown scalar parameter θ, and output y(t). We
want to identify θ.

θ
u(t) y(t)

Want to identify θ using measurements {u(t), y(t)}. One method

θ̂(t) =
y(t)

u(t)

provided θ is not zero, θ̂ → θ.

Method 2

Another method

θ̂(t) =
y(t)u(t)

u(t)2

Denote the estimated value as θ̂, and compute the estimated parameter as

θ̂(t) =
y(t)

u(t)
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which can be written as follows. But why?

θ̂(t) =
y(t)u(t)

u(t)2

provided u(t) 6= 0.

Method 3

Now want to set it up using the cost function approach described above. Put u into θ and θ̂, take outputs
y and ŷ and difference them. Define this difference as the error e = y − ŷ.

θ

θ̂

u

y

ŷ

Becomes

θ

θ̂

u

y

−

ŷ
+

e

Then
J = e2

And the goal is to find θ̂ by minimizing J

θ̂ = arg min
θ
J

Expanding J

J = [y − ŷ]2

= [y − θ̂u]2

Evaluating the gradient

∂J

∂θ̂
= 2[θ̂u− y]u

= 2θ̂u2 − 2yu
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Setting this equal to zero and solving for the parameter estimate

θ̂(t) =
y(t)u(t)

u(t)2

which is the same estimate achieved above.

e = ŷ − y
= θ̂u− y
= θ̂u− θu
= θ̃u

Method 4

To accommodate noise, define a cost function as an integral of the error squared over some interval of
time. Then find the estimate θ̂ as the value where the gradient of the cost function is zero. That is, the
gradient will be zero when the cost function is at a minimum. The error is given by

e = y − ŷ

this is shown in the following figure The cost function

J =

∫ t+T

t
e(τ)2dτ

=

∫ t+T

t

(
y(τ)− ŷ(τ)

)2
dτ

=

∫ t+T

t

(
y(τ)− θ̂(τ)u(τ)

)2
dτ

The goal is to minimize the cost J , and so at this minimum we have

∂J

∂θ̂
= 0

and with

∂J

∂θ̂
=

∫ t+T

t

∂

∂θ̂

(
y(τ)− θ̂(τ)u(τ)

)2
dτ

=

∫ t+T

t
2
(
y(τ)− θ̂(τ)u(τ)

)
u(τ)dτ

and then setting ∂J/∂θ̂ = 0 we have∫ t+T

t
2
(
y(τ)− θ̂(τ)u(τ)

)
u(τ)dτ = 0∫ t+T

t
y(τ)u(τ)− θ̂(τ)u(τ)2dτ = 0∫ t+T

t
y(τ)u(τ)dτ =

∫ t+T

t
θ̂(τ)u(τ)2dτ
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θ̂(t) =

∫ t+T
t y(τ)u(τ)dτ∫ t+T
t u2(τ)dτ

Finish this explanation. Why pull out θ̂ like that?

Method 5

The estimate θ̂(t) can be obtained by solving the differential equation obtained by setting ˙̂
θ equal to the

negative gradient of the cost function. Using the following cost function

J =
1

2

(
y(t)− θ̂(t)u(t)

)2

and evaluating the gradient

∂J

∂θ̂
= −(y(t)− θ̂(t)u(t))u(t)

= −u(t)(θu(t)− θ̂(t)u(t))

= −u(t)2(θ − θ̂(t))

Defining the following parameter estimation error

θ̃(t) = θ̂(t)− θ

The gradient can be expressed
∂J

∂θ̂
= u(t)2θ̃(t)

and make the estimate update
˙̂
θ(t) = −∂J

∂θ̂

giving

˙̂
θ(t) =

˙̃
θ(t) = −u2(t)θ̃

29.1.2 Recursive Schemes

θ

θ̂

u

y

ŷ

Becomes
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θ

θ̂

u

y

−

ŷ
+

e

Use quadratic cost function in error J = e2 = [θ̂u − y]2. Recursive scheme: Identify θ̂(t) at every

instant. Set ˙̂
θ ∝ ∂J

∂θ . ˙̂
θ = −[θ̂u− y]u = −u2θ̂ + uy

θ̃
u(t) e(t)

29.2 Parameter Identification: Vector Algebraic Systems
29.2.1 Non-Recursive Schemes
Method 1

θ>
u(t) y(t)

So identify as

θ̂ = u−1(t)Y (t)

If u−1 exists, θ̂ = θ.

Method 2 and 3

Same as before with scalar case
θ = [U>U ]−1

alternatively
J = ‖Uθ̂ − Y ‖2

and ∂J
∂θ̂

= 0⇒ θ̂ = [U>U ]−1U>Y minθ̂ J that implies

θ̂ = [U>U ]−1U>Y
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29.2.2 Recursive Schemes

θ

θ̂

u

y

ŷ

θ

θ̂

u

y

−

ŷ
+

e

θ̃>
u(t) e(t)

˙̂
θ = −u2θ̂ + u(uθ)

˙̃
θ = −u2θ̃

J = e2 = (u>θ̂ − y)2

˙̂
θ ∝ ∂J

∂θ
= −u[u>θ̂ − y]

Set
˙̃
θ = −u(t)u>(t)θ̃

˙̃
θ = A(t)θ̃ where A(t) = u(t)u>(t), where A(t) is a symmetric n× n matrix of rank 1.

[uu>]x = λx

x = u

uu>u = (u>u)u
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x = u⊥ uu>u⊥ = (O)u⊥ u⊥ n− 1 such vectors u is said to be persistently exciting if it has the full rank
property.

1

T

∫ t+T

t
u(τ)u>(τ)dτ ≥ αIn×n

For some T and α > 0. This property is sometimes called uniform observability. Sinusoids are best vector
for convergence.

Example 45 Identification of a parameter in a vector algebraic system Vector θ ∈ Rn.
Again input u output y.

U =


u>(t1)
u>(t2)
. . .

u>(tn)


n×n

θn×1 =


y(t1)
y(t2)
. . .
y(tn)


n×1

where the output vector is Y
Uθ = Y

a)
θ = U−1Y

and then
U>Uθ = U>Y

b)
θ = [U>U ]−1

alternatively
J = ‖Uθ̂ − Y ‖2

and ∂J
∂θ̂

= 0⇒ θ̂ = [U>U ]−1U>Y Recursive scheme: Identify θ̂(t) at every instant. Set
˙̂
θ ∝ ∂J

∂θ

29.2.3 Overview of Persistent Excitation
sufficient condition to determine the parameter is

J =

∫ t+T

t
u2dτ > ε

this is persistent excitation!

29.3 Introduction to Error Models
Error models are covered in detail in Chapter 7 of the book, and we will introduce them a little bit here.

In the adaptive control problems we will consider, we are adjusting some parameter, either as part of an
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estimator or controller. As this parameter is adjusted, we monitor an error signal. The goal is then to adjust
our parameter in a way that drives the error to zero. Error models allow us to determine a set up update laws
for the parameter which are applicable to many different problems by reducing the problem to a known error
model form. These error models are introduced here and will be covered in detail later.

29.3.1 Error Model 1
Error model 1 is an algebraic error model. That is, the relationship between the input and error is an

algebraic relationship with parameter error. Consider the following estimator block diagram

θ

θ̂

u

y

−

ŷ
+

e

Defining the parameter error as θ̃ = θ̂ − θ the block diagram can be expressed

θ̃>
u(t) e(t)

The relationship between the output error e and parameter error θ̃ is written as

e(t) = θ̃>u

Now, given this error model, we want to adjust θ̃ in some way to make e→ 0.

29.3.2 Error Model 3

θ̃
1

s−am
xp e

29.4 Parameter Identification: Dynamic Systems
Cannot use MIT rule for dynamic systems.

29.4.1 Scalar Systems: Single Parameter Identification
The following examples show how to identify a single parameter in a first-order systems. To identify

multiple parameters in a scalar systems is also possible, and done in a following example.

282



Error Model 3

Example 46 DC motor: Identification of a single parameter in a scalar system (Error
Model 3) Consider the following transfer function representation of a DC motor, where
the input is terminal voltage V and the output is the angular velocity of the motor shaft ω.

ω

V
=

K

Js+B
=

K
J

s+ B
J

where B is the friction J the inertia, and K is the DC gain of the system. This transfer
function can be represented by the following block diagram

K
Js+B

V ω

We can simplify the representation by parameterizing the transfer function as

ω

V
=

a1

s+ θ1

where a1 = K
J and θ1 = B

J . For this problem we assume that the sign of the parameters
B, J , and K are all known and furthermore that

a1 known
θ1 ≥ 0 unknown

where θ1 is the unknown constant quantity which we would like to identify, where its
positivity in this example is due to the physical parameters which it represents. Note that
it is hard to identify unstable systems, and to do so we would need a stabilizing controller
and perform closed-loop identification. More on this later. Using this parameterization, the
block diagram can be written

a1

s+θ1

V ω

We can pull the known constant a1 out of the transfer function as shown in the following
block diagram

a1
1

s+θ1

V u ω

We can then look at the transfer function from u to ω

ω

u
=

1

s+ θ1
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In state space, this plant can be represented as follows. The second equation is the estima-
tion equation to identify θ1.

ω̇ = −θ1ω + u

˙̂ω = −θ̂1ω̂ + u

Define the tracking error as
e = ω̂ − ω

Differentiate the tracking error

ė = ˙̂ω − ω̇
= −θ̂1ω̂ + u+ θ1ω − u
= −θ̂1ω̂ + θ1ω

Add and subtract θ1ω̂ from both sides

ė = θ1ω − θ̂1ω̂ + θ1ω̂ − θ1ω̂

= −θ1(ω̂ − ω)− (θ̂1 − θ1)ω̂

and with θ̃1 = θ̂1 − θ1 this gives the following error dynamics

ė = −θ1e− θ̃1ω̂

Which we call error model 3. The transfer function for these error dynamics is

e

ω̂
= − θ̃1

s+ θ1

with the following block diagram representation

θ̃1 − 1
s+θ1

ω̂ e

In order to determine a stable identification scheme, we propose the following Lyapunov
function.

V (θ̃, e) =
1

2
(θ̃2

1 + e2)

Time differentiating

V̇ = θ̃1
˙̃
θ1 + eė

= θ̃1
˙̃
θ1 + e(−θ1e− θ̃1ω̂)

= −θ1e
2 + θ̃1

˙̃
θ1 − eθ̃1ω̂
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Noting that ˙̂
θ1 =

˙̃
θ1 select the following parameter estimation law

˙̂
θ1 = eω̂

This gives
V̇ = −θ1e

2

with V̇ ≤ 0⇒ e and θ̃ are bounded. More on this later.

Error Model 1

Example 47 DC motor: Identification of a single parameter in a scalar system (Error
Model 1) Consider again the DC motor example of example 46. In that example, we
parameterized the first order plant as

a1
1

s+θ1

V u ω

with transfer function from u to ω given by

ω

u
=

1

s+ θ1

We again assume

a1 known
θ1 ≥ 0 unknown

Write the transfer function as

ω

u
=

1

s+ θ1

=
1

s+ θm
· s+ θm
s+ θ1

=
1

s+ θm
· 1
s+θ1
s+θm

=
1

s+ θm
· 1
θm−θm
s+θm

+ s+θ1
s+θm

=
1

s+ θm
· 1

1− θm−θ1
s+θm
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where θm > 0 is a known, positive parameter that the control designer picks, which should
be a reasonable time constant for the DC motor in this case. Define θ , θ1 − θm and
simplify this transfer function as

ω

u
=

1

s+ θm
· 1

1 + θ
s+θm

and realize this in the following block diagram representation, where we are using two
states to represent a first order system.

1
s+θm

1
s+θmθ

u φ1 + ω

φ2

+

The only unknown entity is the parameter θ. Note that φ1 and φ2 are synthesizable signals
that can be had online. So, we can express ω and its estimate ω̂ as

ω = φ1 + θφ2

ω̂ = φ1 + θ̂φ2

Define the tracking error as follows, and simplify

e = ω̂ − ω
= (θ̂ − θ)φ2

This gives the following relationship between input φ2 and error, error model 1.

e = θ̃φ2

where the parameter estimation error is defined as

θ̃ = θ̂ − θ

Define the following Lyapunov function candidate

V (θ̃) =
1

2
θ̃2

Differentiating
V̇ = θ̃

˙̃
θ

Select the following parameter estimation law, noting that ˙̂
θ =

˙̃
θ

˙̂
θ = −eφ2
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Which simplifies to

˙̂
θ = −θ̃φ2

2

Substituting this into the time derivative of V

V̇ = −θ̃2φ2
2

Essentially converted the problem of identifying a single parameter in a first order dynam-
ical system from error model 3 as shown in example 46 to error model 1.

29.4.2 Vector Systems: Multiple Parameter Identification
The following examples are for vector systems, that is systems with more than one unknown parameter.

These examples are of a scalar system with multiple parameters, using two approaches: error model 1 and
error model 3.

Error Model 3

Example 48 DC motor: identification of multiple parameters in a scalar system (Error
model 3) Same system as in the first DC motor example, only this time two unknown
parameters.

ω

V
=

a1

s+ θ1

Block diagram

a1

s+θ1

u ω

This time we assume

a1 unknown
θ1 ≥ 0 unknown

The differential equation describing the plant is given by

ω̇ = −θ1ω + a1V

Generate an estimate of the plant output as follows, using parameter estimates in place of
the unknown parameters

˙̂ω = −θ̂1ω̂ + â1V

Define the following output error and parameter errors

e = ω̂ − ω
θ̃1 = θ̂1 − θ1

ã1 = â1 − a1
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The output error dynamics are given by

ė = −θ̂1ω̂ + â1V + θ1ω − a1V

Add and subtract θ1ω̂

ė = −θ̂1ω̂ + θ1ω̂ − θ1ω̂ + â1V + θ1ω − a1V

= (θ1 − θ̂1)ω̂ − θ1(ω̂ − ω) + ã1V

= −θ1e− θ̃1ω̂ + ã1V

= −θ1e+ θ̃>φ

where

θ̄ =

[
θ1

a1

]
and φ =

[
−ω̂
V

]

θ̃>
1

s+θ1

φ e

Error Model 1

Example 49 DC motor: identification of multiple parameters in a scalar system (Error
model 1) Same system as in the first DC motor example, only this time two unknown
parameters.

ω

u
=

a1

s+ θ1

Block diagram

a1

s+θ1

u ω

This time we assume

a1 unknown
θ1 ≥ 0 unknown
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As last time in example 47 Write the transfer function as
ω

u
=

a1

s+ θ1

=
a1

s+ θm
· s+ θm
s+ θ1

=
a1

s+ θm
· 1
s+θ1
s+θm

=
a1

s+ θm
· 1
θm−θm
s+θm

+ s+θ1
s+θm

=
a1

s+ θm
· 1

1− θm−θ1
s+θm

where θm > 0 is a known, positive parameter that the control designer picks, which should
be a reasonable time constant for the DC motor in this case. Define θ , θ1 − θm and
simplify this transfer function as

ω

u
=

a1

s+ θm
· 1

1 + θ
s+θm

and realize this in the following block diagram representation, where we are using two
states to represent a first order system.

1
s+θm

a1

1
s+θmθ

u φ1 + ω

φ2

+

ω = a1φ1 + θφ2

= θ̄>φ

where
θ̄ =

[
a1 θ

]>
φ =

[
φ1 φ2

]>
Define the estimated parameter

ω̂ = ˆ̄θ>φ

with error e = ω̂ − ω given by

e = ˜̄θ>φ

Where the parameter error is
˜̄θ = ˆ̄θ − θ̄

This is again error model 1, but now the unknown parameter is a vector. This error model
has the following block diagram representation
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˜̄θ>
φ e(t)

Problem cast as output... For more on this, see page 275 of text.
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Chapter 30

Adaptive PI, PID, Phase-Lead Control

Goal: velocity control of a DC motor: have x → xd where the state x is the angular velocity, and xd
is the desired angular velocity. Newton’s second law can be adapted to angular acceleration to give the
following first order description of the motor, where the input is the motor torque directly (we assume motor
torque is directly proportional to voltage, and neglect fast electrical dynamics).

Jẍ+Bẋ = τ

And because this is a motor, J > 0 and B > 0, and the transfer function is given by

Gp(s) =
x

τ
=

1

s(Js+B)

We can see that the plant has a stable pole at −B/J , and no zeros. The controller will be connected with
the plant as shown by the following block diagram

Gc(s)

Controller
1

s(Js+B)

Plant
r + er τ x

−

The input to the controller is the error er = r − x.

30.1 Adaptive PI Control
30.1.1 Adaptive PI Controller: Original Design
Algebraic Part

Gc(s)
1

s(Js+B)
r + er τ x

−
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Adaptive
Controller

1
s(Js+B)

r + er τ x

−

A standard PI controller is written in transfer function form as

Gc(s) =
τ

er
= Kp +

Ki

s

=
sKp +Ki

s

=
Kp

(
s+ Ki

Kp

)
s

where Kp > 0 and Ki > 0. From this transfer function representation, we can see that this controller has a
pole at the origin and a zero in the LHP at −Ki/Kp. This control law can also be expressed as

τ(t) = Kp(t)er(t) +Ki(t)

(∫ t

0
er(τ)dτ

)
The first step in the design of the adaptive PI controller is to first design the nominal PI controller: the PI

controller we would pick if J and B were known. This step is called the algebraic part. Then we consider
J and B are unknown and develop the adaptive version. This step is called the analytic part. This procedure
is called the certainty equivalence principle: develop solution when parameters are known, then replace
parameters by estimates.

In order to design the nominal PI controller, we find the closed-loop transfer function Wcl(s), as shown
in the block diagram below.

Kp(s+Ki/Kp)
s

Controller
1

Js+B

Plant
r + er τ x

−

Wcl(s)

This closed-loop transfer function is

Wcl(s) =
x

r
=

GcGp

1 +GcGp

=
Kps+Ki

s(Js+B) +Kps+Ki

Next, reparameterize the control law as

Kp = K

Ki = Kλ
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where K > 0, λ > 0. We explain the reason behind this reparameterization later. Writing the controller
transfer function using this reparameteriaztion gives

Gc(s) =
K(s+ λ)

s

The closed-loop transfer function when using the controller reparameterization is

Wcl(s) =
x

r
=

K(s+ λ)

s(Js+B) +K(s+ λ)

Inserting this reparameterization into the block diagram is shown below

K(s+λ)
s

Controller
1

Js+B

Plant
r + er τ x

−

Wcl(s)

The characteristic polynomial is given by

s(Js+B) +K(s+ λ) = 0

Js2 + (B +K)s+Kλ = 0

Using the Routh-Hurwitz criterion for this system, the second order system is stable if all of the polynomial
coefficients are positive, which is satisfied given J > 0, B > 0, and ∀K, λ > 0.

The idea now is to, assuming the plant parameters are known exactly, figure out what reference command
r we would have to give to ensure perfect tracking. If the closed loop system is given by Wcl(s), we can
determine r by inverting the closed-loop system, so the transfer function from xd to xwould be unity, giving
perfect tracking. See block diagram below.

W−1
cl (s) K(s+λ)

s

Controller
1

Js+B

Plant
τxd r + er x

−

Wcl(s)

Inverting the closed-loop system we get

W−1
cl (s) =

r

xd
=

1 +GcGp

GcGp

=
1

GcGp
+ 1

= (Js+B)Gc(s)
−1 + 1
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and then

r =
[
W−1
c (s)

]
xd

= [(Js+B)G−1
c (s) + 1]xd

= (Js+B)G−1
c (s)xd + xd

= JG−1
c (s)ẋd +BG−1

c (s)xd + xd

define
ωd = [G−1

c (s)]xd

where
G−1
c (s) =

s

K(s+ λ)

gives
r = Jω̇d +Bωd + xd

and ω̇d, ωd, and xd are known signals. So assuming we knew the plant parameters exactly, and knew the
desired trajectory and its derivative, this is how we would determine the reference command r such that we
would achieve perfect tracking. This can be represented by the following block diagram.

JG−1
c

BG−1
c

K(s+λ)
s

Gc

1
Js+B

ẋd

xd

xd

+
+ r er τ x

−

This can be rearranged as

K(s+λ)
s

B

J

1
Js+B

Plant
xd +

xd

ẋd

+
e + τ x

−

where
e = xd − x

So the total control input is
τ = Jẋd +Bxd +Gc(s)e
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where the PI controller transfer function is written

Gc(s) = K +
Kλ

s

and we have
Gc(s)e = Ke+Kλ

∫
edt

and so the total control input is

τ = Jẋd +Bxd +Ke+Kλ

∫
e(τ)dτ

= Jẋd +Bxd +K

(
e+ λ

∫
e(τ)dτ

)
Defining the following errors

e1 = ẋd + λe

e2 = e+ λ

∫
e(τ)dτ

Giving

τ = Jẋd +Bxd +Ke2

Analytic Part

In the analytic part we take the control law that we had before when we assumed the plant parameters
where completely known, and replace the values of the plant parameters in the control law with estimates of
their values.

τ = Ĵ ẋd + B̂xd +Ke2

The plant is given by
Jẋ+Bx = τ

substituting in the adaptive control law

Jẋ = −Bx+ Ĵ ẋd + B̂xd +Ke2

ẋ =
1

J
(Ĵ ẋd + B̂xd −Bx+Ke2)

ė = ẋd − ẋ

= ẋd −
1

J
(Ĵ ẋd + B̂xd −Bx+Ke2)

=
J

J
ẋd −

Ĵ

J
ẋd −

1

J
(B̂xd −Bx+Ke2)

= − J̃
J
ẋd −

1

J
(B̂xd −Bx+Ke2)
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where
J̃ = Ĵ − J

ė2 = ė+ λe

= − J̃
J
ẋd −

1

J
(B̂xd −Bx+Ke2) + λe

Summary

Plant: Jẋ+Bx = τ

Control: τ = Ĵ ẋd + B̂xd +Ke2

Error: e = xd − x

e2 = e+ λ

∫
e(τ)dτ

Parameterization: Kp = K

Ki = Kλ

Adaptive PI: Original Design

30.1.2 Adaptive PI Controller: Better Design
Say some stuff here about exactly what the idea is behind using positive damping feedback, and how

this will help with the adaptive part of the design to follow, as compared to the adaptive design when the
damping feedback is not used. This can be represented using the following block diagram

Gc(s)

Controller
1

Js+B

Plant

B

r + er + τ x

+−

Algebraic Part

The block diagram above is the same as the following block diagram. Again, we complete the algebraic
part first. Closing the inner loop with B feedback

1
Js+B

1− B
Js+B

=
1

Js+B
Js

Js+B

=
1

Js
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Gc(s)

Controller

1
Js

Plant
r + er x

−

where again the PI control law is given by

Gc(s) =
sKp +Ki

s

Using this new structure with the proposed positive rate feedback, we must check the stability of the closed
loop system Wcl.

Wcl(s) =
x

r
=

Gc(s)
1
Js

1 +Gc(s)
1
Js

=
Gc(s)

Js+Gc(s)

=
Kps+Ki

s
Js2

s +
Kps+Ki

s

=
Kps+Ki

Js2 +Kps+Ki

We can then check stability of the closed-loop system using the Routh-Hurwitz criterion. For a second order
system this states that the closed-loop system will be stable if the characteristic polynomial has no sign
changes. Thus, the closed-loop system is stable for all J > 0, Kp > 0, Ki > 0.

We now proceed in the same way as before: figure out what r should be based on xd to give us perfect
tracking. This is how we find the feed-forward part shown in the block diagram below.

W−1
cl (s) Gc(s)

Controller
1

Js+B

Plant

B

xd r + er + τ x

+−

Using the expression for Wcl above and inverting it, the reference signal r can be found in terms of xd as

r = [W−1
cl (s)]xd

= [1 + JsG−1
c (s)]xd

= xd + [JG−1
c (s)]ẋd

The block diagram above can then be represented as
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JG−1
c

Gc(s)

Controller
1

Js+B

Plant

B

xd +

ẋd

+
r + er + τ x

+−

which can be again redrawn as

J

Gc(s)

Controller
1

Js+B

Plant

B

xd +

ẋd

+
e + τ x

+−

Again we reparameterize the control law, with a different reparameterization this time. Let

Kp = K + Jλ

Ki = Kλ

giving

Gc(s) =
s(K + Jλ) +Kλ

s
We can also see from the above block diagram that the control input to the plant is given by

τ = Jẋd +Bx+Gc(s)e

where
e = xd − x

the control law can be written
Gc(s)e = (K + Jλ)e+Kλ

∫
edt

and so the total control input is

τ = Jẋd +Bx+ (K + Jλ)e+Kλ

∫
edt

= Jẋd +Bx+Ke+ Jλe+Kλ

∫
edt

= J(ẋd + λe) +Bx+K

(
e+ λ

∫
edt

)
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Defining the following errors

e1 = ẋd + λe

e2 = e+ λ

∫
edt

τ = Je1 +Bx+Ke2

allows the total control input to be expressed as

τ = θ>0 ω0(t)

where
θ0 =

[
J B K

]>
and

ω0(t) =
[
e1(t) x(t) e2(t)

]>
Again looking at the closed-loop transfer function using the PI controller with positive damping feedback

Wcl(s) =
Kps+Ki

Js2 +Kps+Ki

Using the parameterization from before, the characteristic polynomial is

Js2 + (K + Jλ)s+Kλ

which, using Routh-Hurwitz criterion is stable if all of the coefficients have the same sign. So stable for

J > 0 K > 0 λ > 0

and then
r = W−1

c (s)xd ⇒ x→ xd

Completes algebraic part. Now go to analytic part.

Analytic Part

In the analytic part we take the control law that we had before when we assumed the plant parameters
where completely known, and replace the values of the plant parameters in the control law with estimates of
their values.

τ = Ĵ(t)e1(t) + B̂(t)x(t) +Ke2(t)

The plant is given by
Jẋ+Bx = τ

Jẋ = −Bx+ τ

substituting in the adaptive control law

Jẋ = −Bx+ B̂x+ Ĵe1 +Ke2

= B̃x+ Ĵe1 +Ke2
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where the parameter error on B is
B̃ = B̂ −B

so
ẋ =

1

J

(
B̃x+ Ĵe1 +Ke2

)
Time differentiating the error e we get

ė = ẋd − ẋ

= ẋd −
1

J

(
B̃x+ Ĵe1 +Ke2

)
Time differentiating e2

ė2 = ė+ λe

= ẋd −
1

J

(
B̃x+ Ĵe1 +Ke2

)
+ λe

= (ẋd + λe)− 1

J

(
B̃x+ Ĵe1 +Ke2

)
= e1 −

1

J

(
B̃x+ Ĵe1 +Ke2

)
=
J

J
e1 −

B̃x

J
− Ĵ

J
e1 −

Ke2

J

= −
(
Ĵ

J
− J

J

)
e1 −

B̃x

J
− Ke2

J

= − J̃
J
e1 −

B̃x

J
− Ke2

J

= −K
J
e2 −

1

J

(
B̃x+ J̃e1

)
which is error model 3. Using the following regressor

ω(t) =

[
−x
−e1

]
and parameter vector

θ̃ =

[
B̃

J̃

]
The error dynamics for ė2 can be expressed in the following block diagram.

θ̃>
1

Js+K

ω e2

Since the plant is a DC motor we know sgn(J) > 0. Goal now is to drive e2 → 0. We attempt to find
stable update laws using the following proposed Lyapunov function

V =
1

2

(
Je2

2 + J̃2 + B̃2
)
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Time differentiating

V̇ = Je2ė2 + J̃ ˙̃J + B̃ ˙̃B

V̇ = Je2

(
−K
J
e2 −

1

J

(
B̃x+ J̃e1

))
+ J̃ ˙̃J + B̃ ˙̃B

= −Ke2
2 − B̃xe2 − J̃e1e2 + J̃ ˙̃J + B̃ ˙̃B

And we can see that if we choose the following adaptive laws

˙̃J = e2e1

˙̃B = e2x

and substitute them into the V̇ equation

V̇ = −Ke2
2

Summary

Plant: Jẋ+Bx = τ

Control: τ = Ĵe1 + B̂x+Ke2

Error: e = xd − x
e1 = ẋd + λe

e2 = e+ λ

∫
e(τ)dτ

Parameterization: Kp = K + Jλ

Ki = Kλ

Update laws: ˙̂
J = γ1e2e1

˙̂
B = γ2e2x

Adaptive PI: Better Design

Example 50 Adaptive PI Control of a DC Motor This example applies the better adaptive
controller to a DC motor with unknown moment of inertia J = 2 and damping B = 0.5.
The reparameterized controller gains areK = 1 and λ = 1. For the nonadaptive controller,
where constant estimates of the motor parameters are used, the values are Ĵ = 0.5 and
B̂ = 1.
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Figure 30.1: Nonadaptive PI control of DC motor when Ĵ and B̂ are fixed.
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Figure 30.2: Adaptive PI control of DC motor.

30.1.3 More on the Parameterization of Gc(s)

Gc(s) =
K(s+ λ)

s
=

(K + Jλ)s+ kλ

s

reparameterization gives damping ratio which is less dependent on J .

ζ =

√
k

2
√
Jλ

versus

ζ =
k + Jλ

2
√
kJλ

30.2 Adaptive PID Control
The goal of this section is to design an adaptive PID controller for the following second order plant.

Gp(s) =
1

s(Js+B)
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where J , B, λ, and k are all positive. This is the same motor control problem that we used for the adaptive
PI controller, but we note now that the output x is the motor position instead of velocity. This control
architecture is represented by the following block diagram. The tracking error is

e = xd − x

In addition, we again assume both x and ẋ are available for measurement.

Gc(s)

Controller
1

s(Js+B)

Plant
τr + er x

−

Again we begin with the algebraic part: the solution for J , B known. This time we use a PID controller,
given in general by

Gc(s) = Kp +
Ki

s
+Kds

=
Kps+Ki +Kds

2

s

30.2.1 Adaptive PID Controller: Original Design
We can reduce number of control parameters from three to two by requiring both of the controller zeros

lie at the same place

Gc(s) =
K(s+ λ)2

s

We find the closed-loop transfer function Wcl from r to x to see under what conditions the system will be
stable.

Wcl(s) =
x

r
=

GcGp

1 +GcGp

=

K(s+λ)2

s
1

s(Js+B)

1 + K(s+λ)2

s
1

s(Js+B)

=
K(s+ λ)2

s2(Js+B) +K(s+ λ)2

Looking at the closed-loop characteristic equation, and using the Routh-Hurwitz stability criterion, the sys-
tem will be stable for

K <
Jλ

2
−B

λ > 0

Now that stability can be met, we want to figure out what r should be based on xd so that x → xd. This is
the goal of tracking. In the same way as with the PI controller, we consider a feed-forward controller which
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will, assuming all of the plant parameters are known exactly, cancel out the plant dynamics, allowing x to
perfectly track xd after transients.

W−1
cl (s) Gc(s)

Controller
1

s(Js+B)

Plant
τxd r + er x

−

where

W−1
cl (s) =

1 +GcGp

GcGp

=
1

GcGp
+ 1

= 1 + s(Js+B)G−1
c

and r is given by

r = W−1
cl (s)xd

= xd + [s(Js+B)Gc(s)
−1]xd

= xd +BGc(s)
−1sxd + JGc(s)

−1s2xd

using
ωd = Gc(s)

−1xd

the reference can be written as
r = xd +Bω̇d +Kω̈d

30.2.2 Adaptive PID Controller: Better Design
Before we proceed with the PID control design, we again want to improve our design as we did in the

case of the PI controller by using positive rate feedback, as shown in the following block diagram.

Gc(s)

Controller
1

s(Js+B)

Plant

B

r + er + τ x

ẋ

+−

Gc(s)

Controller

1
Js2

Plant
r + er x

−
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Algebraic Part

Now if we call the transfer function from r to x as Wcl(s), we have

Wcl(s) =
Gc(s)

1
Js2

1 +Gc(s)
1
Js2

=
Gc

Js2 +Gc

So now we put the feed-forward control on the block diagram above as

W−1
cl (s) Gc(s)

Controller
1

s(Js+B)

Plant

B

xd r + er + τ x

ẋ

+−

where

W−1
cl (s) =

Js2 +Gc

Gc

= 1 + Js2G−1
c

characteristic polynomial stable ∀B, J SHOW THIS HERE WITH ROUTH-HURWITZ

r = W−1
cl (s)xd

= xd + JG−1
c (s)ẍd

which is represented in the block diagram below

JG−1
c

Gc(s)

Controller
1

s(Js+B)

Plant

B

xd +

ẍd

+
r + er + τ x

ẋ

+−

which can be again redrawn as
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J

Gc(s)

Controller
1

s(Js+B)

Plant

B

xd +

ẍd

+
e + τ x

ẋ

+−

Reparameterize the controller as

Gc(s) =
(K + 2λJ)s2 + (2λK + λ2J)s+Kλ2

s

= (K + 2λJ)s+ (2λK + λ2J) +Kλ2 1

s

and then

Gce = (K + 2λJ)ė+ (2λK + λ2J)e+Kλ2

∫
edt

With structure of Gc(s)

τ = Bẋ+ Jẍd +Gce

= Bẋ+ Jẍd + (K + 2λJ)ė+ (2λK + λ2J)e+Kλ2

∫
edt

= Bẋ+ Jẍd +Kė+ 2λJė+ 2λKe+ λ2Je+Kλ2

∫
edt

= J(ẍd + 2λė+ λ2e) +Bẋ+K

(
ė+ 2λe+ λ2

∫
edt

)
using the following errors

e1 = ẍd + 2λė+ λ2e

e2 = ė+ 2λe+ λ2

∫
edt

the total control input is
τ = Je1 +Bẋ+Ke2

This completes the nominal PID design, or algebraic part.

Analytic Part

We now proceed with the analytic part by first replacing the plant parameter values in the control law
with their estimates.

τ = Ĵe1 + B̂ẋ+Ke2
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closed-loop

ẍ =
1

J
(−Bẋ+ τ)

=
1

J
(−Bẋ+ Ĵe1 + B̂ẋ+Ke2)

=
1

J
((B̂ −B)ẋ+ Ĵe1 +Ke2)

=
1

J
(B̃ẋ+ Ĵe1 +Ke2)

=
K

J
e2 +

1

J

(
Ĵe1 + B̃ẋ

)
where

B̃ = B̂ −B

and

ë = ẍd − ẍ

= ẍd −
K

J
e2 −

1

J

(
Ĵe1 + B̃ẋ

)
use definition of e2

ė2 = ë+ 2λė+ λ2e

= ẍd −
K

J
e2 −

1

J

(
Ĵe1 + B̃ẋ

)
+ 2λė+ λ2e

= e1 −
K

J
e2 −

1

J

(
Ĵe1 + B̃ẋ

)
= −K

J
e2 +

(
J

J
− Ĵ

J

)
e1 −

B̃

J
ẋ

= −K
J
e2 −

J̃

J
e1 −

B̃

J
ẋ

where
J̃ = Ĵ − J

and then some stuff don’t really know why this is here

ω =

[
−e1

ẋ

]
and

θ̃ =

[
J̃

B̃

]
Propose the following

V =
1

2

(
Je2

2 + J̃2 + B̃2
)
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Time differentiating

V̇ = Je2ė2 + J̃ ˙̃J + B̃ ˙̃B

V̇ = Je2

(
−K
J
e2 −

J̃

J
e1 −

B̃

J
ẋ

)
+ J̃ ˙̃J + B̃ ˙̃B

= −Ke2
2 − J̃e1e2 − B̃ẋe2 + J̃ ˙̃J + B̃ ˙̃B

And we can see that if we choose the following adaptive laws

˙̃J = e2e1

˙̃B = e2ẋ

and substitute them into the V̇ equation
V̇ = −Ke2

2

3rd order error model

Summary

PI was velocity control, PID was position control.

Plant: Jẍ+Bẋ = τ

Control: τ = Ĵe1 + B̂ẋ+Ke2

Error: e = xd − x
e1 = ẍd + 2λe+ λ2e

e2 = ė+ 2λe+ λ2

∫
edτ

Update laws: Ĵ = γ1

∫ t

0
e2(τ)e1(τ)dτ

B̂ = γ2

∫ t

0
e2(τ)ẋ(τ)dτ

Adaptive PID: Better Design

30.3 Adaptive Phase-Lead Control
The goal of this section is to design an adaptive phase-lead controller for the following second order

plant.

Gm(s) =
1

s(Js+B)

where J , B, are the motor inertia and damping, respectively, so we know they are positive. This is the same
motor control problem that we used for the adaptive PID controller, where the output x is the motor position.
This control architecture is represented by the following block diagram, where the controller is given by

Gc(s) =
k(s+ zc)

s+ pc
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where 0 < zc < pc. In addition, we again assume both x and ẋ are available for measurement.

k(s+zc)
s+pc

Gc(s)

1
s(Js+B)

Gm(s)

τr x, ẋ

Because we assumed that x and ẋ are measurable, we can take as the output

y = ẋ+ ax

where a > 0 and express the system block diagram as follows, where we define Gp(s) as

Gp(s) =
s+ a

s(Js+B)

giving the following block diagram

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

τr y

Now put a gain in the feedback path, to allow us to have additional control over the closed-loop system.

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

τ

θ0

r + y

−

ROOT LOCUS
CLP locations depend on B and J
stable ∀ J > 0 B > 0 k > 0 0 < zc < pc θ0 > 0 phase margin depend on J , B.
For desired pole-locations θ0 depends on J , B
k > 0 0 < zc < pc a > 0
Tracking: Goal: y → yd. The closed-loop transfer function from r to y is

Wcl(s) =
Gc(s)Gp(s)

1 + θ0Gc(s)Gp(s)

Assuming all the plant parameters are known, we want to design a feed-forward controller W−1
cl (s) to

give the appropriate reference signal r so that the transfer function from yd to y is unity. In block diagram
this is
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W−1
cl (s)

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

yd r + τ

θ0

y

−

we want
y

yd
=

r

yd

y

r
= 1

so

W−1
cl (s) =

1 + θ0Gc(s)Gp(s)

Gc(s)Gp(s)

and then

r

yd
=

1 + θ0Gc(s)Gp(s)

Gc(s)Gp(s)

=
1

Gc(s)Gp(s)
+ θ0

=

[(
s(Js+B)

s+ a

)
G−1
c (s)

]
+ θ0

giving

r =

[(
s(Js+B)

s+ a

)
G−1
c (s)

]
yd + θ0yd

defining
G−1
c (s)yd = ω̄d

and
1

s+ a
ω̄d = ωd

the reference signal r becomes

r = θ0yd + [s(Js+B)]ωd

= θ0yd + Jω̈d +Bω̇d

Fixed phase-lead design will be:

B

J

θ0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

yd

+
+

+

r + er τ

θ0

y

−
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To get the reference model, we assume the plant parameters are known, and replace θ0 with a nominal
value θ∗0 such that the resulting closed-loop system as shown below is SPR, and when θ0 = θ∗0 then we have
y = yd.

B

J

θ∗0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

yd

+
+

+

r + er τ

θ∗0

yd

−

Wm(s)

θ∗0 desired control parameter which produces desired closed-loop pole locations. IfB and J are unknown
this implies θ∗0 is unknown. So the output yd from the reference model is given as

yd = Wm(s)θ∗>ωD

where

θ∗ =
[
J B θ∗0

]>
and

ωD =
[
ω̈d ω̇d yd

]>
WHAT TO DO WHEN θ∗0 is unknown??????
So the transfer function Wm(s) from r to y is given by

Wm(s) =
Gc(s)Gp(s)

1 + θ∗0Gc(s)Gp(s)

=

k(s+zc)
s+pc

s+a
s(Js+B)

1 + θ∗0
k(s+zc)
s+pc

s+a
s(Js+B)

=

k(s+zc)(s+a)
(s+pc)(s(Js+B)

(s+pc)s(Js+B)
(s+pc)s(Js+B) +

θ∗0k(s+zc)(s+a)
(s+pc)s(Js+B)

=

k(s+zc)(s+a)
(s+pc)(s(Js+B)

(s+pc)s(Js+B)+θ∗0k(s+zc)(s+a)
(s+pc)s(Js+B)

=
k(s+ zc)(s+ a)

(s+ pc)s(Js+B) + θ∗0k(s+ zc)(s+ a)

To get the adaptive phase-lead block diagram, instead of using known and nominal values, we have to
use estimates of the plant parameters (since they are not known) and a time varying parameter θ0.
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B̂

Ĵ

θ0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

yd + e

+
+

+

er τ y

−

B̂

Ĵ

θ0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

e

+
+

+

er τ y

Using the following parameter error definitions, we split the parameter estimates into the actual and
error

θ̃0 = θ0 − θ∗0
J̃ = Ĵ − J
B̃ = B̂ −B

This gives the following block diagram representation
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B̃

J̃

θ̃0

J

B

θ∗0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

e

ω̈d

ω̇d

e = yd − y

+
+

+

+
+

+

+

+

τ y

Also, recognizing that e = yd − y, we can re-absorb a portion of the signal e which goes through θ∗0,
giving the following block diagram

B̃

J̃

θ̃0

J

B

θ∗0

k(s+zc)
s+pc

Gc(s)

s+a
s(Js+B)

Gp(s)

ω̇d

ω̈d

e

ω̈d

ω̇d

yd

+
+

+

+
+

+

+

+

+ τ

θ∗0

y

−

Wm(s)

So at this point, we can simplify the above plant representation as the following.

y = Wm(s)
(
θ̃>ω + θ∗>ωD

)
where

θ̃ =
[
J̃ B̃ θ̃0

]>
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and
ω =

[
ω̈d ω̇d e

]>
Defining the error as

ey = y − yd
and evaluating this error we get

ey = Wm(s)(θ̃>ω + θ∗>ωD)−Wm(s)θ∗>ωD

= Wm(s)θ̃>ω

use nominal phase-lead controlled nominal plant model to use as reference model.
|phaseWm(s)| < 90deg
positive correlation of u and y where u is input to y... if you were to take an integral (parsevals theorem)

integrate uy from 0 to t will be lower bounded by some number...
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Chapter 31

States Accessible Identification and Control

31.1 Preliminaries
In the adaptive control examples shown so far, a Lyapunov function has been used to prove stability

when an appropriate update law has been proposed. The cancellation of terms in the stability proof relied
on the fact that the terms were all scalar, and scalar multiplication is commutative, allowing the terms to
be rearranged and cancelled. In the case where the terms are vectors and matrices, the commutativity of
multiplication does not hold. Because of this, the trace operator must be used to allow us a way of still being
able to rearrange terms.

31.1.1 The Trace Operator
Trace is linear operator which operates on square matrices. The trace operator sums the diagonal entries

of its argument. Trace has the following properties for square matrices A, B, and scalars c.

• tr(A+B) = tr(A) + tr(B)

• tr(cA) = c · tr(A)

• tr(AB) = tr(BA)

• tr(A>) = tr(A)

For an n×m matrix C and an m× n matrix D, the following also holds.

• tr(CD) = tr(DC)

This allows more generally for the following to hold, where none of the matrices need be square, as long as
their product is square.

• tr(WXY Z) = tr(XY ZW )

These are called cyclic permutations, and follows exactly from the fifth property above. A final “property”
that is a consequence of this, is that the inner product of two n × 1 vectors a and b is the trace of the outer
product of a and b. That is

• tr(ab>) = b>a

This is because we use the rule that allows the two quantities to be switched, after which the n× n quantity
ab> becomes the scalar quantity b>a, and the trace of a scalar is just itself. This is essential for use in the
adaptive control of multi-input systems, as it allows vectors to be rearranged to facilitate coming up with
update laws. We will see examples of this in the following sections.
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31.2 Identification
Sec 3.4

ẋp = Apxp +Bpu

where xp ∈ Rn, u ∈ Rm, Ap ∈ Rn×n, Bp ∈ Rn×m. For identification assume:

1. u bounded u ∈ L∞
2. Ap Hurwitz

The identifier equation is written

˙̂xp = Amx̂p + (Âp −Am)xp + B̂pu

where x̂p ∈ Rn. The estimation and parameter errors are

e = x̂p − xp
Ãp = Âp −Ap
B̃p = B̂p −Bp

Note that the order of the terms in the error e is different when doing estimation versus control. That is, for
identification the error is e = x̂p−xp and for control the error is e = xp−xm. In general, on the right hand
side is the “target”. In the case of estimating we say target to mean that we want the estimation to follow
plant itself, versus in control xm is on the right because we want the plant xp to follow the reference model.
We then evaluate the error dynamics

ė = ˙̂xp − ẋp
= Amx̂p + (Âp −Am)xp + B̂pu−Apxp −Bpu
= Amx̂p + Âpxp −Amxp + B̂pu−Apxp −Bpu
= Am(x̂p − xp) + (Âp −Ap)xp + (B̂p −Bp)u
= Ame+ Ãpxp + B̃pu

Choose the following update laws

˙̃Ap =
˙̂
Ap = −Pex>p

˙̃Bp =
˙̂
Bp = −Peu>

with transpose

˙̃A>p = −xpe>P
˙̃B>p = −ue>P

and propose the following Lyapunov function

V (e, Ãp, B̃p) = e>Pe+ tr
(
Ã>p Ãp + B̃>p B̃p

)
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Time differentiating the Lyapunov function we get the following, where the trace operator allows cyclic
permutations of the operands and then we can remove the trace operator

V̇ = ė>Pe+ e>P ė+ tr
(

˙̃A>p Ãp + Ã>p
˙̃Ap + ˙̃B>p B̃p + B̃>p

˙̃Bp
)

= ė>Pe+ e>P ė+ 2tr
(

˙̃A>p Ãp + ˙̃B>p B̃p
)

= ė>Pe+ e>P ė+ 2tr
(

˙̃A>p Ãp
)

+ tr
(

˙̃B>p B̃p
)

= (Ame+ Ãpxp + B̃pu)>Pe+ e>P (Ame+ Ãpxp + B̃pu) + 2tr
(

˙̃A>p Ãp
)

+ tr
(

˙̃B>p B̃p
)

= e>(A>mP + PAm)e+ 2e>PÃpxp + 2e>PB̃pu+ 2tr
(
−xpe>PÃp

)
+ 2tr

(
−ue>PB̃p

)
= e>(A>mP + PAm)e+ 2e>PÃpxp + 2e>PB̃pu+ 2tr

(
−e>PÃpxp

)
+ 2tr

(
−e>PB̃pu

)
= e>(A>mP + PAm)e+ 2e>PÃpxp + 2e>PB̃pu− 2e>PÃpxp − 2e>PB̃pu

= −e>Qe

31.3 Direct Control

k Ap, bp

Am, bm

θ>

r

+

Xm

−

Xp

+

+

e

31.3.1 Single Input States Accessible

[
θ̃

k̃

]>
(sI −Am)−1bp

[
Xp

r

]
e

Lyapunov function
V (e, θ̃) = e>Pe+ θ̃>θ̃

Time differentiating

V̇ = ė>Pe+ e>P ė+
˙̃
θ>θ̃ + θ̃>

˙̃
θ
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31.3.2 States Accessible

Ẋm = AmXm + bmr

Ẋp = ApXp + bpu+

r

u

Xm

Xp

Case (a): Ap is unknownBp is known

ẋp = Apxp +Bpu

ẋm = Amxm +Bmr

Control law
u = θ(t)xp + k∗r

ẋp = Apxp +Bp (θxp + k∗r)

= (Ap +Bpθ)xp +Bpk
∗r

Matching conditions

Ap +Bpθ
∗ = Am

Bpk
∗ = Bm

Apand Am have n2 degrees of freedom. θ∗ has nm degrees of freedom. Matching condition harder than
controllability... more than just matching the eigenvalues... have to match eigenvectors too... The tracking
and parameter errors are

e = xp − xm
θ̃ = θ − θ∗

plant equation becomes

ẋp = Apxp +Bpθxp +Bpk
∗r

= Apxp +Bpθ
∗xp +Bpθ̃xp +Bpk

∗r

= (Ap +Bpθ
∗)xp +Bpθ̃xp +Bpk

∗r

= Amxp +Bpθ̃xp +Bmr

Error dynamics

ė = Amxp +Bpθ̃xp +Bmr −Amxm −Bmr
= Ame+Bpθ̃xp
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θ̃> (sI −Am)−1bp

Error Model 2

Xp e

Lyapunov function

V (e, θ̃) = e>Pe+ tr
(
θ̃>θ̃

)
Time differentiating

V̇ = ė>Pe+ e>P ė+ tr
(

˙̃
θ>θ̃ + θ̃>

˙̃
θ
)

= ė>Pe+ e>P ė+ tr
(

˙̃
θ>θ̃

)
+ tr

(
θ̃>

˙̃
θ
)

= ė>Pe+ e>P ė+ 2tr
(

˙̃
θ>θ̃

)
= (Ame+Bpθ̃xp)

>Pe+ e>P (Ame+Bpθ̃xp) + 2tr
(

˙̃
θ>θ̃

)
= e>(A>mP + PAm)e+ (Bpθ̃xp)

>Pe+ e>P (Bpθ̃xp) + 2tr
(

˙̃
θ>θ̃

)
= −e>Qe+ 2e>PBpθ̃xp + 2tr

(
˙̃
θ>θ̃

)
Propose the following update law

˙̃
θ = θ̇ = −B>p Pex>p

with transpose
˙̃
θ> = −xpe>PBp

Plugging into V̇

V̇ = −e>Qe+ 2e>PBpθ̃xp + 2tr
(
−xpe>PBpθ̃

)
= −e>Qe+ 2e>PBpθ̃xp + 2tr

(
−e>PBpθ̃xp

)
= −e>Qe

FINISH ME: All signals bounded

−
∫ ∞

0
V̇ = −

∫
−e>Qe = V (0)− V (∞) =

∫
e>Qe ≤ V (0)

and then ∫
e>λmin(Q)e =

∫
e>Qe ≤ V (0)

note e>Qe ≥ e>λmin(Q)e

‖e‖2L2
≤ V (0)

λmin(Q)
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ORM: Case (b)Ap unknownBp = BΛ whereB is known Plant and reference model

ẋp = Apxp +Bpu

ẋm = Amxm +Bmr

Control law
u = θ(t)xp + k(t)r

the plant equation becomes

ẋp = Apxp +Bp (θxp + kr)

= (Ap +Bpθ)xp +Bpkr

Matching conditions

Ap +BΛθ∗ = Am

BΛk∗ = Bm

Update laws

θ̇ = −B>Pex>p
k̇ = −B>Per>

errors

e = xp − xm
θ̃ = θ − θ∗

k̃ = k − k∗

plant equation becomes

ẋp = Apxp +Bpθxp +Bpkr

= Apxp +Bpθ
∗xp +Bpθ̃xp +Bpk

∗r +Bpk̃r

= (Ap +BΛθ∗)xp +BΛθ̃xp +BΛk∗r +BΛk̃r

= Amxp +BΛθ̃xp +Bmr +BΛk̃r

error

ė = Amxp +BΛθ̃xp +Bmr +BΛk̃r −Amxm −Bmr
= Ame+BΛθ̃xp +BΛk̃r

Lyapunov

V (e, θ̃, k̃) = e>Pe+ tr
(
θ̃>Λθ̃

)
+ tr

(
k̃>Λk̃

)
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Time differentiating

V̇ = ė>Pe+ e>P ė+ tr
(

˙̃
θ>Λθ̃

)
+ tr

(
θ̃>Λ

˙̃
θ
)

+ tr
(

˙̃
k>Λk̃

)
+ tr

(
k̃>Λ

˙̃
k
)

= ė>Pe+ e>P ė+ 2tr
(

˙̃
θ>Λθ̃

)
+ 2tr

(
˙̃
k>Λk̃

)
= (Ame+BΛθ̃xp +BΛk̃r)>Pe+ e>P (Ame+BΛθ̃xp +BΛk̃r) + 2tr

(
˙̃
θ>Λθ̃

)
+ 2tr

(
˙̃
k>Λk̃

)
= −e>Qe+ 2e>P (BΛθ̃xp +BΛk̃r) + 2tr

(
˙̃
θ>Λθ̃

)
+ 2tr

(
˙̃
k>Λk̃

)
= −e>Qe+ 2e>PBΛθ̃xp + 2e>PBΛk̃r + 2tr

(
˙̃
θ>Λθ̃

)
+ 2tr

(
˙̃
k>Λk̃

)
Use the following update laws

˙̃
θ = −B>Pex>p
˙̃
k = −B>Per>

with transpose

˙̃
θ> = −xpe>PB
˙̃
k> = −re>PB

Plugging these into the V̇ we get

V̇ = −e>Qe+ 2e>PBΛθ̃xp + 2e>PBΛk̃r − 2tr
(
xpe
>PBΛθ̃

)
− 2tr

(
re>PBΛk̃

)
= −e>Qe+ 2e>PBΛθ̃xp + 2e>PBΛk̃r − 2tr

(
e>PBΛθ̃xp

)
− 2tr

(
e>PBΛk̃r

)
= −e>Qe+ 2e>PBΛθ̃xp + 2e>PBΛk̃r − 2e>PBΛθ̃xp − 2e>PBΛk̃r

= −e>Qe

31.4 Tuning Gains and Closed-Loop Reference Model
From this point forward, all control will be assumed to be direct, unless stated otherwise.

31.4.1 Addition of Tuning Gain to Update Law
Briefly revisit the two adaptive control examples from last lecture: control of a scalar plant with one,

and two unknowns. It is worth mention here that in both cases the parameter updated laws that were selected
could have been modified to include a tuning gain, usually denoted by γ. The inclusion of this term requires
the Lyapunov function to be modified, but provides the control engineer a degree of freedom which can be
used to vary the learning rate of the system, allowing the time response of the adaptive system to be tuned.
The following example shows the changes that must be made to the update law and Lyapunov function for
the control of the scalar plant with two unknowns.
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Example 51 Addition of adaptive tuning gain to update law Consider the example of
adaptive control of the scalar plant with two unknowns. We now propose the following
candidate Lyapunov function, which contains the γ−1 term, where γ > 0

V (e, ˜̄θ) =
1

2
e2 +

1

2
γ−1|kp| ˜̄θ> ˜̄θ

Differentiating along system trajectories we get

V̇ (e, ˜̄θ) = eė+ γ−1|kp| ˜̄θ>
˙̄̃
θ

= e(ame+ kp
˜̄θ>φ) + γ−1|kp| ˜̄θ>

˙̄̃
θ

= ame
2 + ekp

˜̄θ>φ+ γ−1|kp| ˜̄θ>
˙̄̃
θ

We then propose the following parameter update law

˙̄̃
θ = −γsgn(kp)eφ

Substituting this into V̇ we get

V̇ (e, ˜̄θ) = ame
2 + ekp

˜̄θ>φ− |kp|sgn(kp)e
˜̄θ>φ

= ame
2 + ekp

˜̄θ>φ− ekp ˜̄θ>φ

= ame
2

As in the previous examples V̇ ≤ 0, and the stability proof follows previous direct adaptive
control examples, but now we have added the additional flexibility of a tuning parameter.

This tuning gain changes the learning rate and thus the time response of the system, as shown in the
following simulation examples.

Example 52 Adaptive control of a scalar plant when changing γ Consider the following
transfer function representations of a plant and reference model below where ap = 1,
kp = 2, am = −1, km = 1.

xp
u

=
kp

s− ap
xm
xd

=
km

s− am

The following plots show the time response of this adaptive system for three different values
of γ, showing the rapid oscillations associated with a large learning rate.
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Transient Performance

In finding a stable adaptive controller, we have only just introduced the first method by which the control
engineer has been able to exercise any design freedom. In all of our adaptive controllers thus far, we have
only proved boundedness and convergence of some signals to zero. In other words, we have shown only that
the error will go to zero in the limit as t → ∞, but we have said nothing about what the system response
will do between now and infinity. This section will introduce a method which provides additional flexibility
to tune the adaptive controller to provide a desirable transient response.
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31.4.2 Closed-Loop Reference Model Adaptive Control
The reference model used before is modified with the addition of an observer-like gain, ` < 0, and is

called closed-loop reference model, as opposed to the reference model we have seen before, which we call
open-loop reference models. The addition of this term allows the reference model response to deviate from
what was originally determined to be the desired response. Examples to follow will help make this more
clear. Note, however, that the tracking error is now denoted ec, where ec = xp−xcm. This is to differentiate
it from the “real”, or open-loop reference model error eo = xp − xom.

ẋcm = amx
c
m + bmr − `ec

Additionally, note that if ` = 0, the open-loop reference model is recovered.

Example 53 Direct adaptive control of a scalar system with two unknowns: Closed-
Loop Reference Model We again consider the scalar plant and reference model below,
where ap and bp are unknown, but the sign of bp is known.

ẋp = apxp + kpu

ẋcm = amx
c
m + kmr − `ec

Propose the following controller
u = θxp + kr

Block

k
kp
s−ap

Plant

km
s−am
am < 0

Reference Model

θ

`

r

+

+

xcm

−

xp
+

+

ec

+

Substituting in the control law, the plant equation can then be expressed as

ẋp = amxp + kpθxp + kpkr

or
ẋp = amxp + kpθ̄

>φ
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where the parameter and regressor are

θ̄> =
[
θ k

]
and φ> =

[
xp r

]
The tracking error is

ėc = ẋp − ẋcm
= amxp + bmr + bp

˜̄θ>φ− amxcm − bmr + `ec

= (am + `)ec + bp
˜̄θ>φ

We now propose the following candidate Lyapunov function in order to prove stability of
this adaptive system

V (ec, ˜̄θ) =
1

2
ec2 +

1

2
γ−1|bp| ˜̄θ> ˜̄θ

Differentiating along system trajectories we get

V̇ (ec, ˜̄θ) = ecėc + γ−1|bp| ˜̄θ>
˙̄̃
θ

= ec
(

(am + `)ec + bp
˜̄θ>φ

)
+ γ−1|bp| ˜̄θ>

˙̄̃
θ

= (am + `)ec2 + ecbp
˜̄θ>φ+ γ−1|bp| ˜̄θ>

˙̄̃
θ

We propose now the following adaptive parameter update law

˙̄̃
θ = −γsgn(bp)e

cφ

Substituting this into V̇ we get

V̇ (ec, ˜̄θ) = (am + `)ec2

And so we have V̇ ≤ 0.

Example 54 CRM control of a scalar plant Consider the following transfer function
representations of a plant and reference model below where ap = 1, kp = 2, am = −1,
km = 1.

xp
u

=
kp

s− ap
xm
xd

=
km

s− am
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Analyzing the Transient Performance of CRM Adaptive Control

In this section we will compute some analytical bounds on several quantities when using CRM adaptive
control on a scalar plant as shown in the example above.

L∞ norm of ec

Since V is positive definite and V̇ negative semi-definite, along system trajectories we have

V (ec(t), ˜̄θ(t)) ≤ V (ec(0), ˜̄θ(0)) <∞
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Expanding the left hand side we have

1

2
ec2 +

1

2
γ−1|bp| ˜̄θ> ˜̄θ ≤ V (ec(0), ˜̄θ(0))

and since 1
2γ
−1|bp| ˜̄θ> ˜̄θ ≥ 0 we can simplify this inequality to

1

2
ec2 ≤ V (ec(0), ˜̄θ(0))

which shows that ec(t) is bounded, with bound given by

(ec(t))2 ≤ 2V (ec(0), ˜̄θ(0))

which is

‖ec(t)‖2L∞ ≤ 2V (0)

L2 norm of ec

Integrating the Lyapunov time derivative∫ ∞
0

V̇ (ec(τ), ˜̄θ(τ))dτ = V (∞)− V (0)

Substituting in the expression for V̇ we get∫ ∞
0

(am + `)(ec(τ))2dτ = V (∞)− V (0)

Pulling out a negative, and with V (∞) ≥ 0 we get

−
∫ ∞

0
(am + `)(ec(t))2 = V (0)− V (∞) ≤ V (0)

Pulling the constant terms out of the integral

−(am + `)

∫ ∞
0

(ec(t))2 ≤ V (0)

Recalling that am < 0 and ` < 0 this can be written

−(am + `)

∫ ∞
0

(ec(t))2 = |am + `|
∫ ∞

0
(ec(t))2 ≤ V (0)

so we can write ∫ ∞
0

ec(t)2 ≤ V (0)

|am + `|
Substituting in the expression for V (0) from the Lyapunov function proposed above∫ ∞

0
ec(t)2 ≤

1
2e(0)2 +

|bp|
2γ

˜̄θ>(0)˜̄θ(0)

|am + `|
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which is the L2 norm of ec(t).

‖ec(t)‖L2 ≤
V (0)

|am + `|

and we can evaluate the initial condition of the Lyapunov function V (0) as

V (0) =
1

2
e(0)2 +

|bp|
2γ

˜̄θ>(0)˜̄θ(0)

L2 norm of k̇

From the update law, taking θ̂ apart into the θ and k entries, the update law for k is

k̇ = −γsgn(bp)e
cr

squaring both sides this becomes
|k̇|2 = γ2ec2r2

integrating both sides ∫ ∞
0
|k̇|2dτ =

∫ ∞
0

γ2ec(t)2r2dτ

Next, we can write an inequality by replacing the value of r(t) at every instant in time with its supremum
over all time. Thus the r term is no longer time dependent, and can be pulled out of the integral with γ
giving ∫ ∞

0
|k̇|2dτ ≤

∫ ∞
0

γ2 sup
t
|r(t)|2ec(t)2dτ = γ2‖r(t)‖2L∞

∫ ∞
0

ec(τ)2dτ∫ ∞
0
|k̇|2dτ ≤ γ2‖r(t)‖2L∞‖e

c(t)‖L2

We then recognize several terms as Lp norms, and the inequality becomes

‖k̇(t)‖2L2
≤ γ2‖r(t)‖2L∞‖e

c(t)‖2L2

‖k̇(t)‖2L2
≤
γ2‖r(t)‖2L∞V (0)

|am + `|

L2 norm of θ̇

L∞ norm of xm(t) The solution to the reference model ODE ẋcm = amx
c
m + bmr − `ec is

xm(t) = exp(amt)xm(0) +

∫ t

0
kmexp(am(t− τ))r(τ)dτ + (−`)

∫ t

0
exp(am(t− τ))e(τ)dτ

where the first two terms are
≤ ‖xom‖L∞
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Use Cauchy-Schwarz inequality for second term∫ ∞
0
|fg|dτ ≤

√∫ ∞
0
|f |2

√∫ ∞
0
|g|2

which can also be written
‖fg‖L1 ≤ ‖f‖L2‖g‖L2

so second term is

(−`)∞t
0exp(am(t− τ))e(τ)dτ ≤

√∫ t

0
(exp(2am(t− τ))dτ

√∫ ∞
0

e2dτ

‖xm(t)‖L∞ ≤ ‖xom‖L∞ +
|`|√

|2am|‖e‖L2

‖xm(t)‖2L∞ ≤ 2‖xom‖2L∞ +
`2

am
‖e‖2L2

‖xm(t)‖2L∞ ≤ 2‖xom‖2L∞ +
`2

am

V (0)

|am + `|

L2 norm of θ̇ From the update law, taking θ̂ apart into the θ and k entries, the update law for θ is

θ̇ = −γsgn(kp)exp

= −γsgn(kp)e(e+ xm)

squaring both sides
|θ̇|2 = γ2e2(e+ xm)2

We have the following inequality
(a+ b)2 ≤ 2a2 + 2b2

which we can see by expanding the following non-negative expression

0 ≤ (a− b)2 = a2 − 2ab+ b2

adding a2 + 2ab+ b2 to both sides we get

a2 + 2ab+ b2 ≤ 2a2 + 2b2

(a+ b)2 ≤ 2a2 + 2b2

Using this inequality
(e+ xm)2 ≤ 2e2 + 2x2

m

we can write

|θ̇|2 ≤ γ2e2(2e2 + 2x2
m)

≤ 2γ2e2e2 + 2γ2e2x2
m
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look at first part of expression on right hand side∫ ∞
0
|θ̇|2dτ ≤ 2γ2

∫ ∞
0

e2e2dτ

≤ 2γ2

∫ ∞
0
| sup

t
e(t)|2e2dτ

≤ 2γ2‖e(t)2‖L∞
∫ ∞

0
e2dτ

≤ 2γ2‖e(t)2‖L∞‖e(t)2‖L2

can say
V (t) ≤ V (0)

and so we also have
1

2
e(t)2 ≤ V (0)

so
e(t)2 ≤ 2V (0)

‖e‖2L2
≤ V (0)

|am + `|

≤ 2γ22V (0)
V (0)

|am + `|

‖θ̇‖L2 ≤
4γ2V (0)2

|am + `|
PART ONE ONLY. Now part 2:

‖θ̇‖L2 ≤ 2γ2

∫ ∞
0

e2x2
mdt

≤ 2γ2‖xm‖L∞
∫ ∞

0
e2dt

combining parts 1 and 2

≤ 2γ2

[
2‖xom‖2L∞ +

`2

am
‖e‖2L2

]
‖e‖2L2

≤
4γ2‖xom‖2L∞V (0)2

|am + `|
+

`2

|am|
V (0)2

|am + `|2

The following example shows the effect that ` has on the time response of a CRM-adaptive controlled scalar
system.
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Chapter 32

Output Feedback Adaptive Control

• rational

• analytic

• PR/SPR transfer functions

• KY Lemma

• Control of n∗ = 1 systems

– Unknown high frequency gain only

– Unknown high frequency gain and zeros

32.1 Definitions
rational function H(s)

H(s) =
P (s)

Q(s)

where P (s) and Q(s) are polynomials, where a polynomial is

P (s) = p0 + p1s+ · · ·+ pns
n

Let H(s) : C→ C is analytic ∀ s ∈ Ω means that H(s) has a derivative ∀ s ∈ Ω.

Example 55 Analytic Transfer Function Let H(s) = P (s)
Q(s) , H(s) is analytic ∀ s /∈ β

means all poles are in β. Analytic basically means where the poles are. Because differen-
tiating in Laplace domain is multiplication by s.

Definition 33 2.6.1 A rational function H(s) of the complex variable s = σ + jω is positive real (PR) if

1. H(s) is real ∀ real s

2. Re[H(s)] ≥ 0 ∀ Re[s] > 0
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Put some examples here

Definition 34 2.7 A rational function is SPR (strictly positive real) if H(s− ε) is PR for some ε ∈ R > 0.

Put some examples here

Definition 35 2.8 A rational function is SPR if and only if

1. H(s) is analytic in RE[s] ≥ 0. ie. H(s) is a stable transfer function.. poles in LHP.

2. Re[H(jω)] > 0 ∀ ω ∈ (−∞, infty)

3. If n∗ = 1 limω2→∞ ω
2Re[H(jω)] > 0

relative degree:
P (s)

Q(s)
=
· · ·+ pms

m

· · ·+ qnsn

n∗ = n−m
Lemma 3 2.4 - MKY Given γ ≥ 0, vectors b, c, A stable, L = L>

ẋ = Ax+Bu

Y = c>x+ d

Re[H(jω)] = Re[γ2 + c>(jωI − A)−1b] > 0 ∀ ω ∈ (−∞,∞) then ∃ε > 0 a vector q and P = P> > 0
s+

1. A>P + PA = −qq> − εL
2. Pb− c =

√
γq

Lemma 4 KY

ẋ = Ax+ bu

y = c>x

If c>(sI −A)−1b is SPR, then ∃P = P> > 0, Q = Q> > 0

1. A>P + PA = −Q
2. Pb = c

32.2 Output Feedback Control of Plants with Relative Degree 1
Relative degree of the plant Wp(s) is n∗ = 1

Wp(s) = kp
Zp(s)

Rp(s)

where kp is the HFG (high frequency gain) and Zp(s) and Rp(s) are monic polynomials. A monic polyno-
mial is one that is represented zmsm + zm−1s

m−1 + . . . where zm = 1.
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32.2.1 Case 1: kp Unknown Only
(page 186) We assume the sign of kp is known, but the value is unknown.

kmW (s)

k(t) kpW (s)

r

ym

−

u
yp
+

e1

kp unknown, known sign. Assume Wp(s) is stable, and W ′p(s) is SPR, where

Wp(s) = kpW
′
p(s)

= kp
Zp(s)

Rp(s)

The reference model is

Wm(s) = km
Zm(s)

Rm(s)

= km
Zp(s)

Rp(s)

The plant and reference model outputs are

yp = W ′p(s)kpk(t)r

= W ′m(s)kpk(t)r

and

ym = W ′m(s)kmr

And the matching condition is the value of k(t) called k∗ such that

k∗ =
km
kp

The output tracking error is

e1 = yp − ym
= W ′m(s)kpkr −W ′m(s)kmr

= W ′m(s)kp

[
k − km

kp

]
r

= W ′m(s)kp(k − k∗)r
= W ′m(s)kpk̃r
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where the parameter error is
k̃ = k − k∗

where W ′m(s) is SPR.

k̃ kp W (s)
r e1

Error Model 3

=⇒ ˙̃
k = −sign(kp)e1r

W (s) must be strictly positive real. =⇒

• Zm(s) must have roots in C−.

• Poles and Zeros of W (s) must be interlaced.

Time domain equivalent

ė = Amne+ bmnk̃r(t)

ey = c>mne

e1 = kpey

Which matches Lemma 5.1 on page 185, giving an update law of

˙̃
k = −sgn(kp)e1r

kp[c
>
mn[sI −Amn]−1bmn]k̃r

where this is equal to
kpW

′
m(s)k̃r(t)

Show stability using Lyapunov function

V = e>Pe+
1

|kp|
k̃2

Time differentiating

V̇ = e>A>mnPe+ e>PAmne+ k̃rb>mnPe+ e>Pbmnk̃r(t) +
2

|kp|
k̃

˙̃
k

= −e>Qe+ 2eyk̃r(t) +
2

|kp|
k̃

˙̃
k

= −e>Qe+ 2
e1sgn(kp)

|kp|
k̃r(t)− 2

|kp|
k̃sgn(kp)e1r

= −e>Qe

1. A>P + PA = −Q
2. Pbmn = cmn
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32.2.2 Case 2: kp Unknown, Zp(s) Unknown
(page 187)
plant of TF

yp(t) = kp
Zp(s)

Rp(s)
u(t)

where sgn(kp) was known, Zp(s) unknown, but with stable roots, and Rp(s) known, stable roots. We
choose Rm(s) = Rp(s) to make our lives easier.

km
Zm(s)
Rm(s)

Reference Model

Wc(s) km
Zp(s)
Rm(s)

Plant

r

ym

−

u
yp
+

e1

This is an adaptive controller in the forward loop. Don’t need feedback to change zero locations. (check
this).

kp unknown, but with known sign. Zp(s) unknown, minimum phase (stable zeros). Rp(s) is known and
stable.

Goal: kp
Zp(s)
Rp(s) → km

Zm(s)
Rm(s)

Pick Rm(s) = Rp(s)

Realization of Wc(s)

wc(s) =
km
kp

Zm(s)

Zp(s)

realized as dynamics
u = θ>1cw1 + kcr

ẇ1 = Λw1 + `u

where (Λ, `) controllable
λ(s) = det(sI − Λ) = Zm(s)

km
Zp(s)
Rm(s)

Plant

t∗1(s)
Zm(s)

r + u

+

Zm(s)− Zp(s) = t∗1(s)
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Wc(s) =
Zm(s)

Zp(s)
=

Zm(s)

Zm(s)− t∗1(s)
(32.1)

=
1

1− t∗1(s)
Zm(s)

(32.2)

kc =
Km

Kp

θ>1c(sI − Λ)−1` =
Zm(s)− Zp(s)

Zm(s)

matching conditions
K∗ = Kc

θ∗1 = θ1c

Realization of t1(s)/Zm(s)

km
Zp(s)
Rm(s)

Plant

Fn−1, gn−1θ∗1

r + u

ω1

+

Algebraic part:
t1(s)

Zm(s)
= θT1c(sI − Fn−1)−1gn−1 (32.3)

t1(s) = t∗1(s) =⇒ θ1c = θ∗1c (32.4)

Wm(s)

k∗

km
Zm
Rm

k∗

kp
zm
Rm

yp(t) = kpW
′
m(s)[k∗ + ˜̄θ>1 w̄1]

˜̄θ1 =

[
k − k∗
θ1 − θ∗1

]
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w̄1 =

[
r
w1

]
Reference

ym = kmw
′
m(s)r = kpw

′
m(s)k∗r

e1 = yp − ym

e1 = kpw
′
m(s)[˜̄θ>1 w̄1]

˙̄̃
θ1 = ˙̄θ1 = −sgn(kp)e1w̄1

Everything is in the book. Remark, book doesn’t use prime notation, so in the error equation they have

e1 =
kp
km

wm(s)[˜̄θ>1 w̄1]

Writing out in state-space form

ẋp = Apxp + bpuyp = kpc
>
p x

where the book calls h>p = kpc
>
p[

ẋp
ẇ

]
=

[
Ap bpθ

∗>
1

0 Λ + `θ∗>1

] [
xp
w1

]
+

[
bp
`

]
k∗r +

[
bp
`

]
˜̄θ>1 w1

yp = Kp[c
>
p 0]

x =

[
xp
w1

]
Reference Model [

ẋ∗p
ẇ∗

]
=

[
Ap bpθ

∗>
1

0 Λ + `θ∗>1

] [
x∗p
w∗1

]
+

[
bp
`

]
k∗r +

[
bp
`

]
˜̄θ>1 w1

ym = Kp[c
>
p10]>

xmn =

[
x∗p
w∗1

]
where the m means reference model and n means non-minimal

ẋmn = Amnxmn + bmnk
∗r

y − C>mnxmn
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and in book h>mn = Kp[C
>
p10]>

ym = KpC
>
mn(sI −Amn)−1bmnk

∗r

= Kpw
′
m − (s)k∗r

where w′m is SPR by design
ERRORS

e = x− xm

ė = Amne+ bmn
˜̄θ>1 w1

e1 = KpC
>
mne

Stability

V = e>Pe+
1

|kp|
˜̄θ> ˜̄θ

From KY Lemma we have

A>mnP + PAmn = −Q

and
Pbmn = cmn

V̇ = −e>Qe+ 2e>Pbmn
˜̄θ>w̄1 +

2˜̄θ
˙̄̃
θ

|kp|

V̇ = −e>Qe

extra work was to show internal states of system stable.
Output Feedback Control of Plants with Relative Degree 1 (Continued)
Last time plant of TF

yp(t) = kp
Zp(s)

Rp(s)
u(t)

where sgn(kp) was known, Zp(s) unknown, but with stable roots, and Rp(s) known, stable roots. We
chose last time Rm(s) = Rp(s) to make our lives easier.

32.2.3 Case 3: kp Unknown, Rp(s) Unknown
(page 190) As before, we assume the sign of kp is known.
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k kp
Zm(s)
Rp(s)

Wp(s)

Wc(s)

km
Zm(s)
Rm(s)

Wm(s)

r + u yp
+

ym

−

+

e1

The controller is covered in detail in Narendra, Annaswamy on page 190, and the important equations
are repeated here. The goal is to find a controller transfer function Wc(s), which has constant parameters θ0

and θ2,and feedforward gain k such that the closed-loop transfer function Wo(s) from r to yp is Wm(s). If
these parameters take the constant values k = k∗, θ0 = θ0c, and θ2 = θ2c then Wo(s) is given by

Wo(s) =
k∗kpZm(s)

Rp(s)
[
1− kp Zm(s)

Rp(s)Wc(s)
]

The controller is defined by

ω̇2 = Λω2 + `yp

u = kr + θ0yp + θ>2 ω2

When θ0 and θ2 are the constants θ0c and θ2c respectively, the controller can be written as

u = kr +Wc(s)yp

where

Wc(s) = θ0c + θ>2c(sI − Λ)−1`

=
D(s)

λ(s)

=
D(s)

Zm(s)

giving

Wo(s) =
k∗kpZm(s)

Rp(s)
[
1− kp Zm(s)

Rp(s)
D(s)
Zm(s)

]
If the following matching conditions are satisfied

k∗kp = km

and
Rp(s)− kpD∗(s) = Rm(s)
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then Wo(s) = Wm(s).
The block diagram below is another representation which shows the architecture for which the controller

and update laws will be found.

k

θ2

θ0

+ kp
Zm(s)
Rp(s)

Wp(s)

r

ω2

yp

u yp

Using the following parameter errors, this block diagram is further simplified.

k = ψ + k∗

θ2 = φ2 + θ∗2
θ0 = φ0 + θ∗0

By manipulating the inputs, and using the matching conditions, the following block diagram is obtained.

ψ

φ2

φ0

k∗

+ + kp
Zm(s)
Rp(s)

Wp(s)

D∗(s)
Zm(s)

r

ω2

yp

r

i u yp

32.2.4 Case 4: General n∗ = 1 Case
(page 192)
Assumptions

1. sign kp known

2. plant zeros of Zp(s) are stable (because we are doing pole-zero cancellation)

3. n∗ = 1
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GOAL: As before, want system to look like (follow this:)

km
Zm(s)

Rm(s)
= kmW

′
m(s) = Wm(s)

where W ′m(s) is SPR. The differential equations that completely describe the controller are given on page
194. If we express the control input to the plant using these equations, we get the following block diagram.

k

θ>1

θ0

θ>2

+ kp
Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

u yp

The signals ω1 and ω2 are given by the following differential equations, where Λ is a stable (n − 1) ×
(n− 1) matrix.

ẇ1 = Λw1 + `u

ẇ2 = Λw2 + `yp

We would like to show that if we replace time-varying adaptive values with fixed, nominal values, that such
values exist such that the closed-loop plant equation from r to yp can be made to be the same as the reference
model. The transfer functions for the blocks which represent the differential equations for ω1 and ω2 are

ω1 = (sI − Λ)−1`u

ω2 = (sI − Λ)−1`yp

And we can represent the inverse of the matrix (sI − Λ) as

(sI − Λ)−1 =
C ′(s)

det(sI − Λ)

where com(sI − Λ) = C ′(s) is the matrix of cofactors. We not also that each element of the matrix
C ′(s) is a polynomial of degree n− 2. If we define λ(s) = det(sI − Λ) we can write

(sI − Λ)−1 =
C ′(s)

λ(s)

and so
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ω1 =
C ′(s)

λ(s)
`u

ω2 = (sI − Λ)−1)`yp

Assume for now that the parameters in the block diagram above are fixed. Using these transfer functions
the block diagram can be represented as

k

C′(s)
λ(s) ` θ>1

θ0

(sI − Λ)−1` θ>2

+ kp
Zp(s)
Rp(s)

Wp(s)

r

u

yp

yp

ω1

ω2

u yp

Wrapping some of the signals into the block diagram

k + + kp
Zp(s)
Rp(s)

Wp(s)

r u

θ>1
C′(s)
λ(s) `

θ0 + θ>2 (sI − Λ)−1`

yp

Simplifying the feed-forward part, and expressing the feedback controller as

θ0 + θ>2 (sI − Λ)−1` =
D(s)

λ(s)

we get
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k +
λ(s)

λ(s)−θ>1 C′(s)
kp

Zp(s)
Rp(s)

Wp(s)

r u

D(s)
λ(s)

yp

Writing the closed-loop transfer function from r to y we have

yp
r

=

λ(s)

λ(s)−θ>1 C′(s)
kpZp(s)
Rp(s)

1− λ(s)

λ(s)−θ>1 C′(s)
kpZp(s)
Rp(s)

D(s)
λ(s)

=

λ(s)kpZp(s)

(λ(s)−θ>1 C′(s))Rp(s)

1− λ(s)kpZp(s)D(s)

(λ(s)−θ>1 C′(s))Rp(s)λ(s)

=
λ(s)kpZp(s)

(λ(s)− θ>1 C ′(s))Rp(s)− kpZp(s)D(s)

Recall that we can pick Λ to be any stable matrix we want.
C(s) has n− 1 degrees of freedom, but its a polynomial of order n− 2 but a polynomial of order 5 for

example, has 6 coefficients. D(s) has n degrees of freedom, and its polynomial order is n − 1. Zm(s) is
monic, so its highest power of s has a coefficient of unity, and it has n− 1 DOF, and its polynomial order is
n− 1. Because in a monic polynomial one of its coefficients is fixed.

Using the assumption that Zm(s) is a stable polynomial, we pick Λ such that λ(s) = Zm(s). We also
know by looking at the degrees of freedom in the polynomials that there is a particular fixed value of θ1,
which we call θ∗1 such that

λ(s)− θ∗>1 C ′(s) = Zp(s)

and we call
θ∗>1 C ′(s) = C∗(s)

and we know C∗(s) is order n−2, since it is taking a linear combination of elements of the cofactor matrix,
each of which has order n− 2 (or less?). So the output is expressed

yp
r

=
Zm(s)kpZp(s)

Zp(s)Rp(s)− kpZp(s)D(s)

=
Zm(s)kp

Rp(s)− kpD(s)

And finally, the degrees of freedom are available in θ0 and θ2 such that ideal values exist such that Rp(s)−
kpD

∗(s) = Rm(s).
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Wff (s) = Kc
λ(s)

λ(s)− C(s)

and

λ(s) = det(sI − Λ)

C(s) = θ>1c(sI − Λ)−1`

Wfb(s) =
D(s)

λ(s)
= θ0c + θ>2c(sI − Λ)−1`

yp =
KcKpZp(s)λ(s)

(λ(s)− C(s))Rp(s)−KpZp(s)D(s)

Choose λ(s) = Zm(s) which comes through choosing Λ

yp =
KcKpZp(s)Zm(s)

(Zm(s)− C(s))Rp(s)−KpZp(s)D(s)

C(s) has n− 1 degrees of freedom, but its a polynomial of order n− 2 but a polynomial of order 5 for
example, has 6 coefficients. D(s) has n degrees of freedom, and its polynomial order is n − 1. Zm(s) is
monic, so its highest power of s has a coefficient of unity, and it has n− 1 DOF, and its polynomial order is
n− 1. Because in a monic polynomial one of its coefficients is fixed.
∃C∗(s), D∗(s)
Matching conditions:
so we know the follow is true because of polynomial orders and stuff

Zm(s)− C∗(s) = Zp(s)

similarly for Rp(s)
Rp(s)−KpD

∗(s) = Rm(s)

third matching condition is

K∗ =
Km

Kp

substitute C∗(s), D∗(s), and K∗(s)

yp =
KcKpZp(s)Zm(s)

Zp(s)Rp(s)−KpZp(s)D(s)

=
KcKp(s)Zm(s)

Rp(s)−Kp(s)D(s)

=
KcKp(s)Zm(s)

Rm(s)

= Km
Zm(s)

Rm(s)

344



FOR GENERAL n∗ = 1 CASE:

k

θ>1

θ0

θ>2

+ kp
Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

u yp

Using the following parameter errors, this block diagram can be expressed as

k = ψ + k∗

θ1 = φ1 + θ∗1
θ0 = φ0 + θ∗0
θ2 = φ2 + θ∗2
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ψ

φ1

φ0

φ2

k∗

θ∗1

θ∗0

θ∗2

+ kp
Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

r

ω1

yp

ω2

u yp
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ψ

φ1

φ0

φ2

k∗

(sI − Λ)−1` θ∗>1

θ0

(sI − Λ)−1` θ∗>2

+ kp
Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

r

u

yp

yp

ω1

ω2

u yp

ψ

φ1

φ0

φ2

k∗

+ + + kp
Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

r

u

C∗(s)
λ(s)

D∗(s)
λ(s)

yp
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ψ

φ1

φ0

φ2

k∗

+ + λ(s)
λ(s)−C∗(s) kp

Zp(s)
Rp(s)

Wp(s)

r

ω1

yp

ω2

r

u

D∗(s)
λ(s)

yp

32.3 Output Feedback of Plants with n∗ ≥ 2
Finish this section
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Chapter 33

Robustness Modifications

33.1 Introduction
This chapter: robust adaptive control - with disturbances - first-order
uncertainties: non-parametric such as disturbances (constant, time-varying, input- disturbances, output-

disturbances) time-varying parameters unmodeled dynamics
This material is covered in Chapter 8 of the text.

33.1.1 Adaptive Control Without Disturbance
Consider the following plant, reference model, and control law as we have seen before at the beginning

of the class.

Plant: ẋp = apxp + u

Reference model: ẋm = amxm + r

Control input: u = θxp + r

(33.1)

(33.2)

(33.3)

where am < 0. With tracking error e = xp − xm, matching condition ap + θ∗ = am and parameter error
θ̃ = θ − θ∗ we get the error dynamics ė = ame + θ̃xp and use the Lyapunov function V = 1

2(e2 + θ̃2)

to show that choosing an update law θ̇ = −exp results in V̇ = −ame2 and ultimately limt→∞ e(t) = 0.
Together the differential equations that describe the system are

Tracking error: ė = −ame+ θ̃(e+ xm)

Update law: ˙̃
θ = −e(e+ xm)

(33.4)

(33.5)

The origin of these error dynamics is a stable equilibrium. The following example gives a numerical example
of the above stable error dynamics.

Example 56 No Disturbance: Numerical Simulation Consider the dynamics with dis-
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turbance in equations (33.4) and (33.5) above, with the following values.

am = 1

xm = 2

e(0) = 1

θ̃(0) = 5
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0
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t
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33.1.2 Adaptive Control With Disturbance

Consider again the same plant with bounded time-varying disturbance ν(t) ≤ νmax, and same reference
model and control law

Plant with disturbance: ẋp = apxp + u+ ν

Reference model: ẋm = amxm + r

Control input: u = θxp + r

(33.6)

(33.7)

(33.8)

where am < 0, tracking error e = xp − xm, matching condition ap + θ∗ = am and parameter error
θ̃ = θ − θ∗. Together the differential equations that describe this system with the disturbance d are

Tracking error: ė = ame+ θ̃(e+ xm) + ν

Update Law ˙̃
θ = −e(e+ xm)

(33.9)

(33.10)

And proposing the same candidate Lyapunov function we attempt to prove stability

V =
1

2
(e2 + θ̃2)
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Time differentiating we get

V̇ = eė+ θ̃
˙̃
θ

= ame
2 + eθ̃xp + eν − θ̃exp

= ame
2 + eν

≤ am|e|(−|e|+
|ν|
am

)

So V̇ is sign indefinite, and V̇ < 0 in a set which is not compact. ⇒ e, θ̃ need not be bounded. We can see
the unboundedness of the parameters using the following numerical example.

Example 57 Constant Disturbance: Numerical Simulation Consider the dynamics with
disturbance in equations (33.9) above, with the following values. The plot shows un-
bounded behavior of θ.

am = −1

xm = 2

ν = −5

e(0) = 1

θ̃(0) = 5
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Clearly this is undesirable, but it is not unreasonable to have input disturbances present in real system.
So, what do we do?

33.2 Exact Cancellation of Disturbances
Before we talk about how to cancel disturbances in adaptive control, let us first recall how input distur-

bances are dealt with in classical control.
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33.2.1 Disturbances in Classical Control
Consider the following plant and controller block diagram with disturbance ν.

Gc(s)

Controller

Gp(s)

Plant
r + er u +

ν

+ yp

−

Recall: system type with respect to reference is the number of free integrators in the loop. System type
with respect to disturbance is the number of free integrators in the controller. Depending on what the type
of the system is will tell us what kind of input disturbances we can reject. To reject a constant disturbance,
need to have system type 1 with respect to disturbance.

Goal design G so that closed-loop |y − r| → 0. G must have an integrator of some kind. Closed-loop
TF:

33.2.2 Exact Cancellation of a Constant Disturbance
We will use the idea of system type with respect to disturbance to design an adaptive controller for

a plant with an unknown constant disturbance as shown in the following block diagram. Take ν to be a
constant disturbance.

kp
s+ap

Plant
u +

ν

+ yp

The objective is to have the output of this plant track the output of a strictly positive real reference model
with transfer function

Wm(s) =
km

s+ am

In order to design a control system that can reject this constant disturbance ν, we propose putting a proper
transfer function in the forward loop that contains an integrator. We can use a PI controller as shown in the
following block diagram, where the zero location is arbitrary.

s+1
s

kp
s+ap

z1 u +

ν

+ yp

Note that this PI controller can be realized as shown in the following block diagram
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u

1
s+1

z1 +

+

With this integrator in the controller, we could use classical control methods to close the loop and have
a controller which would reject the constant disturbance ν. However, we need to consider that the plant
parameters are unknown, and come up with a way to match the closed loop system to the reference model.
Consider closing the loop as shown in the following block diagram

s+1
s

kp
s+ap

H(s)

r + z1 u +

ν

+ yp

+

Looking at the closed-loop transfer function T (s) we have

T (s) =

kp(s+1)
s(s+ap)

1− kp(s+1)NH
s(s+ap)DH

=
DHkp(s+ 1)

DH(s2 + aps)− kp(s+ 1)NH

and we need to make this look like the reference model, with the exception of the DC gain, which we can
handle by putting a feed-forward gain in front of r at the end. So, to make this look like our reference
model, H(s) must allow us the degrees of freedom to do a pole-zero cancellation leaving just kp in the
numerator. If H(s) was a constant, we wouldn’t have enough degrees of freedom. So H(s) should have
two parameters in the numerator since we need to match two coefficients, and to keep the transfer function
proper, the denominator of H(s) should have a pole. Use

H(s) =
θ(s+ 1) + d

s+ 1

This can be realized as shown in the following block diagram

d
s+1

θ

yp +

+

z2

Putting everything together we get the following block diagram
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k
u

1
s+1

kp
s+ap

1
s+1d

θ

r + +

ω1

+

ν

yp

ω2+

+

+

The total control input is

Control: u = kr + ω1 + dω2 + θyp (33.11)

Using this control, by writing down the closed-loop transfer function T (s) we can show that ideal parameters
k∗, d∗, and θ∗ exist which will match this system to the SPR reference model. The problem is that this
approach only works for constant disturbances (recall system type with respect to disturbance from classical
control). This idea can be extended to other types of disturbances (see page 299 in the text) but the drawback
of this approach is that the precise nature of the disturbance must be known a priori. In the following sections
we will look at alternatives to direct cancellation in order to ensure boundedness of errors while maintaining
a desired level of performance.

What to make G? Assume kp known. Closed-loop TF is See Chapter 8. (8.1 or 8.2)

Example 58 Constant Disturbance Case (i) page 303. Assume r = 0 and xm(0) = 0,
and so we have xm = 0, giving e = xp and let ν = −νmax. With these values equations
(33.9) become

ė = ame+ θ̃e− νmax

˙̃
θ = −x2

p

If xp /∈ L2 then θ̃ will be unbounded.
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Example 59 Constant Disturbance Case (ii) page 303. Consider r = r0, xm = x0 > 0
and ν(t) = −νmax where νmax > 0.

ė = ame+ θ̃(e+ x0)− νmax

˙̃
θ = −e(e+ x0)

two cases:

(i) ν0
am

> 0 θ̃ →∞

(ii) ν0
am

< 0 θ̃, e bounded

Want to prevent wind-up/drift in θ̃

θ̃ = −
∫ t

0
e(e+ xm)dt

˙̃
θ = −exp

source of wind-up

Equilibrium Points Consider equations (33.9) with the derivatives set to zero, and consider the case when
xm = 0 and ν = −νmax. This gives

0 = ame+ θ̃e− νmax

0 = −e2

Which we can see there are no equilibrium points.

33.3 Modifications for Bounded Disturbances
The following subsection showed what can happen when there is a (INPUT) disturbance present in the

plant. In this section we outline some modifications to the adaptive law that will be better...

1. σ-modification

2. Deadzone

3. e1-modification

4. Projection

make sure V̇ is not sign indefinite in an infinite channel. We will consider bounded disturbances |ν(t)| ≤
νmax.
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33.3.1 σ-Modification
See page 310. Consider again the same plant with disturbance, reference model, and control law

Plant with disturbance: ẋp = apxp + u+ ν

Reference model: ẋm = amxm + r

Control input: u = θxp + r

Error dynamics: ė = ame+ θ̃xp + ν

(33.12)

(33.13)

(33.14)

(33.15)

where again am < 0, e = xp−xm, ap+ θ∗ = am and θ̃ = θ− θ∗. We now propose the following modified
update law where σ > 0, which is known as σ-modification.

σ-Modification update law: ˙̃
θ = −exp − σθ̃ (33.16)

Proposing the candidate Lyapunov function V = 1
2(e2 + θ̃2) and time differentiating we get the following

V̇ = ame
2 + eν − σθ̃2

However, we can’t implement this proposed scheme, as we do not know what θ̃ is, so we have to modify
this update law as

˙̃
θ = −exp − σθ

= −exp − σ(θ̃ + θ∗)

The differential equations the describe the system now are

Tracking error: ė = ame+ θ̃(e+ xm) + ν

Update law: ˙̃
θ = −e(e+ xm)− σ(θ̃ + θ∗)

σ-Modification Error Dynamics

(33.17)

(33.18)

Plugging the error dynamics and update law into V̇ we get

V̇ = ame
2 + eν − σθ̃2 − σθ∗θ̃

From this expression, since am < 0, and σ > 0, if |e| and |θ̃| are large enough, V̇ will be negative, even
if the sign of e, θ̃ are unknown. We wish to find the region where |e| and |θ̃| are sufficiently large so that
V̇ is guaranteed to be negative. We create the inequality below by assuming some known upper bound
|ν| ≤ νmax.

V̇ = ame
2 + eν − σθ̃2 − σθ∗θ̃

≤ ame2 + |e|νmax − σθ̃2 − σθ∗θ̃
≤ ame2 + |e|νmax − σθ̃2 + σ|θ∗||θ̃|
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Bound Method 1: Box Since am < 0 we have am = −|am| and from the inequality above can write

V̇ ≤ −|am|
(
e2 − |e|dmax

|am|

)
− σ(θ̃2 − θ∗θ̃)

Looking at the two terms of V̇ separately we have the following inequality for the first term

−|am|
(
e2 − |e|dmax

|am|

)
= −|am|

(
1

2
e2 +

1

2
e2 − |e|dmax

|am|
+

1

2

d2
max

|am|2
− 1

2

d2
max

|am|2

)
= −|am|

(
1

2
e2 +

1

2

(
|e|2 − 2

|e|dmax

|am|
+

(
dmax

|am|

)2)
− 1

2

d2
max

|am|2

)
= −|am|

(
1

2
|e|2 +

1

2

(
|e| − dmax

|am|

)2

− 1

2

(
dmax

|am|

)2)
≤ −|am|

(
1

2
|e|2 − 1

2

(
dmax

|am|

)2)
= −|am|

1

2

(
|e|2−

(
dmax

|am|

)2)
and the following inequality for the second term

−σ
(
θ̃2 − |θ̃||θ∗|

)
= −σ

(
1

2
θ̃2 +

1

2
θ̃2 − |θ̃||θ∗|+ 1

2
|θ∗|2 − 1

2
|θ∗|2

)
= −σ

(
1

2
θ̃2 +

1

2

(
|θ̃|2 − 2|θ̃||θ∗|+ |θ∗|2

)
− 1

2
|θ∗|2

)
= −σ

(
1

2
|θ̃|2 +

1

2

(
|θ̃| − |θ∗|

)2 − 1

2
|θ∗|2

)
≤ −σ

(
1

2
|θ̃|2 − 1

2
|θ∗|2

)
= −σ1

2

(
|θ̃|2 − |θ∗|2

)
From these two inequalities, we have

V̇ ≤ −|am|
1

2

(
|e|2−

(
dmax

|am|

)2)
− σ1

2

(
|θ̃|2 − |θ∗|2

)
We can see that if we have both |e| > dmax

|am| and |θ̃| > |θ∗| then V̇ < 0. This gives the following region D

inside of which V̇ is sign indefinite.

D =

{
(e, θ̃)

∣∣∣∣|e| ≤ dmax

|am|
, |θ̃| ≤ |θ∗|

}

Bound Method 2: Ellipse We again consider the inequality for V̇ above, which is repeated here

V̇ ≤ −ame2 + |e|dmax − σθ̃2 + σ|θ∗||θ̃|
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Noticing the presence of the quadratic and linear terms in both e and θ̃, this inequality resembles an elliptical
region. Motivated by this and using

−am
(
|e| − dmax

2am

)2

= −am|e|2 + |e|dmax −
d2

max

4am

and

−σ
(
|θ̃| − |θ

∗|
2

)2

= −σ|θ̃|2 + σ|θ∗||θ̃| − σ|θ∗|2

4

the inequality for V̇ becomes

V̇ ≤ −ame2 + |e|dmax − σθ̃2 + σ|θ∗||θ̃|

= −ame2 + |e|dmax −
d2

max

4am
− σθ̃2 + σ|θ∗||θ̃| − σ|θ∗|2

4
+
d2

max

4am
+
σ|θ∗|2

4

= −am
(
|e| − dmax

2am

)2

− σ
(
|θ̃| − |θ

∗|
2

)2

+
d2

max

4am
+
σ|θ∗|2

4

We can now see from this inequality for V̇ that if the combined magnitude of the first two terms (which are
negative) is greater than the combined magnitude of the second two terms (which are both positive) V̇ < 0.
That is, if the following inequality holds

am(|e| − k1)2 + σ(|θ̃| − k2)2 > k3

where

k1 =
dmax

2am

k2 =
|θ∗|
2

k3 =
d2

max

4am
+
σ|θ∗|2

4

then V̇ < 0. We recognize the following set D

D = {(e, θ̃)
∣∣ am(|e| − k1)2 + σ(|θ̃| − k2)2 ≤ k3}

as an ellipse in the (e, θ̃) space.

Example 60 Constant Disturbance: Numerical Simulation Consider now the dif-
ferential equations for tracking and parameter error in (33.17) with disturbance and σ-
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modification. The following plots show the system response for different numerical values.

am = 1

ap = 4

d = 0

e(0) = 5

θ̃(0) = 5

xm = 0

σ = 1
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Equilibrium Points Consider equations (33.17) with the derivatives set to zero, and consider xm = 0 and
d = −dmax

0 = −ame+ θ̃e− dmax

0 = −e2 − σθ̃ − σθ∗

On Vector Systems

Ap unknown, Bp known.

ẋp = Apxp +Bpu+ d(t)

ẋm = Amxm +Bpr

u = θxp + r

θ̇ = −B>p Pex>p − σIn×nθ

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Daniel Wiese
3 % 2.153 - Adaptive Control
4 % Monday 14-April-2014
5 % example_sigmamod_v1.m
6 %-----------------------------------------------------------------------------------
7 % This script simulates and plots the response of an adaptive system with input
8 % disturbance. We can plot the response of the nominal system without sigmamod or
9 % disturbance (stable), turn the disturbance on without sigmamod and show

10 % unboundedness of error (unstable), and then use sigmamod to make stable.
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 clear all;
13 clc;
14 close all;
15 restoredefaultpath;
16 thismfile=dbstack('-completenames');
17 thisdir=fileparts(thismfile.file);
18 cd(thisdir);
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19 addpath(fullfile(fileparts(pwd)));
20 plotdir='Z:\Dropbox\Dan\DOCUMENTS\School\MIT\Dan_Latex\FIGURES\Adaptive_Class\Lec12_Robust';
21 addpath('Z:\Dropbox\Dan\DOCUMENTS\School\MIT\Codes\tools');
22 s=tf('s');
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %Set up simulation parameters
25 tsim=60;
26 am=-1;
27 nu=5;
28 sigma=1;
29 thetastar=-5; %=am-ap
30 %Initial conditions
31 ym=1;
32 e0=5;
33 thetatilde0=5;
34

35 %-----------------------------------------------------------------------------------
36 %Plotting parameters
37 AxesLineWidth=2;
38 PlotLineWidth=2;
39 PlotFontSizeTitle=16;
40 PlotFontSizeLab=16;
41 PlotFontSizeLegend=16;
42 AxesLineColor=[0.3,0.3,0.3];
43 AxesLineStyle='--';
44 emin=-10;
45 emax=10;
46 eplotmin=-10;
47 eplotmax=10;
48 ThetaTildePlotmin=-10;
49 ThetaTildePlotmax=10;
50

51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 %PLOT THE VECTOR FIELD
53 %Define the error differential equations
54 f = @(t,Y) [am*Y(1)+Y(2)*(Y(1)+ym)+nu;
55 -Y(1)*(Y(1)+ym)-sigma*(Y(2)+thetastar)];
56 %Set up a linspace grid over which to determine the direction of the vector Ydot
57 y1 = linspace(emin,emax,21);
58 y2 = linspace(emin,emax,21);
59 [x,y] = meshgrid(y1,y2);
60 %Preallocate the derivatives
61 edot=zeros(size(x));
62 phidot=zeros(size(x));
63 %Solve for the derivatives
64 t=0;
65 for ii = 1:length(y1)
66 for jj=1:length(y2)
67 Yprime = f(t,[y1(ii); y2(jj)]);
68 edot(ii,jj) = Yprime(1);
69 phidot(ii,jj) = Yprime(2);
70 end
71 end
72 %Normalize length of vectors
73 L=2*sqrt(edot.ˆ2+phidot.ˆ2);
74
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75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 %SIMULATE THE ERROR DYNAMICS IN TIME
77 sim('model_sigmamod_v1')
78

79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80 %% PLOT THE RESULTS
81 cd(plotdir)
82 figure(1)
83 quiver(x,y,edot'./L',phidot'./L',0,'color',[0.5,0.5,0.5]);
84 hold on
85 plot([0,0],[ThetaTildePlotmin,ThetaTildePlotmax],'color',[0 0 0])
86 plot([eplotmin,eplotmax],[0,0],'color',[0 0 0])
87 plot(eout.signals.values,thetatildeout.signals.values,'linestyle','-','color', ...
88 [0,0,0],'linewidth',PlotLineWidth);
89 plot(eout.signals.values(1),thetatildeout.signals.values(1),'linestyle','o', ...
90 'LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor',[0.5 1 0.6], ...
91 'MarkerSize',10);
92 plot(eout.signals.values(end),thetatildeout.signals.values(end),'linestyle','s', ...

...
93 'LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor',[1 0.49 0.63], ...
94 'MarkerSize',10);
95 xlim([eplotmin,eplotmax])
96 ylim([ThetaTildePlotmin,ThetaTildePlotmax])
97 daspect([1 1 1])
98 plot_title1=strcat('$x_{m}=$',sprintf('%0.0f',ym),', $\nu=$',sprintf('%0.0f',nu));
99 title(plot_title1,'interpreter','latex','FontSize',PlotFontSizeTitle)

100 xlabel('$e$','interpreter','latex','FontSize',PlotFontSizeLab,'interpreter','latex')
101 ylabel('$\tilde{\theta}$','interpreter','latex','FontSize',PlotFontSizeLab, ...
102 'interpreter','latex')
103 set(gcf,'Units','pixels');
104 set(gcf,'PaperUnits','inches','PaperPosition',[0 0 10 6]);
105 set(gcf,'PaperPositionMode','manual')
106 set(gcf,'InvertHardCopy','off');
107 set(gcf,'color',[1 1 1])
108 box on
109 print('-depsc','-r600','sim_r1nu5sigma1_phase.eps');
110

111 figure(2)
112 subplot(2,1,1)
113 plot(eout.time,eout.signals.values,'linewidth',PlotLineWidth,'color',[0 0 0])
114 % plot_title1=strcat('Tracking Error');
115 plot_title1=strcat('Tracking Error: ',' $x_{m}=$',sprintf('%0.0f',ym),', ...

$\nu=$',sprintf('%0.0f',nu));
116 title(plot_title1,'interpreter','latex','FontSize',PlotFontSizeTitle)
117 xlabel('$t$','interpreter','latex','FontSize',PlotFontSizeLab,'interpreter','latex')
118 ylabel('$e$','interpreter','latex','FontSize',PlotFontSizeLab,'interpreter','latex')
119 xlim([0 tsim]);
120 ylim([-4 6]);
121 box on
122 subplot(2,1,2)
123 plot(thetatildeout.time,thetatildeout.signals.values,'linewidth',PlotLineWidth, ...
124 'color',[0 0 0])
125 plot_title1=strcat('Parameter Error');
126 title(plot_title1,'interpreter','latex','FontSize',PlotFontSizeTitle)
127 xlabel('$t$','interpreter','latex','FontSize',PlotFontSizeLab,'interpreter','latex')
128 ylabel('$\tilde{\theta}$','interpreter','latex','FontSize',PlotFontSizeLab, ...
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129 'interpreter','latex')
130 xlim([0 tsim]);
131 ylim([-40 5]);
132 box on
133 set(gcf,'Units','pixels');
134 set(gcf,'PaperUnits','inches','PaperPosition',[0 0 10 6]);
135 set(gcf,'PaperPositionMode','manual')
136 set(gcf,'InvertHardCopy','off');
137 set(gcf,'color',[1 1 1]);
138 print('-depsc','-r600','sim_r1nu5sigma1_tres.eps');
139

140 cd(thisdir)
141

142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33.3.2 Dead-zone Modification
Consider the following plant with time-varying disturbance d(t) with |d(t)| ≤ dmax, reference model

and control law

ẋp = apxp + u+ d(t)

ẋm = amxm + r

u = θxp

where am < 0. With tracking error e = xp − xm, matching condition ap + θ∗ = am and parameter error
θ̃ = θ− θ∗ we get the error dynamics ė = ame+ θ̃xp + d and use the Lyapunov function V = 1

2(e2 + θ̃2).
Time differentiating V we get

V̇ = ame
2 + ed(t) + θ̃

˙̃
θ + θ̃exp

rewrite as

V̇ ≤ −|am||e|
(
|e| − dmax

|am|

)
+ θ̃

˙̃
θ + θ̃exp

Propose the following update law with dead-zone modification

˙̃
θ = θ̇ =

{
−exp if (e, θ̃) ∈ Dc

1

0 if (e, θ̃) ∈ D1

where the region D1 is

D1 =

{
(e, θ̃)

∣∣∣∣|e| ≤ dmax

|am|

}
There are two cases

(i) ∀(e, θ̃) ∈ Dc
1 then V̇ ≤ 0

(ii) ∀(e, θ̃) ∈ D1 then θ̇ = 0

33.3.3 e1 Modification
Finish this section
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33.3.4 Projection
See Eugene’s book starting on page 348.

The Gradient Operator

∇(f(x)) =
∂f

∂x1
e1 +

∂f

∂x2
e2 + · · ·+ ∂f

∂xn
en

Define gradient of a function f to always be a column vector? Or define the orientation of gradient
vector on the orientation of the input to function f : Rk → R?

∇(f(x)) =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]T
∇T(f(x)) = (∇(f(x)))T =

[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
Write∇Tf = ∇T(f(x)) and∇f = ∇(f(x))

Lemma 5 11.1 Let f(x) : Rn → R be a convex function. Then for any constant δ > 0 the following set
is convex:

Ωδ = {θ ∈ Rn|f(θ) ≤ δ}

Basically what this says is that the set Ωδ of all inputs θ to the convex function f(x) such that f(θ) ≤ δ
is convex.

Proof of Lemma 11.1 First define Ωδ = {θ ∈ Rn|f(θ) ≤ δ} which we want to prove is convex. Let
θ1, θ2 ∈ Ωδ. Then f(θ1) ≤ δ and f(θ2) ≤ δ by definition in order to belong to Ωδ.

Because the function f(x) is convex, for θ1 ≤ θ ≤ θ2, that is: θ = λθ1 + (1 − λ)θ2 ∀λ ∈ [0, 1] ⇒
f(θ) ≤ λf(θ1) + (1− λ)f(θ2).

Because f(θ1) ≤ δ and f(θ2) ≤ δ, then we can substitute into the inequality giving f(θ) ≤ λδ + (1−
λ)δ, giving f(θ) ≤ δ. Since f(θ) ≤ δ then θ ∈ Ωδ.

Figure 33.1: Lemma 11.1
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Lemma 6 11.2 Let f(x) : Rn → R be a differentiable function. Choose a constant δ > 0 and consider
the set Ωδ = {θ ∈ Rn|f(θ) ≤ δ} ⊂ Rn. Let θ∗, θb ∈ Ωδ. Assume θ∗ is an interior point of Ωδ, and θb is a
boundary point of Ωδ. That is

f(θ∗) < δ

f(θb) = δ

Then the following inequality holds

(θ∗ − θb)T∇f(θb) ≤ 0

This basically says that the gradient vector of a function f(x), evaluated at the boundary of a convex
level set generated by this function, always points away from the set.

Proof of Lemma 11.2 From the figure below, θb +m = θ∗, giving m = θ∗ − θb. Since f(x) is a convex
function, for θ = λθ∗ + (1− λ)θb, f(θ) ≤ λf(θ∗) + (1− λ)f(θb). That is

f(λθ∗ + (1− λ)θb) ≤ λf(θ∗) + (1− λ)f(θb)

rearranging
f(λθ∗ + θb − λθb) ≤ λf(θ∗) + f(θb)− λf(θb)

f(θb + λ(θ∗ − θb)) ≤ f(θb) + λ(f(θ∗)− f(θb))

f(θb + λ(θ∗ − θb))− f(θb) ≤ λ(f(θ∗)− f(θb))

Dividing both sides by λ ∈ (0, 1]

f(θb + λ(θ∗ − θb))− f(θb)

λ
≤ f(θ∗)− f(θb)

Since f(θ∗) < δ and f(θb) = δ, the inequality can be rewritten

f(θb + λ(θ∗ − θb))− f(θb)

λ
≤ f(θ∗)− f(θb) < 0

f(θb + λ(θ∗ − θb))− f(θb)

λ
< 0

Following the definition in Rudin page 217, and taking the following limit as λ → 0, usually called the
directional derivative and denoted Dmf gives

lim
λ→0

f(θb + λm)− f(θb)

λ
= ∇f(θb) ·m ≤ 0

where the inequality is no longer strict after taking the limit and we have

mT∇f(θb) ≤ 0

and substituting back in for m
(θ∗ − θb)T∇f(θb) ≤ 0
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Figure 33.2: Lemma 11.2

Convex Sets

For a convex function f(x) : Rn → R, by lemma 11.1 the following sets are convex. For θ ∈ Rn
belonging to the convex set Ω0

Ω0 = {θ ∈ Rn|f(θ) ≤ 0}

For θ ∈ Rn belonging to the convex set Ω1

Ω1 = {θ ∈ Rn|f(θ) ≤ 1}

Then it is obvious that Ω0 ⊆ Ω1.

The Projection Operator

The idea behind the projection operator is to subtract off the component of the vector y which is perpen-
dicular to the surface of the ball made by f(θ), and only keep the component which parallel to the surface,
thus enforcing the vector y will never leave the ball. The perpendicular component of y is found by using
the gradient at the ball’s surface: ∇f(θ). However, in order to ...

the vector y in the figure below by subtracting off the component of y which is normal to the surface of
the ball made by f(θ). We know the direction of this normal vector, ∇f(θ), but do not know the length.
Therefore the component which must be subtracted off of y is a scalar multiple of ∇f(θ). We denote this
projection Proj(θ, y).

366



Figure 33.3: Projection

The projection operator is defined as

Proj(θ, y) = y − α∇f(θ)

where α is a scalar that multiplies the gradient vector so as to exactly subtract off the component of y which
is perpendicular to the surface of the ball. Left multiplying both sides by∇Tf(θ)

∇Tf(θ)Proj(θ, y) = ∇Tf(θ)[y − α∇f(θ)]

with∇Tf(θ)Proj(θ, y) = 0

0 = ∇Tf(θ)y −∇Tf(θ)α∇f(θ)

α∇Tf(θ)∇f(θ) = ∇Tf(θ)y

The quantity∇Tf(θ)∇f(θ) = ‖∇f(θ)‖2 is scalar, and so α can be solved for

α =
∇Tf(θ)y

‖∇f(θ)‖2

Since α is scalar, we can write Proj(θ, y) = y −∇f(θ)α and substitute α in to get

Proj(θ, y) = y − ∇f(θ)∇Tf(θ)

‖∇f(θ)‖2
y

So the projection operator is given below in terms of θ and y, where the first condition requires that θ > 0
is not within the inner ball, and that the vector y is pointing outwardly. Otherwise, the projection operator
does nothing. Note the addition of the extra f(θ) term in the projection operator. This term is to dial the
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projection on gradually from when it first comes on until it is fully on. This extra term varies from 0 to 1,
turning up the projection in the annulus of the convex function f .

Proj(θ, y) =

{
y − ∇f(θ)∇Tf(θ)

‖∇f(θ)‖2 yf(θ), if f(θ) > 0 ∧ yT∇f(θ) > 0

y, otherwise

Example

Assumption: have an a-priori upper-bound for ‖θ∗‖.
Projection in the scalar case.

ė = −ame+ θ̃(e+ xm) + d

˙̃
θ = Proj(θ,−e(e+ xm))

(33.19)

(33.20)

Need a convex function to use projection. Use the following quadratic function

f(θ) = aθ2 − h

where h > 0 and a > 0. The projection operator becomes the following for the scalar case

Proj(θ, y) =

{
y(1− f(θ)), if f(θ) > 0 ∧ yf ′(θ) > 0

y, otherwise

where f ′(θ) = df
dθ .

Example 61 Constant Disturbance: Numerical Simulation Consider the dynamics with
disturbance in equations (33.19) above, with the following values. The plot shows the
projection operator bounding θ.

am = 1

ap = 4

xm = 2

d = −5

e(0) = 1

θ̃(0) = 5

θ∗ = −5
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Equilibrium Points Solve equation (33.19) with the time derivatives set to zero. Let xm = 0 and let
d = −dmax

0 = −ame+ θ̃e− dmax

0 = Proj(θ,−e2)

Considering first the case when projection is not active, there are no equilibrium solutions. Considering the
case when projection is active, we have

0 = −ame+ θ̃e− dmax

0 = −e2(1− aθ2 + h)

The only equilibrium solutions that exist are when

1− aθ2 + h = 0

giving

θ̃eq = ±
√

1 + h

a
− θ∗

and

eeq =
dmax

−am + θ̃eq

Γ-Projection

In adaptive control, the vector y which is projected onto the θ ball may sometimes need to scaled by a
factor Γ. It may seem intuitive to implement this as ΓProj(θ, y) or as follows

ProjΓ(θ,Γy) = Γy − α∇f(θ)

which does not work. The idea behind Γ-projection is the same as that for the standard projection, with
the inclusion of the scaling gain Γ in the algorithm in order to facilitate its use in an adaptive control law.
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θ∗

θbm = θ∗ − θb

Γα∇f(θ)
Proj

Γ
(θ,Γy)

Γy

Ω0

ΩA

{θ|f(θ) = 0}

{θ|f(θ) = 1}

Figure 33.4: Γ-Projection

The Γ−projection operator is defined as

ProjΓ(θ,Γy) = Γy − Γα∇f(θ)

And we note the conditions under which we want to consider the projection to be “active”. When the vector
θ is inside the inner ball, that is θ is such that f(θ) ≤ 0 we want projection to be off. Then, when θ is in the
annulus such that 0 < f(θ) ≤ 1 we want projection to only be active when the vector Γy is pointing in an
outwards sense. The outward pointing of Γy is given by when the following dot product is is positive

Γy · ∇f(θ) > 0

that is
(Γy)T∇f(θ) > 0

yTΓ∇f(θ) > 0

Again left multiplying both sides by∇Tf(θ)

∇Tf(θ)ProjΓ(θ,Γy) = ∇Tf(θ)(Γy − Γα∇f(θ))

∇Tf(θ)ProjΓ(θ,Γy) = ∇Tf(θ)Γy −∇Tf(θ)Γα∇f(θ)

with∇Tf(θ)ProjΓ(θ, y) = 0

0 = ∇Tf(θ)Γy −∇Tf(θ)Γα∇f(θ)

α∇Tf(θ)Γ∇f(θ) = ∇Tf(θ)Γy
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The quantity∇Tf(θ)Γ∇f(θ) is scalar, and so is invertible, and α can be expressed

α =
∇Tf(θ)Γy

∇Tf(θ)Γ∇f(θ)

Since α is scalar, we can write ProjΓ(θ,Γy) = Γy − Γ∇f(θ)α and substitute in α to get

ProjΓ(θ,Γy) = Γy − Γ
∇f(θ)∇Tf(θ)

∇Tf(θ)Γ∇f(θ)
Γy

And finally, the projection operator can expressed as follows, where we again note the addition of the extra
f(θ) to “dial on” projection smoothly within the annulus of the f(θ) ball.

ProjΓ(θ,Γy) =

{
Γy − Γ ∇f(θ)∇Tf(θ)

∇Tf(θ)Γ∇f(θ)
Γyf(θ), if f(θ) > 0 ∧ yTΓ∇f(θ) > 0

Γy, otherwise

Γ−Projection

Prove the following, where θ̃ = θ− θ∗ and where the convex function f is selected such that θ∗ ∈ {θ ∈
Rn|f(θ) < 0}. In implementation, this can be easily enforced by selecting the inner radius to be an order
of magnitude larger than the the largest expected uncertainty.

θ̃T
(
Γ−1ProjΓ(θ,Γy)− y

)
≤ 0

There are two cases that θ can take: either in the inner ball, or in the annulus. If θ is in the inner ball, that is
θ is such that f(θ) ≤ 0 then Proj(θ,Γy) = Γy and we have

θ̃T
(
Γ−1Γy − y

)
= 0

If θ is in the annulus, that is θ is such that 0 < f(θ) ≤ 1 then we look at the quantity

θ̃T
(
Γ−1ProjΓ(θ,Γy)− y

)
= −θ̃T

(
y − Γ−1ProjΓ(θ,Γy)

)
Substituting the definition of projection in

−θ̃T
[
y − Γ−1

(
Γy − Γ

∇f(θ)∇Tf(θ)

∇Tf(θ)Γ∇f(θ)
Γyf(θ)

)]
and simplifying

−θ̃T
[
y − Γ−1Γy − Γ−1Γ

∇f(θ)∇Tf(θ)

∇Tf(θ)Γ∇f(θ)
Γyf(θ)

]
more

θ̃T
(
∇f(θ)∇Tf(θ)

∇Tf(θ)Γ∇f(θ)
Γyf(θ)

)
more

θ̃T∇f(θ)
∇Tf(θ)Γyf(θ)

∇Tf(θ)Γ∇f(θ)

And using Lemma 11.2 we have that θ̃T∇f(θ) ≤ 0, the denominator is positive since Γ is positive defi-
nite, and the numerator is a positive scalar, as defined for projection to be “on” (the vector Γy must point
outwardly)

θ̃T
(
Γ−1ProjΓ(θ,Γy)− y

)
= θ̃T∇f(θ)

∇Tf(θ)Γyf(θ)

∇Tf(θ)Γ∇f(θ)
≤ 0
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Implementation of Projection in Adaptive Control

The projection operator is used in the adaptive control gain update law shown below to bound the
adaptive gain θ and prevent it from becoming too large.

θ̇ = Proj(θ,−ΓxeTPB1sign(Λ))

θ̇ = ProjΓ(θ,−ΓxeTPB1sign(Λ))

θ̃T[Γ−1ProjΓ(θ,Γy)− y] ≤ 0

Convex Function in Adaptive Law

In order to use the projection operator, a convex function f(x) is needed. Every norm is a convex
function. The basic convex function that will be used with the projection operator is the norm-squared. Two
representations of the convex function f(θ; θmax, ε) = f(θ) are shown below.

Function 1: Inner and Outer Radius

f(θ; θmax, ε) = f(θ) =
(1 + ε)‖θ‖2 − θmax

2

εθmax
2 Function 1

The value of θmax is such that f(θ : ‖θ‖ = θmax) = 1. This is the outer radius of ΩA which θ can never
exceed. ε sets the radius of Ω0 as θmax/(1 + ε).

f(θ) =
(1 + ε)‖θ‖2 − θmax

2

εθmax
2 = 1

(1 + ε)‖θ‖2 − θmax
2 = εθmax

2

(1 + ε)‖θ‖2 = (1 + ε)θmax
2

‖θ‖ = θmax

f(θ) =
(1 + ε)‖θ‖2 − θmax

2

εθmax
2 = 0

(1 + ε)‖θ‖2 − θmax
2 = 0

‖θ‖2 =
θmax

2

1 + ε

‖θ‖ =
θmax√
1 + ε
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Figure 33.5: Eugene’s convex function

Function 2: Inner Radius and Annulus

f(θ; θ0,∆) = f(θ) =
‖θ‖2 − θ0

2

2∆θ0 + ∆2
Function 2

The value of θ0 is the radius of the inner radius of Ω0, and ∆ is the width of the annulus ΩA. The value
of θ0 + ∆ thus gives the outer radius of ΩA such that f(θ : ‖θ‖ = θ0 + ∆) = 1. This is value which θ can
never exceed.

f(θ) =
‖θ‖2 − θ0

2

2∆θ0 + ∆2
= 1

‖θ‖2 − θ0
2 = 2∆θ0 + ∆2

‖θ‖2 = θ0
2 + 2∆θ0 + ∆2

‖θ‖2 = (θ0 + ∆)2

‖θ‖ = θ0 + ∆

f(θ) =
‖θ‖2 − θ0

2

2∆θ0 + ∆2
= 0

‖θ‖2 − θ0
2 = 0

‖θ‖ = θ0
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Figure 33.6: Convex function 2

Gradient of a Convex Function

For a convex function of the form f(x) = a‖x‖2 − b where 0 < a, b ∈ R the gradient is computed as
follows:

∇f(x) = a∇
(
‖x‖2

)
= a∇(xTx)

xTx = x1
2 + x2

2 + · · ·+ xn
2

∇(x1
2 + x2

2 + · · ·+ xn
2) =

∂

∂x1
x1

2k̂1 +
∂

∂x2
x2

2k̂2 + · · ·+ ∂

∂xn
xn

2k̂n

∇(xTx) = 2
[
x1 x2 . . . xn

]T
∇f(x) = 2ax
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Chapter 34

Uniform Asymptotic Stability and
Parameter Convergence and Error Models

(Chapter 2): stability (asymptotic) not just error e but also parameter error to zero Stability Uniform
asymptotic stability Parameter convergence Persistent excitation Linear systems Linear Time Invariant (LTI)

ẋ = Ax

where A is a matrix. Solution

x(t) = eA(t−t0)x(t0)

A = V ΛV −1

eAt = V eΛtV −1

stability determined by Λ solutions determined by Λ Linear Time Varying (LTV)

ẋ = A(t)x

Still a transition matrix Φ(t, t0) where

x(t) = Φ(t, t0)x(t0)

Remember: Φ(t, t0) exists, and it is not always equal to e
∫ t
t0
A(τ)dτ and so eigenvalues do not mean any-

thing. Eigenvalues of A(t) do not provide clues for stability. (example: time varying matrix with constant
eigenvalues in LHP but LTV system is unstable. x(t) → ∞) in scalar case ẋ = a(t)x then x(t) =
exp{

∫ t
t0
a(τ)dτ}x(t0) aside: Almost time-invariant systems

ẋ =
[
A+B(t)

]
x

basically B(t) is small. Three cases

(i) ‖B(t)‖ → 0 as t→∞

(ii) B(t) ∈ L1
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(iii) B(t) ∈ L2

If A is Hurwitz x(t)→ 0 as t→∞.

34.1 Error Models
Return to adaptive systems had two error models we discussed

(i) Error model 1

(ii) Error model 3

34.1.1 Error model 1
In the case where the input u is related to the output e through algebra alone, the result is error model 1.

In this case, there is no differential equation representation for e, and so the only error equation is for θ̃. In
error model 1, e is thus not a state, and so we don’t need it in the Lyapunov function when proving stability.

Scalar Case

Consider the following scalar algebraic system. We wish to identify the parameter θ in the following
diagram, where the input is u and the output y. An estimator is proposed, which, when given input u will
generate the output ŷ.

θ

θ̂

u

y

ŷ

The better the estimate of the parameter is, the closer the output ŷ will be to y. It is this difference that
will be used to drive the parameter estimate, as shown in the following figure.

θ

θ̂

u

y

ŷ

−

+

e

The output from the parameter and estimate can be represented
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θ(t)u(t) = y(t)

θ̂(t)u(t) = ŷ(t)

with tracking error and parameter error

Tracking Error: e = ŷ − y
Estimation Error: θ̃ = θ̂ − θ

(34.1)

(34.2)

the equations above are subtracted, giving

Error Model 1: e(t) = θ̃(t)u(t) (34.3)

Which is represented with the following block diagram

θ̃
u y

If we multiply both sides by u(t) we get

e(t)u(t) = θ̃(t)u(t)2

which will indicate the sign of the error θ̃ since the signs of e(t) and u(t) are known. So, a natural choice
is to pick the adaptive law as follows. This gives an expression for the estimation error dynamics which
depends explicitly on the input u. This expression is important, as it will allow us to see how any given
input will influence the convergence of the estimation error, and thus our ability to correctly estimate the
unknown parameter.

Update Law/Estimation Error Dynamics: ˙̃
θ = −u2(t)θ̃ (34.4)

Using the expression for e from the error model 1 above we have

Parameter Update Law: ˙̃
θ = −e(t)u(t) (34.5)

This is a recursive law? Gradient

∂J

∂θ̂
∝ [−uθ̂ + y]u = [−u(θ̂ − θ)]u

= −(uθ̃)u

= −eu
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Check stability with the proposed update law by using following candidate Lyapunov function

V (θ̃) =
1

2
θ̃2

We want θ̃ → 0 as t→∞. Time differentiating V we have

V̇ = θ̃
˙̃
θ

= −θ̃eu
= −e(θ̃u)

= −e2 ≤ 0

Thus V is non-increasing. Stable, θ̃ bounded.

(i) u is constant, not equal to zero, then θ̃(t) → 0 as t → ∞ convergence is uniform in t⇒ uniformly
asymptotically stable.

(ii) u(t) → 0 θ̃(t) = e
−

∫ t
t0
u2(τ)dτ

θ̃(t0) so for this to go to zero then the integral needs to go to zero. If
this integral tends to infinity as t tends to infinity then θ̃(t) goes to zero. If the integral is finite, then
θ̃(t) = cθ̃(t0). If finite, don’t have UAS, if infinite, have UAS.

(iii) The following property is defined as persistent excitation∫ t

t0

u2(τ)dτ ≥ ct

θ̃(t) = e
−

∫ t
t0
u2(τ)dτ

θ̃(t0)

‖θ̃(t)‖ ≤ e−ct‖θ̃(t0)‖ → 0 as t→∞

Vector case

θ>

θ̂>

u

y

ŷ

−

+

e

The output from the parameter and estimate can be represented

θ>(t)u(t) = y(t)

θ̂>(t)u(t) = ŷ(t)
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As in the scalar case, the tracking error and parameter error are given by

Tracking Error: e = ŷ − y
Estimation Error: θ̃ = θ̂ − θ

(34.6)

(34.7)

The equations above are subtracted, giving

Error Model 1: e(t) = θ̃>(t)u(t) (34.8)

Which is represented by the following block diagram

θ̃>
u e

Propose

˙̃
θ = −(ŷ − y)u

= −(θ̂>(t)u(t)− θ>u(t))u(t)

= −θ̃>(t)u(t)u(t)

But

Estimation Error Dynamics: ˙̃
θ = −u(t)u>(t)θ̃ (34.9)

Check stability using following candidate Lyapunov function

V (θ̃) =
1

2
θ̃>θ̃

want θ̃ → 0 as t→∞. Taking the time derivative of V̇ we have

V̇ = θ̃>
˙̃
θ

= −(θ̃>u)(u>θ̃)

= −(θ̃>u)2

= −e2

V is non-increasing. Look back at the estimation error dynamics. We can write this expression by using a
matrix as

˙̃
θ = −A(t)θ̃
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where A(t) = u(t)u>(t). Like eigenvalues and eigenvectors... rank 1. Regressor is u that determines
direction of adaptation. If A(t) satisfies (persistent excitation of u)

∫ t+T
t A(τ)dτ ≥ αI for some α, I and

∀t ≥ t0 then θ̃(t)→ 0 as t→ == [U>U ] being non-singular.

˙̂
θ ∝ 2[y − θ̂u]u = −eu

˙̃
θ = A(t)θ̃

A(t) = −uu>

Goal θ̃(t)→ 0 (Parameter convergence)

⇒ uniform asymptotic stability of ˙̃
θ = A(t)θ̃ is needed

(i) u(t) is constant. Assume u(t) ∈ R2 ˙̃
θ = c(−c>θ̃)

θ̃(t) does not go to 0 as t→∞
We say that u(t) ∈ Rn is persistently exciting if...

34.1.2 Persistent Excitation
In this subsection, we will consider error model 1, with the estimation error dynamics given by (34.9).

We will look at how the properties of u affect the convergence of this error.
The equilibrium of the estimation error dynamics (34.9) are uniformly asymptotically stable if and only

if the input u : R+ → Rn satisfies the following inequality for positive constants t0, T0, and α. This is
equation (6.8) in the book on page 246.

1

T0

∫ t+T0

t
u(τ)u>(τ)dτ ≥ αI ∀t ≥ t0

An equivalent definition is that of (6.9) on page 247 that states that the equilibrium of the estimation
error dynamics (34.9) are uniformly asymptotically stable if and only if for every unit vector w ∈ Rn the
following inequality is satisfied

1

T0

∫
‖u>(τ)w‖dτ ≥ ε0 > 0 ∀t ≥ t0

for positive constants t0, T0, and ε0.
u(t) = c1 for t0 ≤ t ≤ t0 + T1 u(t) = c2 for t0 + T1 ≤ t ≤ t0 + T0

Recall that when using the update law in (xx) the proposed Lyapunov function had time derivative
V̇ (t) = −

(
u>(t)θ̃(t)

)2. If we integrate V̇ from some initial time to some later time +T0 we get∫ t0+T0

t0

V̇ (τ)dτ = V (t0 + T )− V (t)

=

∫ t0+T0

t0

(
u>(τ)θ̃(τ)

)2
dτ

=

∫ t0+T0

t0

‖u>(τ)θ̃(τ)‖2dτ
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If this integral is ≥ ε1∀t ≥ t0 then the error dynamics (34.9) are uniformly asymptotically stable. Next we
need to use the Cauchy-Schwarz inequality, given below.

Cauchy-Schwarz Inequality:
(∫ b

a
f(τ)g(τ)dτ

)2

≤
∫ b

a

(
f(τ)

)2
dτ

∫ b

a

(
g(τ)

)2
dτ (34.10)

Let f(τ) = ‖u>(τ)θ̃(τ)‖, g(τ) = 1, a = t, and b = t+ T0. Substituting this into this inequality we get(∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

)2

≤
∫ t+T0

t
‖u>(τ)θ̃(τ)‖2dτ

∫ t+T0

t
dτ

Integrating part of the right hand side and dividing since T0 > 0 won’t flip the direction of the inequality we
have

1

T0

(∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

)2

≤
∫ t+T0

t
‖u>(τ)θ̃(τ)‖2dτ

Putting the pieces so far together we have

V (t0 + T )− V (t) ≥ 1

T0

(∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

)2

Now we can multiply through by T0 and take the square root of both sides to get

∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ ≤

√
T0

√
V (t0 + T0)− V (t)

Now we will use a special form of the Minkowski inequality for p = 1. This inequality is

Minkoski Inequality:
∫
‖f(τ) + g(τ)‖dτ ≤

∫
‖f(τ)‖dτ +

∫
‖g(τ)‖dτ (34.11)

Now notice that the integrand of the above can be written as

‖u>(τ)θ̃(τ)‖ = ‖u>(τ)
(
θ̃(t0)− θ̃(t0) + θ̃(τ)

)
‖

Also note that ‖ − h(τ)‖ = ‖h(τ)‖ for any h(τ), and to use the Minkowski inequality define

f(τ) = u>(τ)θ̃(τ)

g(τ) = u>(τ)
(
θ̃(t0)− θ̃(τ)

)
with

f(τ) + g(τ) = u>(τ)θ̃(t0)

Plugging this into the Minkowski inequality we have∫
‖u>(τ)θ̃(t0)‖dτ ≤

∫
‖u>(τ)θ̃(τ)‖dτ +

∫
‖u>(τ)

(
θ̃(t0)− θ̃(τ)

)
‖dτ
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Rearranging

∫
‖u>(τ)θ̃(t0)‖dτ −

∫
‖u>(τ)

(
θ̃(t0)− θ̃(τ)

)
‖dτ ≤

∫
‖u>(τ)θ̃(t0)‖dτ

Now look at the terms on the left hand side. Finish this reasoning later.

‖θ̃(t0)‖T0ε3 ≤
∫
‖u>(τ)θ̃(t0)‖dτ

and

umaxT0

∫ t1+T0

t1

‖ ˙̃
θ‖dτ ≥

∫
‖u>(τ)

(
θ̃(t0)− θ̃(τ)

)
‖dτ

With this we get

‖θ̃(t0)‖T0ε3 − umaxT0

∫ t1+T0

t1

‖ ˙̃
θ‖dτ ≤

∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

If we substitute our expression for ˙̃
θ(τ) = −u(τ)u>(τ)θ̃(τ) into the second term on the left hand side

umaxT0

∫ t1+T0

t1

‖ ˙̃
θ‖dτ = umaxT0

∫ t1+T0

t1

‖ − u(τ)u>(τ)θ̃(τ)‖dτ

And since u>(τ)θ̃(τ) is a scalar, using the property of norms that for scalars c and vectors v that ‖c‖‖v‖ =
‖cv‖ we can write the integrand as ‖ − u(τ)u>(τ)θ̃(τ)‖ = ‖u(τ)u>(τ)θ̃(τ)‖ = ‖u(τ)‖‖u>(τ)θ̃(τ)‖.
Putting this into the integral

umaxT0

∫ t1+T0

t1

‖ ˙̃
θ‖dτ = umaxT0

∫ t1+T0

t1

‖u(τ)‖‖u>(τ)θ̃(τ)‖dτ

And we can write the inequality that ‖u(τ)‖‖u>(τ)θ̃(τ)‖ ≤ umax‖u>(τ)θ̃(τ)‖ Putting this into the integral
we have

umaxT0

∫ t1+T0

t1

‖ ˙̃
θ‖dτ ≤ u2

maxT0

∫ t1+T0

t1

‖u>(τ)θ̃(τ)‖dτ

Finally

‖θ̃(t0)‖T0ε3 − u2
maxT0

∫ t1+T0

t1

‖u>(τ)θ̃(τ)‖dτ ≤
∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

which we can write

‖θ̃(t0)‖T0ε3 ≤
(
1 + u2

maxT0

) ∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ

rearranging

‖θ̃(t0)‖T0ε3

1 + u2
maxT0

≤
∫ t+T0

t
‖u>(τ)θ̃(τ)‖dτ
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Combining this with what we had way above

‖θ̃(t0)‖T0ε3

1 + u2
maxT0

≤
√
T0

√
V (t0 + T0)− V (t)

Squaring both sides

≥ ε0T0‖θ̃(t0)‖ − u2
maxT0

∫ t0+T0

t0

‖u>(τ)θ̃(τ)‖dτ

≥ ε0T0

1 + u2
maxT0

√
2V (t0)

⇒ V (t0 + T )− V (t0) ≤ − 2ε2
0T0

(1 + u2
maxT0)2

V (t0)

V (t0 + T ) ≤ γV (t0)

for 0 < γ < 1⇒ V (t)→ 0 as t→∞.

34.1.3 Error Model 3

θ̃> W (s)
ω e

ė = Ae+ bω>θ̃

e1 = h>e

˙̃
θ = −e1ω

h>(sI −A)−1b = W (s)

[
ė
˙̃
θ

]
=

[
A bω>

−ωh> 0

] [
e

θ̃

]
ẋ = A(t)x

e = x1 θ̃ = x2

V =
1

2
(x>1 Px1 + x>2 Px2)

V̇ = −1

2
x>1 Qx1 ≤ 0

ẋ = A(t)x is UAS if T0, ε0, and δ0 exist so that
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1

T0

∫ t2+δ0

t2

ω>(τ)wdτ‖ ≥ ε0

for all t ≥ t0 [t2, t2 + δ0] ⊂ [t, t+ T0]
Error model 3

˙̃
θ = −e1ω = −ωW (s)[ω>θ̃]

Conditions on ω so that θ̃(t)→ 0.
Error model 2 is the same as error model 3, but when all the states are accessible.

34.2 Persistent Excitation
34.2.1 Introduction

Summary of last class: looked at two error models.
Properties of persistently exciting signals (chapter 6)
three figures in R2

ω(t) =

 sin(Ω0t)
cos(Ω0t)

sin(Ω0t+ φ)


Not PE in R3 since the third component z-direction is a linear combination of the first two components, x
and y-directions.

ω(t) =



sin(Ω1t)
cos(Ω1t)
sin(Ω2t)
cos(Ω2t)

...
sin(Ωnt)
cos(Ωnt)


Ωi 6= Ωj then PE in R2n need n distinct frequencies.

In ω ∈ Ωn then Tω ∈ Ωn where T nonsingular.
Suppose reference input r(t) =

∑n
i=1 ai sin(Ωit), Ωi 6= Ωj

Then

R =


r
ṙ
...

r(2n−1)

 ∈ Ω2n = T


sin(Ω1t)
cos(Ω1t)
sin(Ω2t)

...
cos(Ωnt)


where T nonsingular.

where q(s) is a Hurwitz polynomial. If u ∈ Ω1 ⇒ y ∈ Ω1. Linear system same frequency comes
through, so input PE means output PE.

another block diagram, same thing can be said about the output p(s) Hurwitz. Problem if zero was on
imaginary axis, that frequency component wouldn’t show up in output. u ∈ Ω1 ⇒ y ∈ Ω1

another block diagram input r output xm. ẋm = Axm + br. If r =
∑n

i=1 ai sin Ωit xm(t) ∈ Ω2n.
A ∈ R2n×2n A Hurwitz, (A, b) controllable.
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x(t) = xm(t) + e(t) and xm(t) ∈ Ωn, e(t)→ 0 as t→∞⇒ x(t) ∈ Ωn.

Return to Control Problem

1. Scalar

2. States accessible

34.2.2 Case (1) Scalar

Plant: ẋ = apxp + bu

Control: u = θxp + kr

Model: ẋm = amxm + bmr

Tracking error: e = xp − xm
Tracking error dynamics: ė = ame+ b(k̃r + θ̃xp)

Parameter error: θ = θ̃ + θ∗

k = k̃ + k∗

Matching condition: ap + bθ∗ = am

bk∗ = bm

Update laws: ˙̃
θ = −sgn(b)exp
˙̃
k = −sgn(b)er

Proposing the following candidate Lyapunov function

V =
1

2
(e2 + |b|(θ̃2 + k̃2))

Time differentiating

V̇ = ame
2

And so e, θ̃, k̃ ∈ L∞ and e(t)→ 0 as t→∞ and sgn(b) = +1

so ω PE in R2 <=> ˜̄θ → 0! ω = ω∗ + Ce ω∗ PE in R2⇒ ˜̄θ → 0.
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34.2.3 Case (2) States Accessible

Plant: ẋ = Apxp + bu

Control: u = θ>xp + r

Model: ẋm = Amxm + br

Tracking error: e = xp − xm
Tracking error dynamics: ė = Ame+ θ̃>xp

Parameter error: θ = θ̃ + θ∗

k = k̃ + k∗

Matching condition: a+ bθ∗ = am

bk∗ = bm

Update laws: ˙̃
θ = −(e>Pb)xp
˙̃
k = −sgn(b)er

Q > 0 A>mP + PAm = −Q
xp PE <=> θ̃(t) → 0 as t → ∞ xp = xm + e xm ∈ Ωn ⇒ θ̃(t) → 0 as t → ∞ r must have n

2
frequencies

34.3 Parameter Convergence in Adaptive Control
goal: want y to track ym and choose ym something that we can indeed track. Pick reference model that

has enough degree of smoothness. y can at best follow a signal which has derivatives well defined up to the
relative degree of plant. Relative degree of reference model must be at least that of plant or greater.

goal: Choose u so e goes to zero.
first assume n∗ = 1 and also assume Wm(s) is SPR. Also assume km and kp are known, with km =

kp = 1 for simplicity (for now).
Pick filters like in representation 2, except without dealing with the constant (for now) since km = kp =

1.

v1(s) =
c(s)

f(s)
u

where f(s) Hurwitz, monic, n− 1th degree.
C(s) is not monic, and n− 2th degree

v2(s) =
d(s)

f(s)
u

d(s) is not monic, and n− 1th degree
Transfer function from r to y
zeros can only be canceled out, and poles shifted.
θ1 should be θ1 = f(s) − c(s) = Z ′p(s) so degrees of freedom are available to solve for c(s) leaving

us with polynomial n− 2th degree, which need not be monic. So c∗(s) exists, and θ∗1 is the parameter that
leads to c∗(s). This allows the forward loop to be simplified as
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This was all pretty much review of output feedback control for the general n∗ = 1 case, with only the
simplification that kp = km = 1.

New part is if ω PE⇒ θ̃ → 0.
xmn is non minimal state.

xmn =

xmω1

ω2


3n−2

ω∗2n−1 = Cxmn

ẋmn = Amnxmn + bmnr

Properties of PS
if (A, b) controllable and A is Hurwitz, then u being a sum of n/2 sinusoids, then x is persistently

exciting in Rn.
If (A, b) is not controllable, x will be persistently exciting in a lower dimension.
Say x(t) PE in Rn denote that as x ∈ Ωn

If we have rectangular matrix Pr×n then z = Px, z(t) ∈ Rr. Then if z is PE in Rr, then x ∈ Ωr
n

Example 62

x =

[
sin(t)
cos(t)

]
then x ∈ Ω2. If

x =

[
1
5

]
then x ∈ Ω1

2. If

x =

[
e−t

e−2t

]
and so x not PE. If

x =

 sin(t)
cos(t)

sin(t+ φ)


then x ∈ Ω2

3.

Nonminimal representation of the plant

ẋpn = Amnxpn + bmn(θ̃>ω + r)

ω̇1 = Fn−1ω1 + gn−1ue

ω̇2 = Fn−1ω2 + gn−1y
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ω = ω∗ + Ce

34.4 Summary
we introduced recursive schemes - adaptive laws for adjusting parameter. We introduced two error

models. Error models relate something we can actually measure that tells how system behaves and responds
to uncertainty e called tracking error and parameter error θ̃. The analogy was turning a single knob without
any markings on it. Hope is that e→ 0 means that θ̃ → 0

Error model 1: was when the relationship between parameter and tracking error was algebraic. ˙̃
θ = −eu.

One example of this is y = θ>u where θ unknown, and θ̂ is estimate. Error model 3 was when the
relationship between parameter and tracking error has some dynamics in between it. For example a first
order system. An example of this is is the motor from last lecture, which can be cast in terms of error model
1.

In both cases assume ω is smooth. That is |ω̇| ≤M is finite.
Persistent excitation of ω ∈ Rn

1

T0

∫ t+T0

t
|ω>(τ)w|dτ ≥ ε0

∀ unit vectors w ∈ Rn ∀t ≥ t0 ∫ t+T0

t
ω(τ)ω>(τ)dτ ≥ αI > 0

∀t ≥ t0
ω PE <=> θ̃(t)→ 0 as t→∞
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Chapter 35

Adaptive Observers

35.1 Introduction
Last Class: Persistent Excitation
Today: Adaptive Observers and Parameter Convergence
Observers (Ch 4)
non-minimal representation characterized by 2n parameters.

ẋ1 = −λx1 + u

ω̇1 = Λω1 + `u

ω̇2 = Λω2 + `yp

u = θ>1 ω1 + θ0yp + θ>2 ω2

error models (1) and (2)

35.1.1 Nonadaptive Observers
State not available for measurement. Must estimate state as x̂.
Before adaptive observer, first look at “regular” observer.
Plant where x is not measurable but y is

ẋ = Ax+ bu

y = h>x

Standard solution is Luenberger observer

˙̂x = Ax̂+ bu+ `(y − ŷ)

ŷ = h>x̂

Proof is fairly simple. e = x̂− x.

ė = Ae+ `h>(x− x̂)

= (A− `h>)e
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And if (A, h) is observable then (A− `h>) is Hurwitz. so e(t)→ 0 as t→∞.
Parameterization of A, b, h.

A =

[
a I

a . . . 0

]

h =


1
0
...
0


35.1.2 Adaptive Observers

only n unknown values to estimate in A

Â =

[
â I

â . . . 0

]
And same with b, where b̂ is the estimate of b.

Also don’t know what to pick as ` since A is unknown, so can’t guarantee to pick the right ` so A− `h>
is Hurwitz.

Am =

[
am I

am . . . 0

]
Ax = Amx+ (a− am)y

Adaptive Observer (assume for now that ` = 0)

˙̂x = Amx̂+ (â− am)y + b̂u

rewrite plant

ẋ = Amx+ (a− am)y + bu

Error

ė = Ame+ (â− am)y + (b̂− b)u
ė = Ame+ ãy + b̃u

Pick candidate Lyapunov function

V = e>Pe+ ã>ã+ b̃>b̃

V̇ = −e>Qe+ 2(e>P ã)y + 2(e>P b̃)u+ 2 ˙̃a>ã+ 2
˙̃
b>b̃

= −e>Qe+ 2(ye>P + ˙̃a>)ã+ 2(ue>P +
˙̃
b>)b̃
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The problem with using the following update laws (which would otherwise give V̇ ≤ 0)

˙̃a = −Pey ˙̃
b = −Peu

is that we do not have the signal e.
Go back through and change Am to Ām where

Ām = Am − `h>

ė = Ame+ (â− am)y + (b̂− b)u− `h>e
ė = Āme+ ãy + b̃u

What was the Ām stuff about???????

35.2 Minimal Representations
From Ben: Minimal representations have more restrictive applications, harder to implement (synthesiz-

ing ν signal), are same order as plant, easier to look at (estimated states are states).

35.3 Nonminimal Representations
From Ben: easier to implement.

35.3.1 Nonminimal Representation 2
The problem is to design an adaptive observer for the following plant for Wp(s) below, where Rp(s) is

monic and degree n, and Zp(s) is degree m, (need not be monic), where m ≤ n− 1.

Wp(s) =
Zp(s)

Rp(s)

An example might help to show what is going on, so consider the given Wp(s) below, where the goal is to
determine a0 in this transfer function.

Wp(s) =
1

s+ a0

Given an n−th order plant, a minimal observer is one that is of order n; there are as many integrators in the
observer as in the plant. The non-minimal observers have more integrations than the plant. Given the plant
Wp above, we will try to see and understand representation 2, where we will use twice as many integrations
in the observer as in the plant. Consider the following block diagram.

N1(s)
D(s)

yp

N2(s)
D(s)

u v1+

v2

+
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Look at the the transfer function from u to yp and we get

Wp(s) =
N1(s)

D(s)−N2(s)

Now, we can can pick D(s) to be any stable monic polynomial which is the same order as the plant
denominator polynomial, pick N1(s) to be the zero polynomial of Wp(s), and then pick N2(s) so that
D(s)−N2(s) = Rp(s). If we do that for our simple example above, we get

N1(s) = 1 D(s) = s+ β

where β > 0. Now evaluate D(s) − N2(s) = s + β − N2(s) = s + a0 which gives N2(s) = β − a0.
Putting these values into the block diagram

1
s+β

yp

β−a0
s+β

u v1+

v2

+

which is equivalent to the given Wp(s). In this example Wp(s) was first order, but we could have done
exactly the same process for an n-th order system. Essentially, we can pick D(s) to be any stable monic
polynomial that we want, and then use the degrees of freedom in the two zero polynomials to place the poles
and zeros of Wp(s).

Let’s now look at how this structure can be used to build an observer. To do this, we consider the transfer
function blocks above represented in state space as shown in the block diagram below.

F, g c>
yp

F, gd>

u ω1 v1 +

ω2v2

+

We have two filters shown using the dotted lines. The filters are defined in state-space form by the
matrices (F, g, c>) and (F, g, d>). We showed above in our example how to pick these filters as transfer
functions, but we need to see how to do this using the state-space representation. The representation of a
transfer function in state-space is not unique. Control canonical form is a good choice.

ẋ = −βx+ u

v1 = 1

and

ẋ = −βx+ yp

v2 = β − a0
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So we have F = β, g = 1, c> = 1 and d> = β − a0. For the scalar plant examples, these parameters are
also scalars, but they will be vectors when designing an observer for a higher order plant. Now we change
the block diagram so we can try to use this idea to make our adaptive observer. Consider the equivalent
block diagram

F, g c>

F, g d>

u ω1 v1 +

yp ω2 v2

+

yp

yp = c>ω1 + d>ω2

= θ>ω

where
θ =

[
c> d>

]> and ω =
[
ω>1 ω>2

]>
So our parameters are all contained in θ, and ω is a known signal. Now replace the parameters c and d with
estimates, and note also that ω1 and ω2 need to be replaced with estimates as well. The ω’s are estimated
values and not the true values only because of errors in initial conditions. These errors will decay with a
speed based on how F is picked. In block diagram this becomes

F, g ĉ>

F, g d̂>

u ω̂1 +

yp ω̂2

+

ŷp

The output can be expressed

ŷp = c>ω̂1 + d>ω̂2

= θ̂>ω̂

where
θ̂ =

[
ĉ> d̂>

]>
and ω̂ =

[
ω̂>1 ω̂>2

]>
Now look at the error

e1 = ŷp − yp
= θ̂> − θ>ω

Define errors
θ̃ = θ̂ − θ and ω̃ = ω̂ − ω
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So θ = θ̃ + θ̂ then we can rewrite error as

e1 = θ̂>ω̂ − θ>(ω̂ − ω̃)

= θ̂>ω̂ − θ>ω̂ + θ>ω̃

= (θ̂> − θ>)ω̂ + θ>ω̃

= θ̃>ω̂ + θ>ω̃

And the term ε(t) = θ>ω̃ tends to zero as t→∞. So we are essentially left with error model 1.

e1 = θ̃>ω̂

Start by representing the plant this way

Wp(s) =

[
Zp(s)

Rm(s)

][
Rm(s)

Rp(s)

]

Wp(s) =
b1s+ b2

s2 + a1s+ a2

Start by representing the plant this way

Wp(s) =

[
Zp(s)

Rm(s)

][
Rm(s)

Rp(s)

]
Time Domain
Frequency Domain
Rp(s) is monic, degree n Zp(s) is degree m, and need not be monic, where m ≤ n− 1

Wp(s) =
θ11s

m + θ12s
m−1 + · · ·+ θ1(m+1)

sn + θ21sn−1 + · · ·+ θ2n

Wp(s) =

[
Zp(s)

Rm(s)

][
Rm(s)

Rp(s)

]
So write each of the terms with bunch of unknown parameters. Pick (Fn, gn) where Fn : n × n and
gn : n× 1. Control canonical form

Zp(s)

Rm(s)

det(sI − Fn) = Rm(s)

ω̇1 = Fnω1 + gnu

v1 = θ>1 ω1

Now second term
Rm(s)

Rp(s)
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block diagram here
R′p(s) = Rm(s)−Rp(s)

n− 1th degree polynomial, non-monic

ω̇2 = Fnω2 + gny

v2 = θ′>2 ω2

y = θ>1 ω1 + θ′>2 ω2

Adaptive Observer (Non-Minimal)

˙̂ω1 = Fnω̂1 + gnu

˙̂ω2 = Fnω̂2 + gny

ŷ = θ̂>1 ω̂1 + θ̂>2 ω̂2

For parameter convergence: If ω is PE then θ̃(t)→ 0 as t→∞.
note ω̂ is not the same as ω!

ŷ = θ̂>1 ω̂1 + θ̂>2 ω̂2

y = θ>1 ω1 + θ′>2 ω2

= θ>1 ω̂1 + θ>2 ω̂2 + θ>1 (ω1 − ω̂1) + θ>2 (ω2 − ω̂2)

= θ>ω̂ + θ>ω̃

y = θ>ω̂ + ε(t)

ω̇1 =

˙̂ω1 =

˙̃ω1 =

˙̃ω2 =

ε(t) = θ>ω̃

→ 0 as t→∞
If ω̂ is PE then θ̃(t)→ 0 as t→∞
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35.3.2 Nonminimal Representation 1
Here is another method of representing the plant for which an adaptive observer is designed (method 1)

uses one less integrator (2n−1). The method above was method 2. (pretty sure, check book, might be other
way around)

More Stuff on Adaptive Observers

started with luenberger and showed that the error model 2 type structure required e>P and e is not
available for measurement. Only a subset of e is available which is not enough to construct e>P .

Went to non minimal representation.
Consider only SISO system.
Representation (1)
P is nth order plant, observable and controllable. Thats what transfer function is. Do all pole zero

cancellations and result is controllable observable representation of dynamic system. Since numerator and
denominator polynomial do not share any factors, they are called co-prime.

Add extra poles and zeros to get a non minimal representation of plant.
The non-minimal state is [

ω1

ω2

]
Name of game: build a way of getting state estimate and plant estimate.
only reason ω and ω̂ are different is due to initial conditions.

ŷ = θ̂>ω̂

ey = θ̂>ω̂ − θ>ω + (θ − θ)>ω̂
= θ̃>ω̂ + θ>(ω̂ − ω)

= θ̃>ω̂ after finite time

˙̃
θ = −eyω̂

θ̃ is bounded, and θ̃ → 0 iff ω̂ PE. And ω PE⇒ ω̂ PE
Structure of ω
Assume (Fn, gn in control canonical form. det(sI − Fn) = f(s) and f(s) is nth degree, Hurwitz, and

monic.

ω =

[
ω1

ω2

]
=



1
f(s)
s

f(s)
...

sn−1

f(s)
Zp(s)

Rp(s)f(s)
sZp(s)

Rp(s)f(s)
...

sn−1Zp(s)
Rp(s)f(s)


u =



Rp(s)
sRp(s)

...
sn−1Rp(s)
Zp(s)
sZp(s)

...
sn−1Zp(s)


1

f(s)Rp(s)
u
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And we have in the denominator a 2nth degree polynomial, Hurwitz, monic.

ω = T


1
s
...

s2n−1

 u

f(s)Rp(s)

ω is nonsingular transformation of this vector which is persistently exciting in dimension 2n− 1.
T is nonsingular because Rp Zp coprime so each time you take a derivative ... ?

u′ =
1

f(s)Rp(s)
u

U =


u′

u̇′

...
u′(2n−1)


u =

n∑
i=1

ai sin Ωit
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Chapter 36

Closed-Loop Reference Model Based
Output Feedback Adaptive Control

36.1 Introduction
nominal system use T =

[
I 0
I −I

]
to show separation principle.

36.1.1 CRM States Accessible
CRM: Case (b)Ap unknownBp = BΛ whereB is known Plant and reference model

ẋp = Apxp +Bpu

ẋm = Amxm +Bmr − L(x− xm)

Control law
u = θ(t)xp + k(t)r

the plant equation becomes
error dynamics

ė = (Am + L)e+BΛθ̃xp +BΛk̃r

update laws

θ̇ = −ΓθB
>Pex>p

k̇ = −ΓkB
>Per>

Lyapunov
(Am + L)>P + P (Am + L) = −Q

G = Am + L

G>P + PG = −Q

Lyapunov
V = e>Pe+ tr

(
θ̃>Γ−1

θ Λθ̃
)

+ tr
(
k̃>Γ−1

k Λk̃
)

Pick L such that G = gIn×n where g < 0.
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Q = |g|In×n

P =
1

2
|g|In×n

Tuning laws

θ̇ = −1

2
ΓθB

>ex>p

k̇ = −1

2
ΓkB

>er>

Lyapunov

V =
1

2
e>e+ tr

(
θ̃>Γ−1

θ Λθ̃
)

+ tr
(
k̃>Γ−1

k Λk̃
)

⇒
∫
‖e‖2 ≤ V (0)

|g|

ORM: Case (c)Ap andBp unknown Only going to be local stability. Matching conditions will change
because structure is different.

ẋp = Apxp +Bpu

ẋm = Amxm +Bmr

Matching condition has Bm inside instead of Bp

Ap +Bmθ
∗ = Am

BpK
∗ = Km

input
u = Kθxp +Kr

substitute control law into plant equation

ẋp = Apxp +Bp(Kθxp +Kr)

= Apxp +BpKθxp +BpKr

= Apxp +BpK
∗θxp +BpK̃θxp +BpKr

= (Ap +BpK
∗θ)xp +BpK̃θxp +BpKr

= Amxp +BpK̃θxp +BpKr

= Amxp +BpK̃θxp +BpKr +Amxp −Amxp
= Amxp +Apxp +Bp(K

∗ +K −K∗)θxp −Amxp +BpKr

= Amxp + (Ap +Bp(K
∗ +K −K∗)θ −Am)xp +BpKr
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Evaluating the error dynamics

ė = Ame+ (Ap +Bp(K
∗ +K −K∗)θ −Am)xp +Bp(K −K∗)r

= Ame+Bm(θ − θ∗)xp +Bm(K∗−1K − I)θxp +Bm(K∗−1K − I)r

= Ame+Bmθ̃xp +Bm(K∗−1 −K−1)Kθxp +Bm(K∗−1 −K−1)Kr

= Ame+Bmθ̃xp +Bm(K∗−1 −K−1)K(θxp + r)

= Ame+Bmθ̃xp +Bm(K∗−1 −K−1)u

= Ame+Bmθ̃xp +Bmψ̃u

where

θ̃ = θ − θ∗

ψ̃ = K∗−1 −K−1

Lyapunov
V = e>Pe+ tr

(
θ̃>θ̃

)
+ tr

(
ψ̃>ψ̃

)
update

d

dt
(K∗−1 −K−1) = K−1K̇K−1 = −BmPeu>

K̇ = −KBmPeu>K

example 3.4. V not radially unbounded.

V = e2 + ψ̃2

ψ̃ =
1

k
− 1

k∗

k̃ = k − k∗

V = e2 +
k̃2

(k̃ + k∗)2k∗2

36.2 Squaring up Output Feedback
Showing that if the squared up system satisfies PBaug = (SC)> that the non-augmented system satisfies

an equivalent relationship: PB = (S1C)>.

(A− LC)>P + P (A− LC) < 0

P [ B B1 ] = (SC)>

P [ B B1 ] = C>S>
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S =

[
S1

S2

]
P [ B B1 ] = C>[ S>1 S>2 ]

PB = C>S>1

PB = (S1C)>

36.3 Eugene Visit Notes
Given

ẋp = Apxp +BpΛ(u+ Θ>Φ(x))

yp = Cpxp

z = Cpzxp +Dpzu

where (Ap, Bp) is controllable, det Λ 6= 0, (Ap, Cp) is observable.

ėI = yref − ycmd

yreg = Cp,regxp +Dp,regΛ(u+ Θ>Φ(x))

Goal: given emax, T0, find u such that ‖yreg−ycmd‖ < emax for all t > T0 <∞. This is known as UUB,
see Khalil. Define the following extended open-loop dynamics.

ẋ = Ax+BΛ(u+ Θ>Φ(x)) +Bcmdycmd

ẋ = Ax+BΛ(u+ Θ>Φ(x))

Khalil feedback linearization. Isidori (Alberto) Burns. Feedback linearizable systems can handle un-
matched uncertainty reference model - command prefilted goal find u to asymptotically track xm reference
model xm follows r with some error add and subtract trick Bubl

ẋ = Ax+BΛ(u+ Θ>Φ(x)) +Bubl −Bubl

= Ax+Bubl +BΛ(u− Λ−1ubl + Θ>Φ(x))

u = ubl + uad

ẋ = Ax+Bubl +BΛ(ubl + uad − Λ−1ubl + Θ>Φ(x))

= Ax+Bubl +BΛ(uad + (I − Λ−1)ubl + Θ>Φ(x))

= Ax+Bubl +BΛ(uad + Θ̄>Φ̄(ubl, x))
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where

Θ̄ =
[
I − Λ−1 Θ>

]>
Φ̄(ubl, x) =

[
ubl

Φ(x)

]
so now we pick uad as

uad = − ˆ̄Θ>Φ̄

The baseline part provides nominal system with desired performance and the adaptive part fights uncer-
tainty.

˙̂x = Ax̂+Bubl +BΛ(uad + ˆ̄Θ>Φ̄) + L(y − ŷ)

= Ax̂+Bubl + L(y − ŷ)

The output and state are

ubl = −Kxx̂+Krr

˙̂x = (A−BK − LC)x̂+BKrr + Ly

these are stable:

Aref = A−BKx A− LC

But the reference model must be stable as well! Challenge: Find conditions such that A−BK−LC is
Hurwitz. This is for practical purposes. The idea being if an airplane is sitting on the ground and is powered
on the estimator state should be zero, measurements zero, and reference zero. If we were to hit the plane we
would be essentially resetting the initial conditions of the estimator through its input y. If it were not stable,
the estimator state would blow up causing actuators to go crazy and we would not be a happy goose.

Rosenbrock matrix y = 0 no matter what u is

ẋ = Ax+Bu

0 = Cx+Du

Laplace transform (no IC)

sX = AX +BU

0 = CX +DU

(A− sI)X +BU = 0

CX +DU = 0[
A− sI B
C D

] [
X
U

]
=

[
0
0

]
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When this matrix loses rank: transmission zeros
Example: Consider the system

φ̇ = p

ṗ = u

So we have

A =

[
0 1
0 0

]
B =

[
0
1

]
C =

[
1 0

]
Then the Rosenbrock matrix is −s 1 0

0 −s 1
1 0 0


Eat a banana and sit in Hawaii.
Back to the tracking problem.
Note that our input choice u = ubl + uad is not unique.
Bellman - Dynamic programming

36.4 LMI Based Approach to Adaptive Output Feedback
36.5 Some Stuff

Corollary to KYP Lemma says that a P = P> > 0 satisfies PB = C> if and only if CB = (CB)> >
0. So CB must be full rank. Proof?

Left multiply both sides of PB = C> by B>

B>PB = (CB)>

36.6 Adaptive Control of a Pendulum
This document will explain the process of linearizing a simple pendulum, and using this linearized

system to design a full state feedback LQR-PI controller. With the controller gain in the feedback loop
to control the nonlinear system, the required reference torque input τr which gives a desired pendulum
deflection angle θd can be found. This is known as the feed-forward gain. In this way, a reference torque can
be commanded to the system resulting in a quick and accurate rotation of the pendulum to the desired angle,
within some range around which the linearization is valid. Integrating the pendulum error removes the need
to calculate necessary reference input and apply a feed-forward gain. Instead, a reference command can be
given to the system, and the controller will apply control effort until the system reaches this reference value.
At this point, the error will be zero.

Model reference adaptive control, or MRAC, is also explained and applied to the pendulum model.
MRAC requires a reference model to be specified, against which the actual system will be compared. This
is used if the actual plant had uncertain parameters. This controller would simply compare the response of
the actual plant against the reference model, and adjust the gain to make the system behave as desired. With
the adaptive controller complete, it can be added around the existing LQR-PI controller.
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36.6.1 Pendulum Equations of Motion
The governing equations for a pendulum with a viscous damper and torsional restoring spring are shown

below, where J = ml2 is the moment of inertia of the pendulum, m is the mass of the pendulum, g is
gravitational acceleration, l is the length of the pendulum, kθ is a torsional spring constant, kθ̇ is viscous
damping coefficient, and τ is an external torque input provided by a motor or similar actuator. θ = 0 when
the pendulum is hanging vertically downward.

∑
MO = Jθ̈

θ̈ = −g
l

sin(θ)− kθ
ml2

θ −
kθ̇
ml2

θ̇ +
1

ml2
τ

Using the following state variables

X1 = θ

X2 = ω

and input U = τ , the second order governing equation can be written using two first order equations

Ẋ1 = X2

Ẋ2 = −g
l

sin(X1)− kθ
ml2

X1 −
kθ̇
ml2

X2 +
1

ml2
U

The state vector X is then:
X =

[
X1 X2

]T
And the state equations take the form of:

Ẋ = f(X,U)
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36.6.2 Equilibrium Points and Linearization
Equilibrium Points

Equilibrium points for the pendulum must be found.
Equilibrium points are defined to be states where the state derivative is zero:

Ẋ∗ = f(X∗, U∗) = 0 (36.1)

Linearization

Define perturbations about the equlibrium point:

X = X∗ + x (36.2)

U = U∗ + u (36.3)

Differentiating (36.2):
Ẋ = Ẋ∗ + ẋ

but, using (36.1):
Ẋ∗ = 0

giving:
Ẋ = ẋ

ẋ = f(X,U) = f(X∗ + x, U∗ + u)

Performing a Taylor series expansion, neglecting second order terms and higher:

ẋ = f(X∗, U∗) +
∂f(X,U)

∂X

∣∣∣∣
∗
x+

∂f(X,U)

∂U

∣∣∣∣
∗
u+ ε

with:
f(X∗, U∗) = 0

giving:

ẋ =
∂f(X,U)

∂X

∣∣∣∣
∗
x+

∂f(X,U)

∂U

∣∣∣∣
∗
u

where the subscript (·)∗ indicates these matrices be evaluated at the equilibrium point found in the preceding
section.

When the equations of motion are linearized this way, the resulting equations can be expressed:

ẋp = Apxp +Bpu

Linearizing the Pendulum

There are two cases of equilibrium points that will occur for this system: equilibrium points for which
the input is zero, and equilibrium points for which there is a non-zero input.
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Case I: U∗ 6= 0

0 = X̄2

0 = −g
l

sin(X̄1)− kθ
ml2

X̄1 −
kθ̇
ml2

X̄2 +
1

ml2
Ū

For the above case, there will be infinitely many trim points. These trim points correspond to some non-zero
torque input Ū that will maintain the pendulum stationary at some corresponding value ox X̄1 = θ̄ 6= 0.
However, it is usually desired to trim a system around a point which requires zero input, so this case will not
be focused on any further. Instead, case II will be examined instead.

Case II: U∗ = 0 Finding the equilibrium points which require zero input will result in the following
equations:

0 = X̄2

0 = −g
l

sin(X̄1)− kθ
ml2

X̄1 −
kθ̇
ml2

X̄2

From these equations, there are again infinitely many trim points, although this time they are periodic,
corresponding to the pendulum hanging vertically downward or balancing vertically upward.

X̄ =

[
{2nπ} ∪ {(2n+ 1)π}

0

]
, n ∈ Z

where the first set of X̄1 correspond to stable equilibrium points, and the second set of X̄1 corresponds to
unstable equilibrium points.

Linearizing Pendulum

d

dt

[
x1

x2

]
=

 ∂f1
∂X1

∂f1
∂X2

∂f2
∂X1

∂f2
∂X2


∗

[
x1

x2

]
+

[∂f1
∂U

∂f2
∂U

]
∗

u

Using the pendulum example provided, and evaluating the partial derivatives results in:

d

dt

[
x1

x2

]
=

[
0 1

−g
l cos(X1)− kθ

ml2
− kθ̇
ml2

]
∗

[
x1

x2

]
+

[
0

1
ml2

]
∗

u

and substituting the equilibrium values:

d

dt

[
x1

x2

]
=

[
0 1

−g
l −

kθ
ml2

− kθ̇
ml2

][
x1

x2

]
+

[
0

1
ml2

]
u (36.4)

Or, more compactly:
ẋp = Apxp +Bpu
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36.6.3 LQR-PI Control Desgin
The following sections have described how to apply LQR control to a nonlinear system, and command

the system to some desired equilibrium state. However, this required an analytical expression relating the
closed loop input torque to deflection angle be found. Using this expression, the torque required to command
the pendulum to θd had to be found for each desired rotation angle, and implemented using a feed-forward
gain N . An LQR-PI controller will not require such a procedure. Instead, a reference will be given to the
system, and the error between actual system output and reference input will be measured. This error will be
integrated over time, and the controller will seek to reduce this, resulting in zero steady-state error.

The system is the same as above. Define error the difference between a particular single perturbation
state variable of interest and the reference value r = xpi,cmd:

ẋe = r − xpi (36.5)

Using the error description in (36.5), the state vector xp can be augmented to include xe, the integration of
ẋe, as a state variable:

d

dt

[
xp
xe

]
=

[
Ap 0
H 0

] [
xp
xe

]
+

[
Bp
0

]
u+

[
0
1

]
r (36.6)

Or, more compactly:
ẋ = Ax+B1u+B2r (36.7)

A and B are the matrices for the augmented linearized system, and, the selection matrix H ∈ Rm×n is
chosen according to the definition in (36.5). For the pendulum n = 2, and m = 1, so H is the 1 × 2
selection matrix below:

H =
[
−1 0

]
Expanding the state vectors, and inserting some numerical values:

d

dt

x1

x2

xe

 =

 0 1 0
−1 0 0
−1 0 0

x1

x2

xe

+

0
1
0

u+

0
0
1

 r
Using this augmented state-space representation, the following control law will be used:

u = KTx (36.8)

Note here that the control law does not depend on the commanded reference input r. This is because the
reference input is coming into the system through the error term, ẋe, thus ensuring the system will go to the
commanded value. The gain K will be found using LQR, minimizing the quadratic cost function using A
and B1. B2 is not used since it is constant for a given reference r. Substituting the control law (36.8) into
(36.7):

ẋ = Ax+B1K
Tx+B2r

ẋ =
(
A+B1K

T)x+B2r

The gain K is selected using LQR, and ensures the closed loop matrix
(
A+B1K

T
)

is Hurwitz. This new
resulting state-space form for the pendulum will have zero error at steady-state.
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36.6.4 MRAC Control Design
Motivation for Adaptive Control

The linear full state feedback LQR-PI controller can be used to stabilize the pendulum around a com-
manded reference angle. The LQR-PI controller guarantees zero steady state error by inclusion of an error
term in an augmented state-space representation.

The motivation for the adaptive control design lies behind the presence of uncertainties in system pa-
rameters. The linear controller that was designed for the nominal system should work well within some
neighborhood of the equilibrium point, and without uncertainties.

In designing a MRAC, a linear reference model is created, which is stable and known. Essentially, its
behavior is that which the original pendulum should mimic. The adaptive controller attempts to adjust the
gain parameters so the actual system behaves like the reference model.

The Adaptive Controller

When the nominal equation Ẋ = f(X,U) is linearized about a trim point, it takes the form ẋp =
Apxp + Bpu as shown previously. With the presence of input uncertainties, the nonlinear equation can be
represented as

Ẋ = f(X,ΛU)

When this equation is linearized about the same flight condition, it takes the form

ẋp = Apλxp +Bpλu

where the uncertainty can be incorporated as Bpλ = BpΛ giving

ẋp = Apλxp +BpΛu

When this uncertain linear plant is augmented with an integral error state, it can be represented

d

dt

[
xp
xe

]
=

[
Apλ 0
H 0

] [
xp
xe

]
+

[
Bp
0

]
Λu+

[
0
I

]
r

Or, more compactly, the overall plant to be controlled is given by:

ẋ = Aλx+B1Λu+B2r (36.9)

Selection of the Reference Model The reference model is selected by designing a nominal full state
feedback controller unom = KTx where the gain was calculated to optimize control of the nominal plant.
The reference model is of the form

ẋm = Amxm +Bmr (36.10)

Using the augmented nominal state and input matrices

A =

[
Ap 0
H 0

]
B1 =

[
Bp
0

]
Bm = B2 (36.11)

the reference model is given by
ẋm = (A+B1K

T)xm +B2r (36.12)

In other words, the reference model is simply the nominal linear plant, closed using a controller which
guarantees stability of the system.

409



Adaptive Law With the form of the plant known, and a reference system available to compare it with, the
adaptive law must be determined to stabilize the uncertain plant. First, the error between actual performance
and desired performance must be quantified. Define the adaptive state error

e = x− xm (36.13)

to be the difference between actual state and desired state. Propose a control law of the following form,
where θ(t) ∈ Rn×m is the adjustable control parameter

u = (θT +KT)x (36.14)

Substituting the control law (36.14) into (36.9):

ẋ = Aλx+B1Λ(θT +KT)x+B2r

ẋ = [Aλ +B1Λ(θT +KT)]x+B2r

ẋ = [Aλ +B1ΛθT +B1ΛKT]x+B2r

Comparing this expression to the reference model, it is assumed that a constant, ideal feedback gain matrix
θ∗ exists that results in perfect reference model tracking such that

Aλ +B1Λ(θ∗T +KT) = Am (36.15)

which is known as the matching condition. Using the definition for Am this can be written

Aλ +B1Λ(θ∗T +KT) = A+B1K
T

Assuming there is no uncertainty in the A matrix, that is Aλ = A, this expression can be simplified to:

B1Λ(θ∗T +KT) = B1K
T

B1Λθ∗T +B1ΛKT = B1K
T

B1Λθ∗T = B1K
T −B1ΛKT

B1Λθ∗T = B1(I − Λ)KT

θ∗T = Λ−1(I − Λ)KT

which is true since everything on the RHS . . .
Adaptive control parameter gain error is defined as

θ̃ = θ − θ∗

Differentiating the error (36.13):
ė = ẋ− ẋm (36.16)

Substituting (36.9) and (36.10) into (36.16):

ė = Aλx+B1Λu+B2r − (Amxm +Bmr)
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substituting the control law equation (36.14) and since Bm = B2

ė = Aλx+B1Λ(θT +KT)x+B2r −Amxm −B2r

ė = Aλx+B1Λ(θT +KT)x−Amxm
Rearranging the matching condition equation (36.15)

Aλ = Am −B1Λ(θ∗T +KT)

and substituting
ė = [Am −B1Λ(θ∗T +KT)]x+B1Λ(θT +KT)x−Amxm

ė = Amx−B1Λ(θ∗T +KT)x+B1Λ(θT +KT)x−Amxm

ė = Am(x− xm)−B1Λ(θ∗T +KT)x+B1Λ(θT +KT)x

ė = Am(x− xm)−B1Λθ∗Tx−B1ΛKTx+B1ΛθTx+B1ΛKTx

ė = Am(x− xm)−B1Λθ∗Tx+B1ΛθTx

ė = Ame+B1Λ(θT − θ∗T)x

ė = Ame+B1Λθ̃Tx (36.17)

The goal of the adaptive controller is to drive the error e(t) to zero: limt→∞ e(t) = 0 . This will be
accomplished by adjusting the parameter θ. The following candidate Lyapunov equation is proposed where
P is symmetric positive definite, Γ−1 ∈ Rn×n is a symmetric, invertible, positive definite user selected
tuning gain matrix, and the operation | · | takes the absolute value of the entries of the argument.

V = eTPe+ tr
(
θ̃TΓ−1θ̃|Λ|

)
Differentiating

V̇ = ėTPe+ eTP ė+ tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

Substituting equation ((36.17)) and simplifying

V̇ = (Ame+B1Λθ̃Tx)TPe+ eTP (Ame+B1Λθ̃Tx) + tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

V̇ = (Ame)
TPe+ (B1Λθ̃Tx)TPe+ eTPAme+ eTPB1Λθ̃Tx+ tr( ˙̃

θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃
θ|Λ|)

V̇ = eTAm
TPe+ xTθ̃ΛB1

TPe+ eTPAme+ eTPB1Λθ̃Tx+ tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

V̇ = eT(Am
TP + PAm)e+ xTθ̃ΛB1

TPe+ eTPB1Λθ̃Tx+ tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

Because the quantity xTθ̃ΛB1
TPe is a scalar, xTθ̃ΛB1

TPe = (xTθ̃ΛB1
TPe)T = eTPB1Λθ̃Tx the above

equation can be further simplified

V̇ = eT(Am
TP + PA1)e+ 2xTθ̃ΛB1

TPe+ tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)
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Substituting −Q = Am
TP + PAm into the equation above gives

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe+ tr( ˙̃

θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃
θ|Λ|)

Proposing the following adaptive control gain update law, noting that ˙̃
θ = θ̇

θ̇ = −ΓxeTPB1sign(Λ)

giving

˙̃
θT = −sign(Λ)(ΓxeTPB1)T

= −sign(Λ)B1
TP TexTΓT

Substituting this update law to continue evaluation of the candidate Lyapunov function’s derivative

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− tr(sign(Λ)B1

TP TexTΓTΓ−1θ̃|Λ|)− tr(θ̃TΓ−1Γxpe
TPB1sign(Λ)|Λ|)

Simplifying, recalling that Γ = ΓT and P = P T are symmetric

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− tr(B1

TPexTθ̃sign(Λ)|Λ|)− tr(θ̃TxeTPB1sign(Λ)|Λ|)

Because every entry in Λ has the same sign, sign(Λ)|Λ| = Λ giving

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− tr(B1

TPexTθ̃Λ)− tr(θ̃TxeTPB1Λ)

using property of trace tr(a) = tr(aT), and also that Λ = ΛT is symmetric

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− tr(B1

TPexTθ̃Λ)− tr(ΛB1
TPexTθ̃)

rearranging using tr(ab) = tr(ba)

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− tr(B1

TPexTθ̃Λ)− tr(B1
TPexTθ̃Λ)

combining terms
V̇ = −eTQe+ 2xTθ̃ΛB1

TPe− 2tr(B1
TPexTθ̃Λ)

and finally using tr(abT) = bTa with a = B1
TPe and bT = xTθ̃Λ

V̇ = −eTQe+ 2xTθ̃ΛB1
TPe− 2xTθ̃ΛB1

TPe

Finally simplifying to

V̇ = −eTQe

So, if a symmetric, positive definite matrix Q exists, which solves the Lyapunov equation AmTP +PAm +
Q = 0, the candidate Lyapunov function which was proposed will serve as a valid Lyapunov function for
this system.

Implementing the Controller

Selecting the Tuning Gains
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36.6.5 Improvements to MRAC Architecture
Modified Reference Model

Modifying the reference model is from before, where G is a positive definite user selected matrix gain,
gives:

ẋm = Amxm +Bmr +G(x− xm)

Matching condition still requires constant adaptive gain θ∗T such that the following is satisfied:

Aλ +B1Λ(θ∗T +KT) = Am = A+B1K
T

Substituting the new reference model into the differentiated error equation ė− x− xm:

ė = [Aλ +B1ΛθT +B1ΛKT]x+B2r − [Amxm +B2r +Ge]

rearranging and matching condition

Aλ = Am −B1Λ(θ∗T +KT)

and substituting
ė = [Aλ +B1ΛθT +B1ΛKT]x− [Amxm +Ge]

gives
ė = (Am +G)e+B1θ̃

Tx

Using the same candidate Lyapunov function as before

V = eTPe+ tr
(
θ̃TΓ−1θ̃|Λ|

)
and differentiating

V̇ = ėTPe+ eTP ė+ tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

V̇ = [(Am +G)e+B1θ̃
Tx]

T
Pe+ eTP [(Am +G)e+B1θ̃

Tx] + tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|)

Propose the same following adaptive control gain update law as before, noting that ˙̃
θ = θ̇.

θ̇ = −ΓxeTPB1sign(Λ)

Substituting the adaptive control gain update law gives

V̇ = −eTQe− eTQGe

So, if symmetric, positive definite matrices Q and QG exist, which solves the Lyapunov equation AmTP +
PAm + Q = 0, and GTP + PG + QG = 0 the candidate Lyapunov function which was proposed will
serve as a valid Lyapunov function for this system.
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Feed-Forward Gain

[
ẋ
ẋe

]
=

[
Ap 0
H 0

] [
x
xe

]
+

[
Bp
0

]
u+

[
0
I

]
r

at steady state: [
0
0

]
=

[
Ap 0
H 0

] [
x∗

xe
∗

]
+

[
Bp
0

]
u∗ +

[
0
I

]
r

[
0
−r

]
=

[
Ap 0
H 0

] [
x∗

0

]
+

[
Bp
0

]
u∗

[
0
−r

]
=

[
Ap Bp
H 0

] [
x
u∗

]
[
x∗

u∗

]
=

[
Ap Bp
H 0

]−1 [
0
−r

]
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Chapter 37

Classical MIMO Adaptive Control

37.1 Introduction
This document provides a description of the analysis and synthesis of classical adaptive output feedback

control as given in Reference [11], and aims to analyze the class of systems to which this method is appli-
cable, and compare it to closed-loop reference model based output feedback, and the systems for which that
method is applicable.

37.2 Preliminaries
R[s] is the ring of polynomials, R(s) is the field of rational functions, and Rp(s) is the ring of proper

rational functions of a single variable with coefficients in R, i.e. transfer matrices. We will typically use the
letters G(s) or Wp(s) to represent rational (transfer) matrices, and P (s) for polynomial matrices.

Definition 36 High frequency gain for SISO plant [11], p.183, p. 405. The high frequency gain of
a transfer function Wp(s) is the constant kp that is pulled out leaving the numerator and denominator of
Wp(s) as monic polynomials. That is

lim
s→∞

sn
∗
Wp(s) , kp

Definition 37 High frequency gain for multivariable plant [[11], p. 405] This definition depends on
the structure of the right Hermite form Hp(s) of Wp(s)

lim
s→∞

H−1
p (s)Wp(s) , Kp

Definition 38 Proper/strictly proper rational transfer matrix [14], p.382. A rational TFM G(s) is
proper if lims→∞G(s) <∞ and strictly proper if lims→∞G(s) = 0.

Definition 39 Characteristic polynomial [15], p. 299. The characteristic polynomial of a transfer matrix
G(s) is defined as the least common multiple of the denominators of all minors of G(s). The degree of this
polynomial is defined as the McMillan degree ofG(s). We will typically denote the characteristic polynomial
by p(s).
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Example 63 Characteristic polynomial Given the following transfer function matrix, find
the characteristic polynomial p(s)

G(s) =

[
1
s−1

2
(s−2)2

1
(s−1)2

1
s+3

]

The 1× 1 minors of G(s) are:

1

s− 1

2

(s− 2)2

1

(s− 1)2

1

s+ 3

The 2× 2 minor of G(s) is:

1

s− 1

1

s+ 3
− 2

(s− 2)2

1

(s− 1)2
=

(s− 1)(s− 2)2

(s− 1)2(s− 2)2

1

s+ 3
− 2

(s− 2)2

1(s+ 3)

(s− 1)2(s+ 3)

From this we can see that the least common multiple of the minors of G(s) is

p(s) = (s− 1)2(s− 2)2(s+ 3)

Definition 40 Transmission Zero [16], Ch. 27. A rational matrix H(s) of full column rank has a zero at
s = ζ0 if there is a rational vector u(s) such that u(ζ0) is finite and nonzero, and lims→ζ0 [H(s)u(s)] = 0.

This definition seems hard to apply in practice, i.e. how to find the vector u(s)?

Example 64 Transmission zero This example was taken from Reference [16]. Let a
transfer matrix G(s) be given as follows

G(s) =

[
1 1

s−3

0 1

]
Using Definition 39, we can determine that G(s) has a pole at s = −3. To determine the
transmission zeros of G(s) we apply Definition 40. We suspect there is a zero at s = −3

as well, and use u(s) =
[
−1 s− 3

]>. Applying the definition

lim
s→3

[
1 1

s−3

0 1

] [
−1
s− 3

]
= lim

s→3

[ s−3
s−3 − 1

s− 3

]
=

[
0
0

]
we see that there is in fact a transmission zero at s = −3.

Definition 41 McMillan degree (rational matrix) The McMillan degree of a system with transfer matrix
G(s) is given by deg[p(s)], where p(s) is the characteristic polynomial of G(s). The McMillan degree of a
system G(s) gives the system order, the pole locations and their multiplicities.
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Definition 42 Minimum polynomial (rational matrix) [15], p.299. The monic least common denomina-
tor of all nonzero first-order minors of rational matrix G(s) is called the minimal polynomial of G(s) and
is denoted by d(s).

Example 65 Minimum polynomial Given the following transfer matrix, find the mini-
mum polynomial d(s).

G(s) =

[
1
s−1

1
(s−2)2

1
(s−1)2

1
s+3

]
Then d(s) is given by

d(s) = (s− 1)2(s− 2)2(s+ 3)

Find an example for the minimum polynomial that is not the same as the characteristic polynomial

Definition 43 Unimodular (polynomial matrix) [17], p.25; [18], p.279; [14], p.375; Suter 148. A
unimodular polynomial matrix Q(s) is a square polynomial matrix with inverse which is also a polynomial
matrix. A necessary and sufficient condition is detQ(s) is a real number different from zero (thus not
dependent on s).

Definition 44 Unimodular (rational matrix)
Definition 45 Elementary operations [17], p.25.

1. Interchange of columns

2. Multiplications of columns by scalar

3. Replacement of column by itself plus a polynomial multiple of another column

A unimodular matrix can always be obtained by elementary operations on an identity matrix.

Definition 46 Elementary matrices [14], p.374. The elementary operations can be represented by ele-
mentary matrices, postmultiplication by which correspond to elementary column operations, while premul-
tiplication yields elementary row operations.

Example 66 Elementary matrices For a 2 × 2 system, these unimodular (elementary)
matrices will look like

R(s) =

[
1 r(s)
0 1

]

Definition 47 Hermite form (polynomial matrix) [14], p.375; [15], p. 532. By elementary operations
we can convert polynomial matrices to several “standard” forms. Here we shall describe the Hermite forms,
which are obtained by using only row (or only column) operations.

Definition 48 Determinantal devisor (polynomial matrix) [15], p. 299. The determinantal devisor Di

of a polynomial matrix P (s) is the greatest common factor of all i× i minors of P (s)

417



Definition 49 Smith form (polynomial matrix) [15], p. 533. The Smith form of a polynomial matrix
P ∈ R[s] is the decomposition

P (s) = UL(s)SP (s)UR(s)

where UL(s) and UR(s) are unimodular polynomial matrices. SP (s) is a diagonal matrix with entries that
are monic polynomials. The entries of SP (s) are calculated using the determinantal devisors of P (s). See
Reference [15] for details.

Definition 50 Smith-McMillan form (rational matrix) Smith-McMillan form is for a rational matrix
G(s). We identify the poles (and their multiplicities) and zeros of the transfer matrix using the Smith-
McMillan form. This form is useful in obtaining the poles and zeros (with their multiplicities) from a given
transfer matrix. Consider G ∈ Rp(s) and represent it as follows, where P ∈ R[s] is a polynomial matrix,
and d is the minimum polynomial of G

G(s) =
P (s)

d(s)

The Smith-McMillan form of G(s) then uses the Smith form of the polynomial matrix P (s) as

G(s) =
UL(s)SP (s)UR(s)

d(s)

Example 67 Smith-McMillan form Consider the following transfer matrix given on page
414 of Narendra, Annaswamy.

Wp(s) =

[
1
s−1

2
(s−2)2

1
(s−1)2

1
s+3

]

First find the minimum polynomial d(s) of the rational matrix Wp(s)

d(s) = (s− 1)2(s− 2)2(s+ 3)

Express Wp(s) using the minimum polynomial as follows, where P (s) is a polynomial
matrix

Wp(s) =
P (s)

d(s)

where

P (s) =

[
(s− 1)(s− 2)2(s+ 3) 2(s− 1)2(s+ 3)

(s− 2)2(s+ 3) (s− 1)2(s− 2)2

]
We now put this polynomial matrix P (s) into Smith form by finding the determinantal
devisors of P (s) as follows, with D0 , 1. The 1× 1 minors of P (s) are:

(s− 1)(s− 2)2(s+ 3) 2(s− 1)2(s+ 3) (s− 2)2(s+ 3) (s− 1)2(s− 2)2

The greatest common devisor of these matrices is 1, so we set

D1(s) = 1

418



The 2× 2 minor of Wp(s) is:

(s−1)3(s−2)4(s+3)−2(s−1)2(s−2)2(s+3)2 = (s−1)2(s−2)2(s+3)[(s−1)(s−2)2−2(s+3)]

The greatest common devisor of this is itself, so we set

D2(s) = (s− 1)2(s− 2)2(s+ 3)[(s− 1)(s− 2)2 − 2(s+ 3)]

We then calculate ε′i as

ε′i(s) =
Di(s)

Di−1(s)

giving

ε′1(s) = 1

ε′2(s) = (s− 1)2(s− 2)2(s+ 3)[(s− 1)(s− 2)2 − 2(s+ 3)]

So the Smith form of P (s) is

SP (s) =

[
1 0
0 (s− 1)2(s− 2)2(s+ 3)[(s− 1)(s− 2)2 − 2(s+ 3)]

]

To get the Smith-McMillan form of Wp(s) divide the Smith form SP (s) by the minimum
polynomial d(s).

SMWp(s) =
1

(s− 1)2(s− 2)2(s+ 3)

[
1 0
0 (s− 1)2(s− 2)2(s+ 3)[(s− 1)(s− 2)2 − 2(s+ 3)]

]
=

[ 1
(s−1)2(s−2)2(s+3)

0

0 (s− 1)(s− 2)2 − 2(s+ 3)

]

The diagonal entries are in the form
εi(s)

ψi(s)

with

ε1 = 1

ε2 = (s− 1)(s− 2)2 − 2(s+ 3)

and

ψ1 = (s− 1)2(s− 2)2(s+ 3)

ψ2 = 1

And so the characteristic polynomial p(s) can be calculated as

p(s) = ψ1(s)ψ2(s)

= (s− 1)2(s− 2)2(s+ 3)
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The zero polynomial is given by

z(s) = ε1(s)ε2(s)

= (s− 1)(s− 2)2 − 2(s+ 3)

= s3 − 5s2 + 6s− 10

We can see that this system is fifth order n = 5, with a pole with multiplicity two at s = 1,
a pole with multiplicity two at s = 2, and a pole at s = −3. It also has three unstable
transmission zeros.

37.2.1 Hermite Form
Hermite form is a “standard” form which is obtained by applying only elementary row (or only col-

umn) operations on a polynomial matrix P ∈ R[s]. The definition of Hermite form is different for rational
polynomial matrices. The elementary operations can be represented by multiplication by elementary matri-
ces. When the Hermite form of P (s) is obtained by right multiplication of P (s) by a unimodular matrix
UR(s), this is called the right Hermite form, denoted HR. Similarly, the left Hermite form of P us obtained
as HL(s) = UL(s)P (s). We define the right Hermite form of P (s) as the matrix HR(s) as having the
following properties:

HR(s) = P (s)UR(s)

• It is lower triangular

• Each diagonal element is monic

• Each diagonal element has higher degree than any other element in the same row

We will try to find an extended definition to rational transfer matrices.

Polynomial Matrices

The procedure of applying elementary operations using elementary matrices to a polynomial matrix P ∈
R[s] is described in the following steps, and uses the fact that a(s) can be written as a(s) = q(s)b(s)+r(s)
where the degrees of q and r are less than that of a. The problem is, given P we wish to find the right
Hermite form of P . That is, find HR and a unimodular matrix UR such that HR = PUR.

1. Perform column operations so that in the first row the polynomial of the highest order is in the first
column

2. Express the polynomials in the first row as[
q(s)b(s) + r(s) b(s)

× ×

]
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3. Right multiply P by the unimodular matrix U1 given by

U1 =

[
1 0

−q(s) 1

]
This results in a matrix with the following form[

r(s) b(s)
× ×

]
4. Go back and repeat step 1

Example 68 Hermite form for polynomial matrix We provide an example to demonstrate
the steps, which are given only for 2× 2 matrices. Given

P (s) =

[
−s3 − 2s2 + 1 −(s+ 1)2

(s+ 2)2(s+ 1) 0

]
1. Perform column operations so that in the first row the polynomial of the highest order

is in the first column. In the first row, the polynomial of the highest order is already
in the first column so no column operations are necessary.

2. Express the polynomials in the first row as

b(s) = −s2 − 2s− 1

−s3 − 2s2 + 1 = q(s)(−s2 − 2s− 1) + r(s)

Now we try to make q(s) have as high order as possible. Choose

q(s) = s

and then
−s3 − 2s2 + 1 = −s3 − 2s2 − s+ r(s)

and so
r(s) = s+ 1

So the first unimodular matrix is

U1 =

[
1 0
−s 1

]
3. Right multiply P by U1 as

PU1 =

[
−s3 − 2s2 + 1 −(s+ 1)2

(s+ 2)2(s+ 1) 0

] [
1 0
−s 1

]
=

[
s+ 1 −(s+ 1)2

(s+ 2)2(s+ 1) 0

]
4. Repeat step 1
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From here onward we will simply be repeating steps 1-4. Swap the columns using the
unimodular matrix

U2 =

[
0 1
1 0

]
giving

PU1U2 =

[
−(s+ 1)2 s+ 1

0 (s+ 2)2(s+ 1)

]
By inspection we can see that

q(s) = −(s+ 1)

r(s) = 0

and so

U3 =

[
1 0

−(s+ 1) 1

]
and so

PU1U2U3 =

[
−(s+ 1)2 s+ 1

0 (s+ 2)2(s+ 1)

] [
1 0

(s+ 1) 1

]
=

[
0 s+ 1

(s+ 1)2(s+ 2)2 (s+ 1)(s+ 2)2

]
Swap columns

U4 =

[
0 1
1 0

]
giving

HR = PU1U2U3U4 =

[
s+ 1 0

(s+ 1)(s+ 2)2 (s+ 1)2(s+ 2)2

]
And this matrix satisfies the conditions of Hermite form, and the unimodular matrix UR is
given by

UR = U1U2U3U4 =

[
1 0
−s 1

] [
0 1
1 0

] [
1 0

−(s+ 1) 1

] [
0 1
1 0

]
=

[
1 −s− 1
−s s2 + s+ 1

]

Rational Matrices

Given a matrixWp(s), Hermite decomposition is expressingWp(s) as follows, whereQp(s) is unimod-
ular and Hp(s) is lower triangular.

Wp(s) = Hp(s)Q
−1
p (s)

and so Hp(s) is given by
Hp(s) = Wp(s)Qp(s)

Given a system with transfer matrix Wp(s), before we try to find the Hermite form of this system, we
first want to know whether the Hermite form will be diagonal or not. To do this we need to form the matrix
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E as given in Reference [11], p.396. We calculate ri as the minimum relative degree in the ith row ofWp(s).
We then calculate the rows of E as follows

Ei = lim
s→∞

sriWp,i(s) (37.1)

where Wp,i corresponds to the ith row of Wp.

Example 69 Checking structure of Hermite form Consider again the example from
Reference [11], p.414.

Wp(s) =

[
1
s−1

2
(s−2)2

1
(s−1)2

1
s+3

]
Evaluating the matrix E as described above with r1 = 1, r2 = 1we obtain

E = lim
s→∞

[
s
s−1

2s
(s−2)2

s
(s−1)2

s
s+3

]
=

[
1 0
0 1

]
And so E is nonsingular, and so the right Hermite form of Wp(s) is diagonal.

Finding the Hermite Form Try to determine the definition for Hermite form of a rational matrix as
described in Reference [11].

Example 70 Calculating the Hermite Form Back to our transfer matrix from Example
69. From that example we know the Hermite form Hp(s) of Wp(s) will be diagonal, and
now we wish to find Hp(s).

Wp(s) =

[
1
s−1

2
(s−2)2

1
(s−1)2

1
s+3

]

want to find the Hermite form. Because E(Wp(s)) is nonsingular, by Corollary 10.1 in
Reference [11] we know that Hp(s) is diagonal.

Hp = WpQp

37.2.2 Observability Index
Note that the observability index satisfies the following inequality, as found in Reference [19], p.157.

Given A ∈ Rn×n and C ∈ Rm×n where C has full rank

n

m
≤ ν ≤ min(n̄, n− q + 1)
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From Transfer Matrix

An upper bound on the observability index is required for classical MIMO adaptive output feedback.
This upper bound can be computed given a transfer matrix Wp(s) as described in Reference [11], p.406. It
says an upper bound ν on the observability index can be obtained by knowing an upper bound nij on the
order of the ijth scalar entry in Wp(s).

ν =

 1

m

∑
i,j

nij


State Space System

Given a state-space model, we can calculate the observability index using the procedure described in
Reference [15], p.294. This process involves selecting the first n linearly independent rows of the observ-
ability matrix and then rearranging them.

37.3 Comparison of Classical and CRM Based Output Feedback
Adaptive Control

Consider the following multivariable plant withm inputs, p outputs, and n state variables, where (A,B)
is controllable and (A,C) is observable, and B and C are full rank

ẋ = Ax+Bu

y = Cx
(37.2)

with transfer matrix given by

Wp(s) , C(sI −A)−1B ∈ Rp×mp (s) (37.3)

The aim of this section is to analyze and compare the assumptions necessary of the plant in (37.2) and
(37.3) to determine conditions under which the classical and CRM based adaptive output feedback control
solutions are applicable. The requirements of the former will depend on information contained in (37.3),
while the latter on the state-space matrices of (37.2). These requirements are summarized below.

37.3.1 Requirements for Classical Adaptive Output Feedback
1. Plant must be square, that is m = p.

2. The plant has no unstable transmission zeros.

• This is to ensure pole-zero cancellations do not occur in the right half plane.

3. The Hermite form Hp(s) of Wp(s) is diagonal.

• The only information needed to determine whether the Hermite formHp(s) ofWp(s) is diagonal
is the relative degree of each entry of Wp(s). See Corollary 10.1 in Reference [11], p.396.

4. The sign of the high frequency gain satisfies a sign definite condition.

5. An upper bound on the observability index is known.
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37.3.2 Requirements for CRM Based Adaptive Output Feedback
1. Plant need not be square, that is m 6= p.

2. The plant has no unstable transmission zeros.

• This is to ensure pole-zero cancellations do not occur in the right half plane.

3. CB is full rank

• This is the multivariable equivalent of relative degree unity for a SISO system. We will show in
the following slides how this relates to the relative degrees of the entries of Wp(s).

4. The sign of the control input uncertainty is known.

• That is, if uncertainty in control effectiveness is given by Λu, Λ is a diagonal matrix with entries
of known sign

5. The system order is known

• This information is contained in the state-space representation used for the CRM based method

37.3.3 Markov Parameters
The Markov parameters can be calculated directly from a system transfer matrix Wp(s), or from the

matrices of a state-space realization of Wp. The following definition and theorem relates information about
these state space matrices to limits of the transfer matrix.

Definition 51 Markov Parameters [15], p.387. Given a transfer matrix Wp(s), calculate the Markov
parameters as follows

H0 = lim
s→∞

Wp(s)

H1 = lim
s→∞

s(Wp(s)−H0)

H2 = lim
s→∞

s2(Wp(s)−H0 −H1s
−1)

...

Theorem 12Markov Parameters Realization [15], p.387. The set (A,B,C,D) is a realization of H(s)
if and only if

H0 = D

Hi = CAi−1B, i = 1, 2, . . .

PROOF See [15], p.387 for proof.

Remark 7 Markov Parameters Realization Given a plant as in (37.2) with equal number of inputs and
outputs, that is m = p, and with transfer matrix given by (37.3), when CB = lims→∞ sWp(s) is full rank,
this essentially means that there is at least one relative degree one relationship between each input and one
of the outputs of Wp(s). This implies ri = 1 for all i = 1, . . . ,m. Additionally, from the definition of
E in (37.1), we can see that this implies that E(Wp(s)) = CB. Furthermore, since E[Wp(s)] = CB is
nonsingular, then Hp(s) is diagonal and the elements of Kp are identical to the high frequency gains of
the scalar transfer functions corresponding to the minimum relative degrees in each row. That is, Kp =
E[Wp(s)] [11], p. 405. We can see this also in the definition of the high frequency gain in Definition 37.
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Theorem 13 Given the plant in (37.2) where m = p, the Hermite form of Wp(s) is diagonal if CB is full
rank, and E[Wp(s)] = CB.

PROOF Using Definition 51 of Markov Parameters and Theorem 12 we see that CB = lims→∞ sWp(s)
is full rank implies that then ri = 1 for all i = 1, . . . ,m, where ri is the minimum relative degree of the
entries in each row of Wp(s). Writing out the series expansion for the resolvent of A in (37.3) we obtain

Wp(s) = C

(
I

s
+
A

s2
+
A2

s3
+ . . .

)
B

From which, using the following definition for E as in (37.1) with ri = 1 for all i = 1, . . . ,m we obtain

E[Wp(s)] = lim
s→∞

sWp(s)

= lim
s→∞

sC

(
I

s
+
A

s2
+
A2

s3
+ . . .

)
B

= CB

And by corollary 10.1 in Reference [11], p.396 since CB is full rank thus E is full rank, the Hermite form
of G(s) is diagonal.

Corollary Given the plant in (37.2) where m = p, if CB is full rank, the high frequency gain is given by

Kp = CB

where the high frequency gain is given by Definition 37 as

lim
s→∞

H−1
p (s)Wp(s) , Kp

PROOF When the Hermite form Hp(s) of G(s) is diagonal, Kp = E[Wp(s)] [11], p.396. By Theorem 13
CB being full rank implies Hp(s) is diagonal and E[Wp(s)] = CB and so Kp = CB.

Theorem 14 Given a relative degree one system Wp(s) ∈ Rp×mp with realization (A,B,C, 0), both the
classical and CRM based output feedback adaptive control methods are equally applicable if

1. The plant is square, that is p = m.

2. That plant has no transmission zeros in the closed right half plane.

3. The matrix B is of the form B∗Λ where B∗ is known and Λ is a diagonal nonsingular matrix with
elements of known sign.

37.3.4 Relating Classical and CRM Adaptive Control
From the preceding subsections and discussion, we can make the following comparison between the

applicability of the classical and CRM based methods to systems in (37.2) and (37.3).

• For relative degree one systems, that is rank of CB is full, both methods are applicable if the system
is square m = p.

• If the system is not square, the classical method will not work.

• If the system is not relative degree one, the CRM based method will not work
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37.4 Adaptive Control Numerical Example
Consider the following LTI plant

ẋ = Ax+Bu

y = Cx

where x ∈ Rn, y ∈ Rp, and u ∈ Rm and the system matrices are given by

A =


−2 −1 0 0 0
1 0 0 0 0
0 0 −4 −2 0
0 0 2 0 0
0 0 0 0 3

 B =


1 0
0 0
0 1
0 0
0 1

C =

[
1 1 0 1 0
0 1 0 0 1

]
(37.4)

Evaluating the system transfer matrix Wp(s) defined as follows

Wp(s) , C(sI −A)−1B ∈ Rp×mp (s)

for the system with matrices in (37.4) we get

Wp(s) =

[
1
s+1

2
(s+2)2

1
(s+1)2

1
s−3

]

Note that this system is similar, but not identical to that in Example 67 taken from Reference [11]. In the
subsections that follow we will design a classical adaptive output feedback controller for this system. We
will check the transmission zeros and verify the requirement that all transmission zeros are stable, check that
the plant has a diagonal Hermite form, then select the reference model, and build the adaptive controller.

37.4.1 Evaluate System Transmission Zeros
First calculate the minimum polynomial d(s) of our rational matrix Wp(s) as:

d(s) = (s+ 1)2(s+ 2)2(s− 3)

and express Wp(s) as

Wp(s) =
1

d(s)
P (s)

where

P (s) =

[
(s+ 1)(s+ 2)2(s− 3) 2(s+ 1)2(s− 3)

(s+ 2)2(s− 3) (s+ 1)2(s+ 2)2

]
We now put this polynomial matrix P (s) into Smith form by finding the determinantal devisors of P (s) as
follows, with D0 , 1. The 1× 1 minors of P (s) are:

(s+ 1)(s+ 2)2(s− 3) 2(s+ 1)2(s− 3) (s+ 2)2(s− 3) (s+ 1)2(s+ 2)2

The greatest common devisor of these matrices is 1, so we set

D1(s) = 1
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The 2× 2 minor of Wp(s) is:

(s+1)3(s+2)4(s−3)−2(s+1)2(s+2)2(s−3)2 = (s+1)2(s+2)2(s−3)[(s+1)(s+2)2−2(s−3)]

The greatest common devisor of this is itself, so we set

D2(s) = (s+ 1)2(s+ 2)2(s− 3)[(s+ 1)(s+ 2)2 − 2(s− 3)]

We then calculate ε′i as

ε′i(s) =
Di(s)

Di−1(s)

giving

ε′1(s) = 1

ε′2(s) = (s+ 1)2(s+ 2)2(s− 3)[(s+ 1)(s+ 2)2 − 2(s− 3)]

So the Smith form of P (s) is

SP (s) =

[
1 0
0 (s+ 1)2(s+ 2)2(s− 3)[(s+ 1)(s+ 2)2 − 2(s− 3)]

]

To get the Smith-McMillan form of Wp(s) we divide the Smith form SP (s) by the minimum polynomial
d(s).

SMWp(s) =
1

(s+ 1)2(s+ 2)2(s− 3)

[
1 0
0 (s+ 1)2(s+ 2)2(s− 3)[(s+ 1)(s+ 2)2 − 2(s− 3)]

]
=

[ 1
(s+1)2(s+2)2(s−3)

0

0 (s+ 1)(s+ 2)2 − 2(s− 3)

]

The diagonal entries are in the form
εi(s)

ψi(s)

with

ε1 = 1

ε2 = (s+ 1)(s+ 2)2 − 2(s− 3)

and

ψ1 = (s+ 1)2(s+ 2)2(s− 3)

ψ2 = 1

And so the characteristic polynomial p(s) can be calculated as

p(s) = ψ1(s)ψ2(s)

= (s+ 1)2(s+ 2)2(s− 3)
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The zero polynomial is given by

z(s) = ε1(s)ε2(s)

= (s+ 1)(s+ 2)2 − 2(s− 3)

=

We can see that this system is fifth order n = 5, with a pole with multiplicity two at s = −1, a pole with
multiplicity two at s = −2, and a pole at s = 3. It also has three stable transmission zeros.

37.4.2 Check Structure of Plant’s Hermite Form
Check the matrixE to see if it is nonsingular. If so, the Hermite formHp(s) ofWp(s) is diagonal, which

will make control design easier. To do this, we first find the minimum relative degree ni of the elements in
each row of Wp(s). For our plant, this is

n1 = 1

n2 = 1

Evaluate E as in Reference [11], p.396.

Ei = lim
s→∞

sriGi(s)

where Gi(s) corresponds to the ith row of G(s).

E1 = lim
s→∞

s
[

1
s+1

2
(s+2)2

]
=
[
1 0

]
and

E2 = lim
s→∞

s
[

1
(s+1)2

1
s−3

]
=
[
0 1

]
So

E =

[
1 0
0 1

]
and since E is nonsingular, the plant’s Hermite form Hp(s) is diagonal.

37.4.3 Expressing the Plant’s Hermite Form
We know the plant has a diagonal Hermite form. It is given by

Hp(s) =


1

πn1 (s) 0 . . . 0

0 1
πn2 (s)

...
...

. . . 0
0 . . . 0 1

πnm (s)


where π(s) is any monic polynomial of degree 1 and ni is the minimum relative degree of the elements of
Wp(s) in the ith row.

Remark 8 Since π(s) is any monic polynomial of degree 1, and since the class of reference models that
we can use consists essentially of those asymptotically stable transfer matrices that are generated by the
Hermite normal form of the plant, we will pick π(s) = s+ a where a > 0.
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37.4.4 Find the High Frequency Gain

To find Kp, use Kp = lims→∞H
−1
p (s)Wp(s), which for diagonal Hermite forms is the same as Kp =

E[Wp(s)].

37.4.5 Select the Reference Model

Pick the reference model transfer matrix Wm(s) as

Wm(s) = Hp(s)Qm(s)

where Qm(s) is an asymptotically stable unimodular matrix. For purposes of simplicity we can assume that
Qm = γI , where γ is picked so that the DC gain of the components of the diagonal Hermite form, and thus
reference model, have unity DC gain.

37.4.6 Calculate an Upper Bound on the Observability Index

Calculate an upper bound ν on the observability index using the following formula [11], p.406.

ν =

 1

m

∑
i,j

nij



37.4.7 Design Controller Filters

Using the upper bound ν on the observability index, we design ν − 1 control input filters, and ν output
filters as follows, where rq(s) is a Hurwitz, monic polynomial of degree ν − 1.

Control signal filter ωi =
si−1

rq(s)
i = 1, . . . ν − 1

Output filter ωj =
sj−1

rq(s)
j = ν, . . . 2ν − 1

Each filter has a scalar denominator rq(s), and there are m components to each filter, and a total of 2ν − 1
filter, so the total number of integrations (i.e. the number of controller states) to generate the ω signals is
m(2ν − 1). There is a parameter matrix corresponding to each ω signal, giving m2(2ν − 1) parameters.
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37.5 Simulation Results

37.6 Appendix
Given a transfer matrixWp(s) we want to design a classical MIMO adaptive output feedback controller,

and analyze and compare the structure of the controller to closed-loop reference model based output feed-
back controllers. To do this we would like to:

1. Given a transfer matrix, find its poles and zeros

(a) To do this, we will use Smith-McMillan form

2. Convert a given transfer matrix to a minimal state-space realization. This can be accomplished in one
of two ways:

(a) Convert the transfer matrix directly to a minimal realization
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(b) Express the transfer matrix using a non-minimal realization, and then use Kalman decomposition
to remove the uncontrollable/unobservable modes

3. Express a given transfer matrix using Hermite decomposition

37.6.1 Transmission Zeros
Of state-space and transfer matrix representations of systems. How to calculate them for a state-space

representation? (use Smith-McMillan form for transfer matrix). Given a nominal system with only stable
transmission zeros, what if the uncertainty introduces unstable transmission zeros?
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Chapter 38

Advanced Adaptive Control

38.1 Adaptive Control of Plants with Arbitrary Relative Degree
Last class: parameter convergence summary: ω produces θ̃ and we said that if ω is PE then θ̃ → 0.
ω = ω∗ + Ce where ω∗ comes from reference model, and so ω∗ PE and e → 0⇒ ω PE after some

initial time t ≥ t1.
if r has n frequencies ω∗ ∈ R2n is PE⇒ PE after t ≥ t1⇒ θ̃ → 0. t1 is dependent on x(0) where x is

the state of the adaptive system in adaptive control (1). Whereas t1 is independent of the initial condition in
adaptive observer (2).

(1) Adaptive control: uniform asymptotic stability (2) Adaptive observer: exponential stability

38.1.1 Adaptive Control of Plants with Arbitrary Relative Degree
Chapter 5 Zp(s): monic, degree n− n∗ = mRp(s): monic, degree n kp: high frequency gain
need to know sign of kp because the adaptive law needs the gradient information, that is which way the

plant will move.
At a min ym must be generated by a model with same relative degree as plant. It can be higher but

not lower. Need an upper bound on relative degree. So pick Wm(s) to have relative degree n∗. That is
Wm(s) = km

Dm(s) where Dm(s) is monic, and degree n∗.
Use same structure as before.
θ>1c(sI − Fn−1)−1gn−1 = t1(s)

f(s)

θ20c + θ>2c(sI − Fn−1)−1gn−1 = t2(s)
f(s)

TF from r to yp:

=

kc
1

1− t1
f

kpZp
Rp

1−
[ f(s)
f(s)−t1(s)

]kpZp
Rp

t2
f

=
(kckp)f(s)Zp(s)

Rp[f − t1]− kpZpt2

? =
km

Dm(s)
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Need to check if we have the degrees of freedom kc = k∗ = km
kp

Are there t∗1 and t∗2 such that

Rp(s)[f(s)− t∗1(s)]− kpZp(s)t∗2(s) =? = Dm(s)f(s)Zp(s)

where Rp(s) is degree n, f(s) is degree n− 1, t∗1(s) is degree n− 2, Zp(s) is degree m, t2(s) degree n− 1
and Dm(s) degree n−m = n∗, f(s) is degree n− 1, and Zp(s) is degree m = n− n∗. But t∗1 and t∗2(s)
are not monic, so they have n− 1 and n degrees of freedom, respectively.

So we know there is a solution to this equation. Nonsingularity comes from that Rp(s) and kpZp(s) are
coprime: that is they share no common factors.

Bezout-Identity guarantees existence and uniqueness of t∗1 and t∗2.
(See book 5.2, 5.3)
Analytic part:

k(t) = k∗ + k̃(t)

θ1(t) = θ∗ + θ̃1(t)

θ2(t) = θ∗2 + θ̃2(t)

θ20(t) = θ∗20 + θ̃20(t)

θ∗>1 (sI − Fn−1)−1gn−1 =
t∗1(s)
f(s)

θ∗20 + θ∗>2 (sI − Fn−1)−1gn−1 =
t∗2(s)
f(s)

θ̃ =


k̃(t)

θ̃1(t)

θ̃20(t)

θ̃2(t)



ω =


r
ω1

yp
ω2


Error model
biggest problem is that the transfer function in this error model is not SPR. Want:
first assume kp is known, then deal with the case where kp is unknown later. ea is fully realizable. ε1 is

augmented error.
Augmenting the system with the plus/minus part only contributes a θ̃ part, since for θ∗, since its a

constant, the transfer function operation commutes.... that is doesn’t matter whether you differentiate first
and integrate second, or vice-versa.

Now we have error model 1 and immediately get boundedness of parameter errors. θ̃ bounded.

V =
1

2
θ̃>θ̃

V̇ = −ε2
1 ≤ 0

˙̃
θ = −ε1ζ
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ε1 = e1 + e2

next class: notion of slowly-varying parameters.

38.2 Adaptive Control of nth Order Systems with Output Feed-
back

Adaptive control of nth order systems with output feedback.
block diagram
e1 + e2 = ε1.
error model is ζ through θ̃> to get ε1.
the error model now allows us to use ˙̃

θ = −ε1ζ gives bounded solutions. To be able to attempt to get
global....? make system almost time invariant by introducing a normalization.

˙̃
θ =

−ε1ζ

1 + ζ>ζ + ω>ω

V̇ =
−ε2

1

1 + ζ>ζ + ω>ω

⇒ θ̃ ∈ L∞. So now system has been reduced to... ?
Next property to establish
(ii) ˙̃

θ is small.

V̇ =
−ε2

1

1 + ζ>ζ + ω>ω
= −

(
ε1√

1 + ζ>ζ + ω>ω

)2

∫
V̇ dt <∞⇒ ε1√

1+ζ>ζ+ω>ω
∈ L2

so θ̇ = −
(

ε1√
1+ζ>ζ+ω>ω

)(
ζ√

1+ζ>ζ+ω>ω

)
and so θ̇ ∈ L2.

Barbalat’s lemma θ̇ ∈ L2, θ̇ ∈ L∞, θ̈ ∈ L∞ and so θ̇ → 0.
(iii) Boundedness of the state:

x =

[
xp
ω

]

ẋ =


Ap bpθ

>
1 bpθ20 bpθ

>
2

x+


bp
gn−1

0
0



ẋ = Aclx+ b(θ̃>ω + r)

yp = h>x

h>(sI −Acl)−1b = Wm(s)
BLOCK DIAGRAM
θ̃ ∈ L∞ ˙̃

θ → 0
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Properties of almost time invariant systems... growth rate of signals... x(t) is bounded.
High order tuners.
implicit in everything we have done so far in how we realize adaptation. Time varying parameter θ(t).

Adjustment of θ was given by coming up with θ̇ =something. Stability procedure was Lyapunov based.
What about instead we came up with θ(t) was some function f through a transfer function G(s) which

is higher order tuner for θ(t). Pick G(s) with a higher relative degree.
Problem:
BLOCK DIAGRAM
Relative degree 3, feedback through θ, where θ is unknown. Try to use adaptive observer.
x1 = 1

s+1(u+ θy)

x̂1 = ω11 + θ̂ω21

x2 = 1
(s+1)2

(u+ θy)

x̂2 = ω12 + θ̂ω22

ŷ = 1
s+1 x̂2

ey = ŷ − y = 1
s+1(x̂2 − x2) = 1

s+1(θ̃ω22)
So this is the error model and we are done.
˙̃
θ = −eyω22 ⇒
e, θ̃ ∈ L∞
if we assume y ∈ L∞
then⇒ ŷ ∈ L∞
ω22 ∈ L∞.
⇒ ė ∈ L∞
⇒ e→ 0
Adaptive Control

y = 1
(s+1)3

(u+ θy) = 1
s+1

[
1

(s+1)2

(
u+ θy

)]
ŷ = 1

s+1

[
1

(s+1)2

(
u
)

+ θ̂ω22

]
Choose u so that ŷ → 0
ie 1

(s+1)2
u = −θ̂ω22

⇒ u = (s+ 1)2
(
− θ̂ω22

)
= −(s2 + 2s+ 1)(θ̂ω22)

= −s
(
θ̂ω̇22 +

˙̂
θω22

)
− 2
(
θ̂ω̇22 +

˙̂
θω22

)
− θ̂ω22

= −
(
θ̂ω̈22 + 2

˙̂
θω̇22 +

˙̂
θω22

)
− 2θ̂ω̇22 − 2

˙̂
θω22 − θ̂ω22

= −θ̂(ω̈22 + 2ω̇22 + 1) = −θ̂y − 2
˙̂
θ(ω̇22 + ω22)− 2

˙̂
θω21 − ¨̂

θω22

Suppose ˙̂
θ = −eyω22

¨̂
θ = −ėyω22 − eyω̇22

ėy = −ey + θ̃ω22

Higher order tuning
introduce θ̄ another estimate of θ need in general n∗ − 1 estimates.
error model hasn’t changed
add and subtract
ėy = −ey + (θ̂ − θ̄)ω22 + (θ̄ − θ)ω22

θ̃new = θ̄ − θ
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So if
˙̃
θnew = −eω22

and
θ̂ so that θ̂ → θ̄

i.e. ˙̂
θ = f(x) where f is chosen so that θ̂ → θ̄ and ¨̂

θ must be computable.
Use Lyapunov as the guideline for picking the derivative
V = 1

2(e2
y + θ̃2

new + (θ̂ − θ̄)2)

plug and chug skipping algebra we get
V̇ = −e2

y + 2ey(θ̂ − θ̄)ω22 + (θ̂ − θ̄)f(x)

So choose f(x) as
f(x) = −(θ̂ − θ̄)ω2

22

V̇ = −(ey − ω22(θ̂ − θ̄))2

and
e, θ̂, θ̄ ∈ L∞
˙̂
θ = f

⇒ ¨̂
θ = ḟ = −(

˙̂
θ − ˙̄θ)ω2

22 − (θ̂ − θ̄)2ω22ω̇22

computable. Steven Morse. Notes of this stuff will be put online.
So 3 general methods that are available with output feedback for higher order plants

1. Augmented error approach in book

2. Higher order tuner (not in book)

3. Backstopping (also not in book, developed in 1990s)

38.3 Saturation Protection
38.3.1 Introduction

Consider the following plant, reference model, and control law, which we have seen many times before,
but note the difference between the control law which produces the desired command uc and the input to
the plant u. As before am < 0, and the sign of bp is known.

Plant: ẋp = apxp + bpu

Reference model: ẋm = amxm + bmr

Control law: uc = θxp + kr

(38.1)

(38.2)

(38.3)

Depending on the values of the adaptive parameters θ and k, the state xp and the reference input r, the
control input u might be larger than what the actuator is actually capable of. This is known as actuator
saturation, which all actuators will have. This limit is a known constraint, for example how much torque
a motor can apply, or how much a control surface on an aircraft can deflect. This limit umax > 0 is such
that |u| ≤ umax, after which the actuator experiences saturation. The control law with this saturation can be
expressed as follows.

Control input: u =

{
uc if |uc| ≤ umax

umaxsgn(uc) if |uc| > umax
(38.4)
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The control law can also be written

u = umaxsat
(
uc
umax

)
(38.5)

Now, what happens when we try to apply our standard adaptive law below to a system with actuator limits?
That is we assume the actuators have no saturation limits, so u = uc and defining tracking e = xp − xm,
parameter error θ̃ = θ− θ∗, k̃ = k− k∗, matching conditions ap + bpθ

∗ and bpk∗ = bm the error dynamics
are given by

ė = ame+ bpθ̃xp + bpk̃r (38.6)

Proposing

V (e, k̃, θ̃) =
1

2

(
e2 + |bp|k̃2 + |bp|θ̃2

)
(38.7)

Time differentiating we obtain V̇ = ame
2 + ebpθ̃xp + ebpk̃r + |bp|k̃ ˙̃

k + |bp|θ̃ ˙̃
θ and propose the following

update laws

Update laws: ˙̃
k = −sgn(bp)er

˙̃
θ = −sgn(bp)exp

(38.8)

(38.9)

Simulating this system when the reference command is a sinusoid, and first if we look at the response
without saturation, we can plot the plant state, reference model state, control input, and tracking error as
shown below.
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As expected, the tracking error tends to zero. If we introduce a saturation limit of umax = 5, say, even
starting from zero initial tracking error, we obtain the following simulation response
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What is happening? Essentially is wind-up of the parameters. As shown before with time varying
disturbances we need to modify our controller to accommodate for the effective input disturbance due to
saturation. The difference in this case is that this disturbance is known.

38.4 Saturation Protection
We can express the control input to the actuator in two parts: the total “desired” input signal, as computed

by the adaptive law, and a component which subtracts off the portion of this control signal which the actuator
is unable to produce. We call these components u and ∆u, respectively. ∆u is the control deficit, and is
known.

u = uc + ∆u (38.10)

Substituting this expression for the control law into the plant equation we get

ẋp = (ap + bpθ)xp + bpkr + bp∆u (38.11)

Again defining parameter errors as θ̃ = θ − θ∗ and k̃ = k − k∗ and comparing this expression above
to the reference model, we the following ideal constant parameters θ∗ and k∗ which satisfy the matching
conditions am = ap + bpθ

∗ and bm = bpk
∗, where the ideal parameters can be solves as

θ∗ =
am − ap
bp

k∗ =
bm
bp

(38.12)

Again defining the tracking error e = xp − xm, the error dynamics are given by

ė = ame+ bpθ̃xp + bpk̃r + bp∆u (38.13)

The portion of the control signal which the actuator is unable to accommodate, ∆u, can be looked at like a
disturbance to the system which we have seen before. We would like to design the adaptive scheme to deal
with the presence of this ∆u. Because our actuator has a known saturation limit, essentially what we want
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to do is measure the error, but only try to reduce the portion of the error which we actually have the actuator
authority to do so. That is, we define the controllable error eu as

eu = e− e∆ (38.14)

We then obtain the controllable error eu by subtracting the deficit error e∆ from the measurable tracking
error. The deficit error due to ∆u is determined from the following differential equation, where the input
vector β∆ is unknown.

ė∆ = ame∆ + β∆∆u

When the control input is saturating, the controller cannot achieve any higher level of performance. That is,
the controller should not seek to minimize an error signal which it is unable to do because of the limitation
of the actuator. Instead we define the error eu which takes the state error (the actual error we would like
to minimize) and subtracts off the portion of the error due to the “disturbance” ∆u which the controller
input can do nothing about. This is the error we would like to use to drive adaptation. If the controller is
causing the input to saturate, there is no sense using an error signal which the controller cannot reduce to
drive adaptation.

ẋp = apxp + bpu (Plant)

ẋcm = amx
c
m + bmr − `(xp − xcm) (Closed-loop reference model)

ẋom = amx
o
m + bmr (Open-loop reference model)

ec = xp − xcm (CRM State error)

eo = xp − xom (ORM State error)

uc = θxp + kr (Control Law)

Depending on the values of the adaptive parameters θ and k, the state xp and the reference input r, the
control input u might be larger than what the actuator is actually capable of. The deflection limit of the
actuator, as we will call it, has a known constraints on the limits, in this case |u| ≤ umax, after which the
actuator will saturate. The control law with this saturation can be expressed as follows.

u =

{
uc if |uc| ≤ umax

umaxsgn(uc) if |uc| > umax
(Saturated Control Law)

where umax > 0. The control law can also be written

u = umaxsat
(
uc
umax

)
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We can express the control input to the actuator in two parts: the total “desired” input signal, as computed by
the adaptive law, and a component which subtracts off the portion of this control signal which the actuator
is unable to produce. We call these components u and ∆u, respectively. ∆u is the control deficit.

u = uc + ∆u

Substituting this expression for the control law into the plant equation we get

ẋp = apxp + bp(uc + ∆u)

ẋp = apxp + bp(θxp + kr + ∆u)

ẋp = (ap + bpθ)xp + bp∆u+ bpkr

Comparing this expression above to the reference model, we define the following ideal constant parameters
θ∗ and k∗ which satisfy the matching condition. That is

am = ap + bpθ
∗ bm = bpk

∗

giving

θ∗ =
am − ap
bp

k∗ =
bm
bp

The portion of the control signal which the actuator is unable to accommodate, ∆u, can be looked at like
a disturbance to the system. We would like to design the adaptive scheme to deal with the presence of this
∆u. The error signal due to the presence of ∆u is given as the output of the following differential equation,
where the including of the ` is for the closed-loop reference model. Setting ` = 0 recovers the normal
open-loop reference model case.

ė∆ = (am + `)e∆ + β∆∆u

When the control input is saturating, the controller cannot achieve any higher level of performance. That is,
the controller should not seek to minimize an error signal which it is unable to do because of the limitation
of the actuator. Instead we define the error eu which takes the state error (the actual error we would like
to minimize) and subtracts off the portion of the error due to the “disturbance” ∆u which the controller
input can do nothing about. This is the error we would like to use to drive adaptation. If the controller is
causing the input to saturate, there is no sense using an error signal which the controller cannot reduce to
drive adaptation.

eu = ec − e∆

The dynamics describing this error are given by

ėu = ėc − ė∆

where, differentiating the state error
ėc = ẋp − ẋcm

plugging in
ėc = apxp + bpu− amxcm − bmr + `(xp − xcm)
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Substituting in the control law u = uc + ∆u and the matching conditions ap = am − bpθ∗ and bm = bpk
∗

we get
ėc = (am − bpθ∗)xp + bp(uc + ∆u)− amxcm − bpk∗r + `(xp − xcm)

and then
ėc = amxp − bpθ∗xp + bpuc + bp∆u− amxcm − bpk∗r + `xp − `xcm

and then
ėc = (am + `)(xp − xcm)− bpθ∗xp + bpuc + bp∆u− bpk∗r

and now substituting the control law uc = θxp + kr in

ėc = (am + `)ec − bpθ∗xp + bpθxp + bpkr + bp∆u− bpk∗r

and then
ėc = (am + `)ec + bp(θ − θ∗)xp + bp(k − k∗)r + bp∆u

Now define the following parameter errors

θ̃ = θ − θ∗

k̃ = k − k∗

and substituting these in
ėc = (am + `)ec + bpθ̃xp + bpk̃r + bp∆u

Now returning to ėu

ėu = (am + `)ec + bpθ̃xp + bpk̃r + bp∆u− (am + `)e∆ − β∆∆u

and then
ėu = (am + `)eu + bpθ̃xp + bpk̃r + (bp − β∆)∆u

and define the last parameter

β̃ = bp − β∆

and then
ėu = (am + `)eu + bpθ̃xp + bpk̃r + β̃∆u

This is the error we want to try to minimize. Now propose the following candidate Lyapunov function

V (eu, θ̃, k̃, β̃) =
1

2
eu

2 +
1

2
|bp|γ−1

1 θ̃2 +
1

2
|bp|γ−1

2 k̃2 +
1

2
γ−1

3 β̃2

taking the time derivative

V̇ = euėu + |bp|γ−1
1 θ̃

˙̃
θ + |bp|γ−1

2 k̃
˙̃
k + γ−1

3 β̃
˙̃
β
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substituting in ėu

V̇ = eu[(am + `)eu + bpθ̃xp + bpk̃r + β̃∆u] + |bp|γ−1
1 θ̃

˙̃
θ + |bp|γ−1

2 k̃
˙̃
k + γ−1

3 β̃
˙̃
β

and then

V̇ = (am + `)eu
2 + bpθ̃euxp + bpk̃eur + β̃eu∆u+ |bp|γ−1

1 θ̃
˙̃
θ + |bp|γ−1

2 k̃
˙̃
k + γ−1

3 β̃
˙̃
β

Now the goal is to determine adaptive update laws for each of the parameters θ̃, k̃, and β̃ such that all of the
terms except the quadratic in eu are left. That is

bpθ̃euxp + |bp|γ−1
1 θ̃

˙̃
θ =0

bpk̃eur + |bp|γ−1
2 k̃

˙̃
k =0

β̃eu∆u+ γ−1
3 β̃

˙̃
β =0

So this results in the following update laws

˙̃
θ = −γ1sgn(bp)euxp
˙̃
k = −γ2sgn(bp)eur

˙̃
β = −γ3eu∆u

resulting in the following time derivative V̇

V̇ = (am + `)eu
2 ≤ 0

And with V̇ negative semi-definite, then V is bounded above by V (t0) and below by zero. Additionally, the
arguments of V are also bounded for all t ≥ t0.

Conditions to Ensure Bounded Solutions

Because the parameters are bounded, there exists θmax <∞ and kmax <∞ such that for all t ≥ t0 the
following hold

|θ̃(t)| < θmax

|k̃(t)| < kmax

These maximum values can be found from the initial value of the Lyapunov equation at t0. The maximum
value of each of these parameters is found assuming all of the others are zero. That is

V (t0) < V0 =
1

2
|bp|γ−1

1 θ̃max
2

and
V (t0) < V0 =

1

2
|bp|γ−1

2 k̃max
2

we can solve for k̃max in terms of θ̃max

1

2
|bp|γ−1

1 θ̃max
2 =

1

2
|bp|γ−1

2 k̃max
2
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γ−1
1 θ̃max

2 = γ−1
2 k̃max

2

k̃max =

√
γ2

γ1
θ̃max

α =

√
γ2

γ1

k̃max = αθ̃max

and from above we have that √
V (t0) <

√
|bp|
2γ1

θ̃max

We already showed the boundedness of the other parameters, now just have to show it for xp. We do this
by creating a Lyapunov-like function of xp and show that its time derivative is decreasing. However, the
boundedness of xp is conditional, given that it is initially not too large, and Lyapunov function has a value
which is initially not too large, thus ensuring the other parameters are initially not too large.

Propose the following Lyapunov-like function

W (xp) =
1

2
xp

2

taking its time derivative
Ẇ (xp) = xpẋp

Taking the equation above for xp
ẋp = apxp + bpusat

Case 1 Now there are two conditions to consider for this analysis. The first one is when the control input
does not saturate. That is |u| ≤ umax so u = uc and ∆u = 0 giving

u = θxp + kr

plugging this in to the plant equation

ẋp = apxp + bp(θxp + kr)

add subtract trick

ẋp = apxp + bpθxp + bpkr − bpk∗r + bpk
∗r − bpθ∗xp + bpθ

∗xp

combining terms
ẋp = apxp + bpθ̃xp + bpk̃r + bpk

∗r + bpθ
∗xp

ẋp = (ap + bpθ
∗)xp + bpθ̃xp + bpk̃r + bpk

∗r

Plugging this into Ẇ we get

Ẇ (xp) = xp[(ap + bpθ
∗)xp + bpθ̃xp + bpk̃r + bpk

∗r]

Ẇ (xp) = (ap + bpθ
∗)xp

2 + bpθ̃xp
2 + bpk̃rxp + bpk

∗rxp
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Ẇ (xp) = amxp
2 + bpθ̃xp

2 + bpk̃rxp + bpk
∗rxp

From this equation we see that since am is negative, as long |bpθ̃| < am then xp can be made sufficiently
large to ensure Ẇ < 0.

amxp
2 + bpθ̃maxxp

2 + bpk̃rxp + bpk
∗rxp < 0

Additionally, to find the appropriate lower bound on xp, we must assume “worst case” in the above expres-
sion. That is

amxp
2 + bpθ̃maxxp

2 + bpk̃rxp + bpk
∗rxp < (am + |bp|θ̃max)xp

2 + |bp|k̃maxrmaxxp + |bp||k∗|rmaxxp = 0

where
|k̃| < k̃max ∀t|r| < rmax ∀t

Also, since am is negative we have that am = −|am| and we are going to solve for xp = xmin

(−|am|+ |bp|θ̃max)xp + (|bp|k̃maxrmaxxp + |bp||k∗|rmax) = 0

and also with k̃max = θ̃max

xmin =
|bp|rmax(αθ̃max + |k∗|)
|am| − |bp|θ̃max

This value xmin is such that Ẇ < 0 when the control input is not saturating. As long as x ≥ xmin then
Ẇ < 0. Another constraint on xp comes from the plant dynamics.

ẋp = apxp + bpu ≤ 0

|ap|xp − |bp|umax ≤ 0

xmax =
|bp|
|ap|

umax

Case 2 Now the case where the control input does saturate must be considered. When this happens ∆u 6=
0 and we have

u = umaxsgn(θxp + kr)

plugging this into the plant equation with ap = am − bpθ∗

ẋp = apxp + bpu

ẋp = (am − bpθ∗)xp + bpumaxsgn(θxp + kr)

ẋp = amxp + bpumaxsgn(θxp + kr)− bpθ∗xp
Ẇ = amx

2
p − bpθ∗x2

p + xpbpumaxsgn(θxp + kr)

and with bpxp = |bpxp|sgn(bpxp) we get

Ẇ = amx
2
p − bpθ∗x2

p + umax|bpxp|sgn(bpxp)sgn(θxp + kr)

Now there are two cases to consider.

(i) Case: sgn(θxp + kr) = −sgn(bpxp)
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(ii) Case: sgn(θxp + kr) = sgn(bpxp)

Looking at case (i) first we get

Ẇ = amx
2
p − bpθ∗x2

p − umax|bpxp|

again want Ẇ < 0 we we must satisfy

|apxp2| < |bpxpumax|

|ap||xp||xp| < |bp||xp||umax|

|ap||xp| < |bp||umax|

|xp| <
|bp|umax

|ap|

xmax =
|bp|
|ap|

umax

Looking at case (ii) sgn(u) = sgn(θxp + kr) = sgn(bpxp) and since |u| = |θxp + kr| > umax then

|u||bpxp| > umax|bpxp|

and the case we are considering gives

|bpxp| = bpxpsgn(bpxp) = bpxpsgn(θxp + kr) = bpxpsgn(u)

|u|sgn(u)bpxp > umax|bpxp|

ubpxp > umax|bpxp|

u = θxp + kr

θ = θ̃ + θ∗

u = (θ̃xp + θ∗xp + kr)

(θ̃xp + θ∗xp + kr)bpxp > umax|bpxp|

bpθ̃x
2
p + θ∗x2

p + bpkrxp > umax|bpxp|

Also with sgn(u) = sgn(bpxp) then we get

Ẇ = amxp
2 − bpθ∗xp2 + umax|bpxp|
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38.4.1 CRM + Saturation Protection Simulation Results: First Order System
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Figure 38.1: ORM: State and input
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Figure 38.2: ORM: errors
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Figure 38.3: ORM: Parameters
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Figure 38.4: CRM: State and input
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Figure 38.6: CRM: Parameters

38.4.2 Saturation Protection Higher Order with CRM
Plant to be controlled

ẋ = (A+B1ΛWT)x+B1Λu+B2xcmd

commanded control law
uc = (θ +Kx)Tx

actual control input to the plant due to the position saturation of the actuators

u =

{
uc if |uc| ≤ umax

umaxsgn(uc) if |uc| > umax

∆u is the control deficit.

u = uc + ∆u
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Plugging in the control into the plant equation and r = xcmd

ẋ = (A+B1ΛWT)x+B1Λ(uc + ∆u) +B2r

and then
ẋ = (A+B1ΛWT)x+B1Λuc +B1Λ∆u+B2r

The reference model is given by

ẋcm = Amx
c
m +Bmxcmd − L(x− xcm)

ẋcm = Amx
c
m +B2r − L(x− xcm)

where
Am = A+B1K

T
x

I am using a closed-loop reference model

ė∆ = (Am + L)e∆ + β∆∆u

and

eu = ec − e∆

The dynamics describing this error are given by

ėu = ėc − ė∆

where, differentiating the state error
ėc = ẋ− ẋcm

plugging in

ėc = (A+B1ΛWT)x+B1Λuc +B1Λ∆u+B2r − [Amx
c
m +B2r − L(x− xcm)]

and then
ėc = (A+B1ΛWT)x+B1Λuc +B1Λ∆u−Amxcm + L(x− xcm)

Using A = Am −B1K
T
x and uc = (θ +Kx)Tx

ėc = (Am −B1K
T
x +B1ΛWT)x+B1Λ(θ +Kx)Tx+B1Λ∆u−Amxcm + L(x− xcm)

and then

ėc = Amx+ (−B1K
T
x +B1ΛWT)x+B1ΛθTx+B1ΛKT

x x+B1Λ∆u−Amxcm + L(x− xcm)

and then

ėc = Am(x− xcm) + (B1ΛθT +B1ΛKT
x −B1K

T
x +B1ΛWT)x+B1Λ∆u+ L(x− xcm)

and then

ėc = (Am + L)(x− xcm) + (B1ΛθT +B1ΛKT
x −B1K

T
x +B1ΛWT)x+B1Λ∆u
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and then
ėc = (Am + L)(x− xcm) +B1(ΛθT + ΛKT

x −KT
x + ΛWT)x+B1Λ∆u

and from the matching condition we have

Λ
[
WT + (θ∗ +Kx)T

]
= KT

x

which we can rearrange
ΛWT + Λθ∗T + ΛKT

x = KT
x

and then
ΛKT

x −KT
x + ΛWT = −Λθ∗T

substituting this in
ėc = (Am + L)(x− xcm) +B1(ΛθT − Λθ∗T)x+B1Λ∆u

and with θ̃ = θ − θ∗ we get

ėc = (Am + L)(x− xcm) +B1Λθ̃Tx+B1Λ∆u

ėc = (Am + L)ec +B1Λθ̃Tx+B1Λ∆u

And using ėu = ėc − ė∆

ėu = (Am + L)ec +B1Λθ̃Tx+B1Λ∆u− [(Am + L)e∆ + β∆∆u]

and then
ėu = (Am + L)ec +B1Λθ̃Tx+B1Λ∆u− (Am + L)e∆ − β∆∆u

and then
ėu = (Am + L)(ec − e∆) +B1Λθ̃Tx+B1Λ∆u− β∆∆u

and then
ėu = (Am + L)eu +B1Λθ̃Tx+ (B1Λ− β∆)∆u

defining β̃ = B1Λ− β∆ we get the following augmented error dynamics

ėu = (Am + L)eu +B1Λθ̃Tx+ β̃∆u

ėu = Āmeu +B1Λθ̃Tx+ β̃∆u

Proposing the following candidate Lyapunov function

V = eTuPeu + tr
(
θ̃TΓ−1θ̃|Λ|

)
+ β̃TΓ−1

β β̃

Differentiating

V̇ = ėTuPeu + eTuP ėu + tr( ˙̃
θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃

θ|Λ|) +
˙̃
βTΓ−1

β β̃ + β̃TΓ−1
β

˙̃
β
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Substituting error dynamics equation from above, with the transpose

ėTu = eTu Ā
T
m + xTθ̃ΛBT

1 + ∆uTβ̃T

and simplifying

V̇ = (eTu Ā
T
m+xTθ̃ΛBT

1 +∆uTβ̃T)Peu+eTuP (Āmeu+B1Λθ̃Tx+β̃∆u)+tr( ˙̃
θTΓ−1θ̃|Λ|)+tr(θ̃TΓ−1 ˙̃

θ|Λ|)+ ˙̃
βTΓ−1

β β̃+β̃TΓ−1
β

˙̃
β

and then

V̇ = (eTu Ā
T
mPeu)+(xTθ̃ΛBT

1 +∆uTβ̃T)Peu+(eTuPĀmeu)+eTuP (B1Λθ̃Tx+β̃∆u)+tr( ˙̃
θTΓ−1θ̃|Λ|)+tr(θ̃TΓ−1 ˙̃

θ|Λ|)+ ˙̃
βTΓ−1

β β̃+β̃TΓ−1
β

˙̃
β

and then

V̇ = eTu (ĀT
mP+PĀm)eu+(xTθ̃ΛBT

1 +∆uTβ̃T)Peu+eTuP (B1Λθ̃Tx+β̃∆u)+tr( ˙̃
θTΓ−1θ̃|Λ|)+tr(θ̃TΓ−1 ˙̃

θ|Λ|)+ ˙̃
βTΓ−1

β β̃+β̃TΓ−1
β

˙̃
β

and with ĀT
mP + PĀm = −Q we get

V̇ = −eTuQeu+xTθ̃ΛBT
1 Peu+∆uTβ̃TPeu+eTuPB1Λθ̃Tx+eTuP β̃∆u+tr( ˙̃

θTΓ−1θ̃|Λ|)+tr(θ̃TΓ−1 ˙̃
θ|Λ|)+ ˙̃

βTΓ−1
β β̃+β̃TΓ−1

β
˙̃
β

since the terms of V̇ are all scalars we have

V̇ = −eTuQeu + 2xTθ̃ΛBT
1 Peu + 2∆uTβ̃TPeu + tr( ˙̃

θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃
θ|Λ|) + 2β̃TΓ−1

β
˙̃
β

The following adaptive control gain update laws are proposed

θ̇ = ProjΓ(θ,−ΓxeTuPB1sgn(Λ))

˙̃
β = −ΓβPeu∆u

Looking at only the β̃ terms
2∆uTβ̃TPeu − 2β̃TΓ−1

β ΓβPeu∆u =

and since we are considering scalar input system

2∆uTβ̃TPeu − 2∆uβ̃TPeu = 0

and so V̇ becomes

V̇ = −eTuQeu + 2xTθ̃ΛBT
1 Peu + tr( ˙̃

θTΓ−1θ̃|Λ|) + tr(θ̃TΓ−1 ˙̃
θ|Λ|)

using tr(a) = tr(aT), Λ = ΛT, Γ = ΓT, and tr(ab) = tr(ba) we get

V̇ = −eTuQe+ 2xTθ̃ΛB1
TPeu + 2tr(θ̃TΓ−1 ˙̃

θ|Λ|)

Substituting the adaptive control gain update law for θ

V̇ = −eTuQe+ 2xTθ̃ΛB1
TPeu + 2tr

(
θ̃TΓ−1ProjΓ(θ,−ΓxeTuPB1sgn(Λ))|Λ|

)
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Since the quantity 2xTθ̃ΛB1
TPeu is scalar, it is equal to its trace, so we can write

V̇ = −eTuQeu + 2tr(xTθ̃ΛB1
TPeu) + 2tr

(
θ̃TΓ−1ProjΓ(θ,−ΓxeTuPB1sgn(Λ))|Λ|

)
The terms inside the first trace operator can be rearranged using tr(a) = tr(aT), Λ = ΛT, and tr(ab) =
tr(ba)

V̇ = −eTuQeu + 2tr(θ̃TxeTuPB1Λ) + 2tr
(
θ̃TΓ−1ProjΓ(θ,−ΓxeTuPB1sgn(Λ))|Λ|

)
Combining the trace operators

V̇ = −eTuQeu + 2tr
(
θ̃TxeTPB1Λ + θ̃TΓ−1ProjΓ(θ,−ΓxeTuPB1sgn(Λ))|Λ|

)
V̇ = −eTuQeu + 2tr

(
θ̃T
(

Γ−1ProjΓ(θ,−ΓxeTuPB1sign(Λ))|Λ|+ xeTuPB1Λ
))

Let y = −xeTuPB1sign(Λ) and with sign(Λ)|Λ| = Λ

V̇ = −eTuQeu + 2tr
(
θ̃T
(
Γ−1ProjΓ(θ,Γy)|Λ| − y|Λ|

))
V̇ = −eTuQeu + 2tr

(
θ̃T
(
Γ−1ProjΓ(θ,Γy)− y

)
|Λ|
)

And we have the following inequality (See my personal notes)

θ̃T(Γ−1ProjΓ(θ,Γy)− y) ≤ 0

So, if a symmetric, positive definite matrix P exists, which solves the Lyapunov equation ĀmTP +PĀm+
Q = 0, where Q is positive definite, then V̇ = V̇ (e, θ) ≤ 0 is negative semidefinite, and V (e, θ) serves as
a valid Lyapunov function for this system.
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Chapter 39

Appendix

Example 71

Adaptive
Controller Plant

Reference
Model

Θ

L

zcmd

xm

−

x

+

e

39.1 Eugene Lecture
Last class n∗ ≥ 2

EUGENE STUFF
Linear Control LQR (state feedback) PID (classical, output) H-inf (both) Pole placement (state feedback)

LQG (LQG+kalman filter/estimator)
Nonlinear Control SMC (variable structure control) - good for DC motor control, bad for flight control

Feedback linearization (dynamic inversion, works great in Matlab, not good in real life... no guarantees
for robustness) Lyapunov redesign (mostly for systems with known dynamics, adaptive could kinda be
considered to fall under here) Adaptive control

all the control strategies above are model based design/analysis
Plant –¿ model models are all incorrect... some more than others. use model to cook up control, hoping

that even though model is incorrect the control will work on plant Plant –¿ model –¿ controller
reason this works is robustness. Robustness is the key.
Dynamic inversion very sensitive. Dynamic inversion might work, but can take a lot of time to design

analyze and tune.
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H∞ control on Harrier...

Example 72 X-45A super unstable. time to departure 20ms. 3 gains in pitch 5 gains in
roll/yaw used LQR control.

pretty much everything Boeing does (80-90 percent) is LQR
Adaptive control. Does it work? yes. Does it always work? no!
build robust control (e.g. LQR)
to fly all we need is 40* phase margin and 8dB gain margin.
LQR is really good for uncertainties in A and B but is highly sensitive when A and B are state depen-

dent. For example, standing shock wave on top of delta wing as it moves with changes in flight condition.
LQR controller has no tolerance to “bubbles” in, for example, pitching moment versus elevator angle

plot because of shock wave.

39.2 Dr. Annaswamy Lecturing
SISO system
u to y through plant P
P is of form Wp(s) =

kpZp(s)
Rp(s)

degrees of freedom... Filters of dimension n− 1

Error model
Introduce auxiliary error e2, augmented error ε1 where ε1 = e1 + e2. Use ε1 instead of e1 in adaptive

law.
omega in through Wm(s) and get ζ then use θ̇ = −ε1ζ

SHOW BLOCK DIAGRAM THAT GENERATES e2.
BLOCK DIAGRAM FOR ANALYTIC PART, THAT ALGEBRAIC PART CANCELS
when e1 + e2: Wm(s)[θ̃>] +θ̃>ζ −Wm(s)[θ̃>ω] and assume for simplicity that k∗ = 1 and so we get

ε1 = θ̃>ζ . So now use ˙̃
θ = −ε1ζ .

Started out with adaptive system which was nonlinear and time-varying. And θ̃ is bounded so this is
reduced to a linear time-varying system. Can we then use this to prove stability? Need to take one more
step.

need to allow θ̃ to grow slowly. Make it the normalized quantity.

39.3 Review
Class review
control of an uncertain dynamic system: adaptive control
two bins:

1. Input, states, output

2. parameters
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in adaptive control measure as many of (1) as possible, and deal with as many in (2) as possible must
assume there is a plant model, and since parameters are being attached to the model, must assume the
structure of the model is known

one unifying theme of adaptive control/identificaation: error model
Two classes of error:

1. parameter

2. tracking

error model is “black box” between parameter error and tracking error. Want this black box to have a
nice feature to ...

1. error model 1: e = ωθ̃ e is linear regression of θ̃

2. error model 2: dynamics between parameter error and e w = ωθ̃ then w goes into ė = Ae+Bw

3. error model 3: specific case of error model 2, and now only some part of the error is available e1. and
we needed dynamics to be SPR.

4. error model 4: uses augmented error approach with adding and subtracting... for arbitrary relative
degree. Add e1 and e2 to get ε1

Adaptive Control (1) First order plant 1
s−ap so know model structure (its first order) put θ in feedback

error model becomes xp -¿ θ̃ -¿ 1
s−am -¿ e ˙̃

θ = −exp
extend to kp

s−ap where kp has known sign, by adding a feedforward part error model becomes ω -¿ θ̃ -¿
kp

s−am -¿ e ω = [rxp]
> ˙̃
θ = −sgn(kp)eω

(2) States accessible ẋp = Apxp + Bu BΛ∗ = Bm where Λ∗ is diagonal with the sign of each of the

elements on the diagonal is known. ω = [r>x>p ]> ω -¿ θ̃ -¿ box -¿ e ˙̃
θ = −sgn(Λ∗)ωe>PBm

Adaptive Control: PI, PID, Phase-Lead popular for low order plant model simple example: 1
s(Js+B)

parameterization shown in class shows the dependence of control parameters on plant parameters
Relative degree 2 add z into error model after θ̃ and before dynamics where z = θ̇>ω̄ so ω̄ is a filtered

version of ω, and now we get error model e in terms of this filtered ω
˙̃
θ = −eω̄
A B

C

θ

θ̂

u

y

ŷ

Extra block diagram
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a1 +
∫
a1

xp

39.3.1 Time Varying Parameters
Consider the following time-varying plant, reference model, and control law

ẋp = ap(t)xp + u+ d(t)

ẋm = amxm + r

u = θxp + r

Gives time-varying matching condition
Lyapunov

V =
1

2
(e2 + θ̃2)

V̇ = ame
2 + θ̃

˙̃
θ + θ̃exp

V̇ = ame
2 + θ̃θ̇ + θ̃exp + θ̃θ̇∗

Propose

θ̇ = −exp − σθ

rewrite V̇

V̇ = ame
2 + θ̃θ̇∗ − σθ̃2 − σθ̃θ∗(t)

if we know |θ∗(t)| ≤ d1 and |θ̇∗(t)| ≤ d2. Rewrite pull out |θ̃|

V̇ ≤ −|am|e2 − σ|θ̃|
(
|θ̃| − d2

σ
− d1

)
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Part V

Nonlinear Control
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Chapter 40

Nonlinear Control

40.1 Lyapunov Stability
40.1.1 Introduction

There are several ways in which the stability of equilibria can be defined which are outlined in these
notes. Only autonomous systems are covered, looking at both continuous and discrete time cases.

Lyapunov Stability Analysis gives two approaches can be taken to analyze a system and see what type
stability an equilibrium point satisfies. Lyapunov’s first, or indirect method can be used to prove whether a
system is stable, unstable, or draw no conclusion about stability. Lyapunov’s second, or direct method can
only prove system stability.

40.1.2 Stability of Autonomous Systems
When talking about the stability of autonomous systems, it is always done relative to an equilibrium

point. Equilibrium points must first be found, and it is the stability of these points which must be studied. For
linear systems there exists only one equilibrium, so the stability of this equilibrium point can be equivalently
described by saying the stability of the system.

40.1.3 Equilibrium Points
Given the following autonomous systems (one continuous the other discrete), the system’s equilibrium

points must first be found. (DDV 13.2)
ẋ(t) = f(x(t)) (40.1)

x(t+ 1) = f(x(t)) (40.2)

The point xeq is an equilibrium point of the continuous system if f(xeq(t)) = 0,∀t ≥ 0, and an equilibrium
point of the discrete system if f(xeq(t)) = xeq,∀t ≥ 0. If the system is started in the state xeq at time t0,
it will remain there for all time. Nonlinear systems can have multiple equilibrium points (or equilibria), but
linear systems can only have one.

40.1.4 Three Types of Stability
1. Stability in the sense of Lyapunov (ISL) A system that is stable ISL is one which the system trajec-

tory can be kept close to an equilibrium point by starting sufficiently close to the equilibrium.
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• Given any ε > 0, ∃δ such that if ‖x(t0)‖ < δ, then ‖x(t0)‖ < ε,∀t > t0

This basically says that if the starting point x(t0) is inside the circle centered about x̄ with radius δ,
that the system trajectory can leave this region and into the larger circle with radius ε, but it can never
leave that region. This is the weakest form of stability, and is also known as marginally stable. It is
important to make the point that this must hold for any ε that can be picked, not just one particular and
carefully selected special case. An equilibrium point that is not stable ISL is termed unstable. (DDV
13.2)

2. Local asymptotic stability A system which is stable ISL, and satisfies the additional constraint below
is called locally asymptotically stable.

• ∃r such that if ‖x(t0)‖ < r, then x(t)→ x̄ as t→∞

This statement says that if the starting point x(t0) is inside the circle centered about x̄ with radius r,
that the system trajectories will actually converge to x̄. It is important to note that there exist systems
which satisfy only this additional constraint without satisfying the first constraint of being stable ISL.
Such systems are not asymptotically stable.

3. Global asymptotic stability A system which is globally asymptotically stable extends the definition
of local asymptotic stability from a circle of radius r to the entire state space. In other words, begin-
ning from any initial conditions x(t0) then x(t) → x̄ as t → ∞. This is discussed in further detail
using Lyapunov’s second method.

40.2 Lyapunov Stability Analysis
Using these three definitions of stability, tools are now needed which will allow a system to be analyzed

to determine if an equilibrium is stable, and if so, which type of stability the equilibrium point satisfies.

40.2.1 Lyapunov’s First (Indirect) Method
This method involves linearizing the nonlinear system about an equilibrium point x̄ in order to develop

a local conclusion about the stability of the nonlinear system. If the linearized system has poles that are all
strictly in the left-half complex plane, the equilibrium point is locally asymptotically stable. If the linearized
system has any poles that are strictly in the right-half complex plane, equilibrium point is unstable. If the
linearized system as any eigenvalues which are zero, no conclusion can be drawn about the stability of
the equilibrium point. In this case, essentially the higher order terms that were lost in linearization will
determine whether or not the equilibrium is stable or not. (DDV 14.3)

Stability of the linearized system The linearized system, with some eigenvalues on the imaginary axis
λi = 0, can be unstable, while the nonlinear system is actually stable. This is why no conclusion about the
nonlinear system can be drawn when any eigenvalues are zero. Can the opposite be true? i.e. the linearized
system with any λi = 0 is stable, but the nonlinear system is unstable? example? The stability of the linear
systems themselves when eigenvalues are on the imaginary axis will be analyzed in more detail later.
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40.2.2 Lyapunov’s Second (Direct) Method
Continuous Time Lyapunov’s second method requires the construction of a scalar, energy like Lyapunov
function of the state which satisfies the properties which follow. This function V (x(t)) is proposed as a
“candidate Lyapunov function”, and if the properties are satisfied, it becomes a Lyapunov function.

• V is locally positive definite

– V (0) = 0

– V (x(t)) > 0, 0 < ‖x(t)‖ < r for some r

• V̇ (x(t)) = d
dtV (x(t)) = d

dxV (x(t))dxdt is locally negative semidefinite

– V̇ (0) = 0

– V (x(t)) ≤ 0, 0 < ‖x(t)‖ < r for some r

The Lyapunov function which satisfies these three conditions proves the equilibrium point is locally
stable ISL. The condition of stability can be further improved if V̇ (x(t)) is negative definite, i.e. V (x(t)) <
0, 0 < ‖x(t)‖ < r for some r. Satisfying this condition results in asymptotic stability. (DDV 13.4)

Lyapunov’s second method can be extended to prove global stability if the function |V (x)| → ∞ as
‖x‖ → ∞ (i.e. V (x(t)) is radially unbounded) and V̇ (x(t)) is negative definite on the entire state space.

If a Lyapunov function cannot be found, this does not necessarily mean that the system is unstable, but
only that a suitable Lyapunov function could not be found. Therefore, Lyapunov’s direct method cannot be
used to prove a system is unstable.

Discrete time V̇ (x(t)) , V (x(t+ 1))− V (x(t))

40.2.3 The Lyapunov Equation
Continuous time To prove stability of the following continuous time, linear, autonomous system, a
quadratic Lyapunov function will suffice.

ẋ(t) = Ax(t)

Propose the following quadratic Lyapunov function, where P must be chosen such that it is positive definite
(i.e. xTPx > 0 ∀x 6= 0).

V (x(t)) = xTPx, x ∈ Rn

As long as P is positive definite V (x(t)) will be a suitable Lyapunov function. Taking the time derivative
of the Lyapunov function, and substituting ẋ = Ax gives:

V̇ (x) = ẋTPx+ xTPẋ

= (Ax)TPx+ xTPAx

= xTATPx+ xTPAx

= xT(ATP + PA)x

= xTQx

The resulting matrix Q = (ATP + PA) is symmetric as well. By picking P such that it is not only
symmetric and positive definite, but such that Q is negative definite, the quadratic Lyapunov function will
prove the linear system is globally asymptotically stable.

There are no other restrictions on the selection of P , so it desired to select a P which is symmetric?
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Discrete time For the following linear, discrete time, autonomous system, a Lyapunov function is desired.

x(t+ 1) = Ax(t)

Propose the following quadratic Lyapunov function

V (x(t)) = xTPx, x ∈ Rn

V̇ (x(t)) , V (x(t+ 1))− V (x(t))

= x(t+ 1)TPx(t+ 1)− x(t)TPx(t)

= (Ax(t))TPAx(t)− x(t)TPx(t)

= x(t)TATPAx(t)− x(t)TPx(t)

= x(t)T(ATPA− P )x(t)

= x(t)TQx(t)

The resulting matrix Q = (ATPA − P ) is symmetric as well. By picking P such that it is not only
symmetric and positive definite, but such that Q is negative definite, the quadratic Lyapunov function will
prove the linear system is globally asymptotically stable.

40.2.4 Stability of Linear Systems
As was mentioned previously in discussing Lyapunov’s first method, the location of the eigenvalues in

the complex plane determines the stability of a linear system. If the eigenvalues are in the open LHP the
system is considered stable, and if the eigenvalues are in the open RHP the system is unstable. When all of
the eigenvalues are non-positive, but some eigenvalues are on the imaginary axis, can any conclusions about
stability be drawn then? (DDV 13.3)

The following system, while both of its eigenvalues are λ = 0, 0, is stable. This is because its Jordan
blocks are 1× 1. [

ẋ1

ẋ2

]
=

[
0 0
0 0

] [
x1

x2

]
The following system, while both of its eigenvalues are λ = 0, 0, is not stable. This is because it has

one Jordan block of size 2× 2. [
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
Both of these examples are explained further in the Jordan normal form section.

40.2.5 Solving Lyapunov Problems
The following section will attempt to explain how to use Lyapunov stability analysis in solving problems.

• Is the system unstable?

– if it is suspected that the system is unstable, Lyapunov’s first method can be used to prove
instability
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– if Lyapunov’s first method is used, and the system is locally stable, the second method can then
be attempted to prove global stability

• Try to find a Lyapunov function V be which will prove stability of the system

– try to make V̇ = 0 only when x = x0 to prove asymptotic stability, otherwise as long as V̇ is
never positive the system is still stable

• For linear, autonomous, stable systems

– use V = xTPx

– find P by solving ATP + PA = −Q

– where Q and P are both positive-definite

– Q is a free design parameter: use a diagonal matrix

• For linear, non-autonomous, unstable systems

– can use full state feedback u = −Kx to stabilize the linear A matrix

– the Lyapunov equation is now solved using the closed-loop A matrix, since ACL is stable:
ACL

TP + PACL = −Q

Sometimes having V̇ negative semi-definite, and thus only being able to conclude stability in the sense
of Lyapunov and not asymptotic stability is not enough. Must use invariance when this is the case.

40.2.6 Stuff
[20] The objective of the so-called “second method” of Lyapunov is this: To answer questions
of stability of differential equations, utilizing the given form of the equations but without explicit
knowledge of the solutions.

40.3 Lyapunov Stability

40.3.1 Lyapunov Functions
1. First find the equilibrium points of the system

• For first order system choose V (x) = 1
2(x− xeq)2

• Evaluate V̇ and if it is negative definite, the equilibrium is asymptotically stable.

• Then if V is radially unbounded, that is V → ∞ as ‖x‖ → ∞ then the equilibrium is
globally asymptotically stable. Is this true if there are more than one stable equilibrium
point?

• If V̇ is only negative semi-definite, then the equilibrium is stable in the sense of Lyapunov.

– At this point invariant set theorems can be used.
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• For second order systems of the form l(ẋ)ẍ+ b(ẋ) + c(x) = 0 with b(ẋ) and c(x) in the
first and third quadrants, then we can choose

V (x, ẋ) =

∫ ẋ

0
l(y)ydy +

∫ x

0
c(y)dy

And if l(ẋ) = 1 then this reduces

V (x, ẋ) =
1

2
ẋ2 +

∫ x

0
c(y)dy

• If we have a second order linear system

A1ẍ+A2ẋ+A3x = 0

use
V =

1

2
ẋTA1ẋ+

1

2
yTA3y

T

• Using this Lyapunov function if/when we evaluate V̇ and get negative semi-definite, we
can only assert stability in the sense of Lyapunov

• To get local asymptotic stability, look at the condition that is required to make V̇ = 0. For
example if V̇ = −ẋ2 then we take ẋ = 0. Substitute this value ẋ = 0 into the system
equations

• Then???

• Result is extended to global asymptotic stability if the integral
∫ y

0 c(y)dy is radially un-
bounded

When analyzing a system with multiple equilibria, in order for a scalar function V to be consid-
ered a candidate Lyapunov function, it must be zero only at the equilibrium point, and positive
everywhere else. Thus a single candidate Lyapunov function that can be used to determine
stability about all of the equilibria cannot be proposed. Sticking to Lyapunov’s second method
would thus require a candidate Lyapunov function proposed for each of the equilibria, and then
analyzed. However, in systems with multiple equilibria, we may wish to use only a single
Lyapunov-like function in order to say something about the stability of the equilibria.

In order to do this we appeal to the global invariant set theorem, and necessarily relax the
requirement for V to be positive definite. Therefore, we can only call the scalar function V a
Lyapunov-like function.

We find V̇ and evaluate the values of the state x that make V̇ = 0. We call this set of points R.

Then, using the system dynamics, we find a subset R that are equilibrium points and call this
subset M .

Globally, we will converge to this set, although we don’t know the particulars about which
points within this set to which the system trajectories actually converge. Additional analysis is
required. If the Lyapunov-like function is locally about an equilibrium “a bowl” this equilibrium
point is a stable one. If the Lyapunov-like function about an equilibrium point is locally “a hill”
we can’t conclude the local instability of this point? Check this statement. But a linear analysis
will indicate local instability.
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40.4 Solving Lyapunov Problems
The following section will attempt to explain how to use Lyapunov stability analysis in solving
problems.

• Is the system unstable?
– if it is suspected that the system is unstable, Lyapunov’s first method can be used to

prove instability
– if Lyapunov’s first method is used, and the system is locally stable, the second method

can then be attempted to prove global stability
• Try to find a Lyapunov function V be which will prove stability of the system

– try to make V̇ = 0 only when x = x0 to prove asymptotic stability, otherwise as long
as V̇ is never positive the system is still stable

• For linear, autonomous, stable systems
– use V = xTPx

– find P by solving ATP + PA = −Q
– where Q and P are both positive-definite
– Q is a free design parameter: use a diagonal matrix

• For linear, non-autonomous, unstable systems
– can use full state feedback u = −Kx to stabilize the linear A matrix
– the Lyapunov equation is now solved using the closed-loop A matrix, since ACL is

stable: ACLTP + PACL = −Q

Sometimes having V̇ negative semi-definite, and thus only being able to conclude stability in
the sense of Lyapunov and not asymptotic stability is not enough. Must use invariance when
this is the case.

40.5 Stuff

40.6 Sliding Mode Control
40.6.1 Introduction
Sliding, switching, “suction” control.

40.6.2 General Idea
Perfect tracking possible in presence of arbitrary parameter inaccuracies, but requires extremely
high control activity. Provides good tradeoff between tracking performance and uncertainty. We
consider systems of the form

x(n) = f(x) + b(x)u

where f(x) is not completely known, but imprecision on f(x) upper bounded by a function of
x. b(x) not completely known, but known sign and also upper bounded. Goal: get the state x
to track the desired state xd. Define the state tracking error x̃ as

x̃ = x− xd
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To make it easier to explain in these notes, we will consider when the system is of second order.
(with some additional simplifications over the general form)

ẍ = f(x) + b(x)u

ẍ = f + u

The general form of the composite/switching variable s is

s =

(
d

dt
+ λ

)n−1

x̃

which, when equal to zero, drives the state error x̃ to zero. For a the second order system this
composite variable is

s =

(
d

dt
+ λ

)1

x̃ =
d

dt
x̃+ λx̃

giving
s = ˙̃x+ λx̃

for a third order

s =

(
d

dt
+ λ

)2

x̃ =

(
d2

dt2
+ 2λ

d

dt
+ λ2

)
x̃

giving
s = ¨̃x+ 2λ ˙̃x+ λ2x̃

and so on. Our goal is to enforce that this new composite variable s tends to zero. We do
this by creating a candidate Lyapunov function V of this variable, take its time derivative, and
choose the control input such that V̇ is negative definite. That is, choose the following candidate
Lyapunov equation

V (s) =
1

2
s2

time differentiating
V̇ = sṡ

From the definition of s we can evaluate ṡ

ṡ = ¨̃x+ λ ˙̃x

and substitute it in
V̇ = s(¨̃x+ λ ˙̃x)

V̇ = s(ẍ− ẍd + λ ˙̃x)

to simplify things we can define a new variable xr that satisfies the following

ẍr = ẍd − λ ˙̃x

substituting this into V̇
V̇ = s(ẍ− ẍr)
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and substituting in the system equation

V̇ = s(f + u− ẍr)

At this point we are ready to design the control input u. However, instead of designing u
simply to make V̇ negative definite, we wish to impose some degree of “negativeness”. That is,
we want to design u to enforce

V̇ ≤ η|s|

where η > 0 is a positive constant. With our choice of V = 1
2s

2 this constraint can be expressed

1

2

d

dt
s2 ≤ −η|s|

This gives
s(f + u− ẍr) ≤ η|s|

We want to design an equivalent control û that would completely cancel out f if the parameters
of f were completely known. That is

û = −f̂ + ẍr

The control law
u = û− ksgn(s)

u = −f̂ + ẍr − ksgn(s)

plugging in
s(f − f̂ − ksgn(s)) ≤ η|s|

−s(f̂ − f)− sksgn(s) ≤ η|s|

and then

−s(f̂ − f)

|s|
− k ≤ η

and then
±(f̂ − f)− k ≤ η

And we know a bound on the parameter error

|f̂ − f | ≤ F

so we can pick k to satisfy

±(f̂ − f)− k ≤ η ≤ |f̂ − f |+ η ≤ k

and then
|f̂ − f |+ η ≤ F + η ≤ k

and pick k such that it is the smallest value that will satisfy this inequality

k = F + η
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40.6.3 Summary

The general form of the system to use switching control.

x(n) = f(x) + b(x)u

So when the system is second order, use these (I don’t know for sure what it would be for higher
order systems.)

x̃ = x− xd
s = ˙̃x+ λx̃

s = ẋ− ẋr
ẋr = ẋd − λx̃

40.6.4 Barbalat’s Lemma
1. V is positive definite

2. V̇ is negative semi-definite

• With V positive definite and V̇ negative semi-definite, V is bounded. That is, at the
initial time t = 0 we have V (x(t = 0), θ(t = 0)) and from here (since V̇ is negative
semidefinite) the value of V can only decrease. V is bounded below by zero since it
is positive definite. Finally, we say that since V is bounded from above by V (t = 0)
and bounded from below by 0, that it is bounded. And because V is bounded and
positive definite (actually probably some other condition, but it is true for a quadratic
function) then the arguments of V are bounded

3. V̇ is uniformly continuous, which follows from V̈ being bounded

• We evaluate V̈ and since now we know the arguments of V are bounded, we use this
to bound V̈ , thus showing uniform continuity of V̇

With these three conditions met Barbalat’s Lemma states that V̇ → 0 as t → ∞. We then
look at V̇ and since it is tending to zero, its arguments must go to zero. Since V̇ at this point
is probably a function of the state error only, we say the state error tends to zero, although we
can’t necessarily say anything about the parameter error (unless the parameters are in V̇ also...
it is easiest to show this with examples).

Barbalat’s Lemma

Thus far, we have shown that e ∈ L∞ is bounded. Now the goal is to use Barbalat’s Lemma to
prove e→ 0. That is, show the system is asymptotically stable?

Stuff

• Continuity does not imply differentiability. e.g. absolute value
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Example Slotine example page 122: ḟ(t)→ 0 ; f converges.

This example shows a function f(t) which has a time derivative ḟ(t) that goes to zero as
t→∞, but the function f(t) does not converge as t→∞.

f(t) = sin(ln(t))

ḟ(t) = cos(ln(t))
d

dt
(ln(t)) =

cos(ln(t))

t

lim
t→∞

ḟ(t) = lim
t→∞

cos(ln(t))

t
= 0

However, just because ḟ(t) approaches zero as t → ∞ does not mean the function f(t) will
converge as t→∞, as is the case in this example.

Example Slotine example page 122: f converges ; ḟ(t)→ 0.

This example shows a function f(t) which converges as t → ∞, with a time derivative ḟ(t)
that does not go to zero as t→∞.

f(t) = e−t sin(e2t)

lim
t→∞

f(t) = lim
t→∞

e−t sin(e2t) = 0

ḟ(t) = −e−t sin(e2t) + 2 cos(e2t)

lim
t→∞

ḟ(t) = lim
t→∞
−e−t sin(e2t) + 2 cos(e2t) = lim

t→∞
2 cos(e2t)

The function f(t) has a time derivative ḟ(t) which does not converge. It oscillates back and
forth faster and faster.

40.7 Describing Functions and Limit Cycles

The purpose of a describing function is to represent a nonlinearity as an effective gain which
varies based on the input signal. Describing functions are based on the assumption that the
input to the nonlinearity is sinusoidal. The idea is that in response to a sinusoidal excitation,
most nonlinearities will produce a periodic signal with frequencies being the harmonics of the
input frequency. The assumption is made that the output may in be acceptably approximated by
the first harmonic alone. Describing functions allow limit cycles to be found.

40.8 Contraction Analysis

plant
ẋ = f(x, u, t)

substitute control law
u(x, t)
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get
ẋ = f(x, t)

consider a virtual displacement

δẋ =
∂f(x, t)

∂x
δx =

∂f

∂x
δx

When a trajectory is virtually displaced, we want the displacement to tend to zero with time.
That is, we want the trajectory to eventually go back the the trajectory from which it was
displaced. If all neighboring trajectories converge to each other (contraction behavior) global
exponential convergence to a single trajectory can then be concluded. We define the distance of
this virtual displacement as

δxTδx

For this distance to tend to zero, it is the same as its time derivative always being strictly
negative. Evaluating the derivative

d

dt
(δxTδx) = 2δxTδẋ = 2δxT

∂f

∂x
δx

contraction analysis extends a number of desirable properties of linear system analysis to gen-
eral nonlinear non-autonomous systems.
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